首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以浙江省仙居县为研究区,基于2008年森林资源二类调查样地(清查样地)数据和 Landsat TM 影像,用序列高斯协同仿真方法模拟全县森林碳储量及其分布。在此基础上,用总体估计值一致性( OEC)、仿真变动系数均值( ACV)和相对均方根误差( RRMSE)指标分析仿真精度;用设置于清查样地周围的临时样地(验证样地)数据与 LandsatTM 数据进行森林碳序列高斯块协同仿真,分析清查样地的空间代表性和森林碳分布空间仿真的尺度上推方法。结果表明:仙居县2008年森林总碳储量仿真估计值为2667878 Mg,大部分分布在南部和北部山区,中部东西向条带状低海拔区域分布较少;区域碳密度仿真估计值为0~65.66 Mg·hm -2,无论是全部样地还是减少一半样地,仿真结果总体均值均在抽样估计置信区间以内;基于清查样地与基于加密的验证样地森林碳仿真结果表明30 m ×30 m水平样地位置碳密度相关系数达0.95,以清查样地为中心1 km ×1 km 块的碳密度相关系数为0.85,说明1 km ×1 km样地仍具有较好的代表性,块仿真效果满意;以(1-RRMSE)/n定义成本效益,则使用一半样地得到的成本效益优于使用全部样地的结果,用此指标有望找到满足给定精度的最经济的样地数量。  相似文献   

2.
基于回归与随机模拟的区域森林碳分布估计方法比较   总被引:1,自引:0,他引:1  
以临安市为例,利用2004年森林资源清查样地数据和同年度Landsat TM影像数据,采用一元二次非线性回归和序列高斯协同模拟方法分别模拟森林地上部分碳密度及其分布,并对模拟结果进行比较分析。结果表明:一元二次非线性回归估计得研究区森林碳储量为2365404.37t,碳密度平均值为9.0000t·hm-2,最大值为73.7144t·hm-2,最小值为0.7156t·hm-2;序列高斯协同模拟得研究区森林碳储量为3291659.83t,碳密度平均值为12.5233t·hm-2,最大值为78.9133t·hm-2,最小值为0.0833t·hm-2;根据2004年森林资源清查样地数据,按随机抽样方法估计研究区森林碳储量为2708897.90t,样地碳密度平均值为10.3065t·hm-2,其最大值为96.9625t·hm-2,最小值为0;序列高斯协同模拟结果更接近地面样地估计结果,而且碳密度分布范围更合理;一元二次非线性回归估计结果与地面样地估计结果之差的累积平方和为9857.4619,而序列高斯协同模拟结果与实测结果之差的累积平方和为8018.4625;序列高斯协同模拟较一元二次非线性回归在估计区域森林碳空间分布...  相似文献   

3.
综合应用多源遥感数据的面向对象土地覆盖分类方法   总被引:3,自引:0,他引:3  
【目的】针对国家森林资源宏观监测业务对区域森林资源空间分布信息的迫切需求,发展一种基于国家森林资源连续清查固定样地数据,可充分发挥GF-1宽幅多光谱数据、MODIS遥感数据相应空间和时间分辨率优势的面向对象土地覆盖分类方法,以提高林地和森林资源的监测精度和自动化程度。【方法】以黑龙江省小兴安岭某林区为研究区,主要数据源包括GF-1宽幅多光谱数据、MODIS NDVI(250 m,8天合成)时间序列遥感数据、国家森林资源连续清查固定样地数据以及少量外业实地调查数据等。首先,基于GF-1宽幅多光谱数据进行多尺度影像分割,将研究区划分为许多区域性的分割对象;然后,以分割对象为分析单元,分别提取GF-1宽幅多光谱遥感影像的光谱特征、纹理特征、形状特征等以及MODIS NDVI时间序列遥感数据的时序特征,并采用随机森林算法进行特征选择;最后,利用训练样本建立基于分类回归树分类器完成面向对象的土地覆盖分类方法研究,分别比较单一GF-1 16 m宽幅多光谱数据、单一MODIS NDVI时间序列遥感数据以及综合多源数据的分类结果,并基于混淆矩阵对分类结果进行分析。【结果】精度检验和分析结果表明,面向对象的综合多源遥感数据分类方法总体分类精度达89.46%,Kappa系数为0.874,明显优于仅基于GF-1宽幅多光谱数据、MODIS NDVI时间序列遥感数据的分类方法。【结论】综合应用多源遥感数据的面向对象土地覆盖分类方法适用于综合GF-1与GF-4数据的土地覆盖类型分别制图,可有效提高主要土地覆盖类型的分类精度。针对国家森林资源连续清查的业务需求和特点,本文所发展的方法在分类对象生成、特征提取、特征选择、分类器训练和精度检验等关键环节均进行了优化设计,有利于提高森林资源连续清查业务中主要林地类型遥感分类制图的自动化、标准化程度。  相似文献   

4.
【目的】研究基于遥感影像的森林扰动信息定量提取及其对树高估算的影响,为遥感反演森林参数(树高、生物量)提供参考和借鉴。【方法】选取黑龙江省凉水国家级自然保护区为研究区,以1984—2006年33期Landsat TM/ETM+多光谱遥感影像为数据源,对其进行缨帽变换提取缨帽角(TCA)和缨帽距离(TCD)2个扰动监测指数,采用时间轨迹分析方法(LandTrendr)对TCA与TCD指数进行时间序列重构,分别提取扰动发生的前一年(DBYEA)、扰动发生前的光谱值(DBVAL)、扰动持续时间(DDUR)、扰动量级(DMAG)、扰动后开始修复的时间(RBYEAR)、扰动后开始修复的光谱值(RBVAL)、修复量级(RMAG)和修复持续时间(RDUR)8个时间序列扰动参数。基于单时相Landsat影像光谱信息与单时相Landsat影像光谱信息+森林扰动参数2组变量分别采用随机森林(RF)算法估算树高。【结果】采用单时相Landsat影像光谱信息结合基于TCA和TCD提取的16个时间序列扰动参数建立的树高反演模型预估精度比采用单时相Landsat影像光谱信息建立的树高反演模型预估精度提高6.34%,均方根误差(RMSE)降低0.50 m。树高反演模型中基于TCA提取的时间序列扰动参数变量重要性高于基于TCD提取的时间序列扰动参数变量重要性。【结论】基于LandTrendr提取的森林时间序列扰动参数能够增强反射率与树高之间的相关性,提高遥感树高模型的反演精度,基于TCA提取的森林时间序列扰动参数对树高的解释能力高于基于TCD提取的森林时间序列扰动参数。  相似文献   

5.
基于遥感数据Landsat TM影像与气象数据,利用温度、水分胁迫系数改进CASA模型,对南京市森林生态系统NPP与碳储量进行估算。结果表明,南京城市森林生态系统植被NPP空间分布较均匀,平均在200~1400g/(m2.a)之间;河流、市城区裸地植被NPP最小,在0~100g/(m2.a)之间;整个南京市植被NPP空间分布由北向南呈现逐渐增加趋势,由于最南部地区为自然森林区,保留了原始的自然环境状态,NPP最大。而分布在南京市的各个森林区,森林植被NPP均在1300~1426g/(m2.a)之间。利用生物量-蓄积量方程计算出南京市针叶林、阔叶林、针阔混交林碳储量分别占全市森林碳储量的24%、59%、17%。全市森林生态系统碳储量为111.73万t,平均森林植被碳密度为17.38t/hm2,郊区和县的森林植被碳储量远远高于市区,但是两者的碳密度并无很大的差异。  相似文献   

6.
【目的】结合主被动遥感数据,为基于不同遥感数据源、建模算法的亚热带森林生物量建模分析提供新思路。【方法】以湖南省郴州市桂东县2014年Landsat 8 OLI影像、2014年Sentine-1A影像、2014年43块森林资源连续清查固定样地数据为主要信息源,借助于ENVI、SNAP、R等软件,分别采用主动式遥感(Sentinel-1A数据)、被动式遥感(Landsat 8 OLI数据)、主被动相结合(Sentinel-1A数据结合Landsat 8 OLI数据)3种数据集和多元线性回归、随机森林、人工神经网络、袋装算法等4种模型,进行区域森林地上生物量特征变量选取、参数建模、模型精度评价、生物量空间制图。【结果】1)在特征变量选择上,红波段(B4)、红外波段(B5)反射率及纹理特征,归一化植被指数(NDVI),交叉极化(VH)后向散射系数及其纹理特征,在森林生物量反演中具有重要作用;2)4种遥感估测模型精度比较分析表明,无论是单一数据源还是二者结合,随机森林算法预测精度最高,人工神经网络、袋装算法次之,多元线性回归最低;3)3种不同数据源的遥感估测综合精度,按照由高到低的顺序排列,主被动结合被动式遥感主动式遥感;4)桂东县森林生物量平均值为53.68 t/hm2,生物量高( 90 t/hm2)的林分面积比例只有16.03%,主要分布在海拔较高、坡度较陡的东南、西南部。【结论】Sentinel-1A和Landsat 8数据的结合在估测森林生物量方面具有重要作用。  相似文献   

7.
随着遥感技术的快速发展,基于遥感影像和地面样地的方法成为目前森林碳密度精确估算的主要手段,然而没有找到具有普适性的建模因子和最佳的森林碳密度估算模型。鉴于此,本文通过分析研究区地面固定样地碳密度与Landsat-5影像及其衍生波段的相关性,筛选出估算森林碳密度的敏感因子。采用三种回归分析方法(逐步回归、偏最小二乘回归及非线性回归)分别建立森林碳密度的最优遥感估算模型。结果表明:1参与建模的遥感因子中,1/TM3与森林碳密度的相关性最大,敏感性最高;2三种回归分析方法建立的预测模型中,以4个遥感因子建立的非线性回归模型预测精度最高,预测值与实测值得决定系数R2为0.74;3通过测算,研究区平均森林碳密度为14.36 t/hm2,变化范围介于0.00~38.28 t/hm2之间。研究表明非线性回归在区域森林碳密度反演方面具有一定的潜力。  相似文献   

8.
【目的】探究Landsat 8多光谱影像结合地统计学方法估算乔木林地上碳储量的可行性和适用性,为应用Landsat 8多光谱影像结合地统计学方法估算区域森林参数提供参考。【方法】以浙江省内的一景Landsat 8多光谱影像覆盖的范围为研究区,以乔木林地上碳储量为研究对象。通过外业调查获取专项调查数据,并采用生物量转换因子和树种含碳率参数,计算得到乔木林地上碳储量数据。基于Landsat 8多光谱影像和DEM数据,提取植被指数、纹理特征、主成分变换因子、缨帽变换因子和地形因子,采用皮尔森相关系数法和方差膨胀因子法对这些因子进行优选,生成用于建模的自变量集。分别采用稳健估计和协同克里格插值法构建乔木林地上碳储量模型,并对所构建的模型精度进行对比分析。【结果】本实验所提取的因子经皮尔森相关系数法筛选后,得到22个自变量因子,经方差膨胀因子法优选后,共有7个自变量因子(比值植被指数、非线性植被指数、海拔、第2波段的平均值纹理、第4波段的相关性纹理、第7波段的平均值纹理、第7波段的方差纹理)用于建模。协同克里格插值法构建模型的决定系数(R2)为0.45、均方根误差(RMSE)为9.88 t·hm-2、平均绝对偏差(MAE)为7.75 t·hm-2、总预报偏差的相对误差(RE)为0.24%,其拟合精度优于稳健估计法(R2=0.42,RMSE=10.15t·hm-2,MAE=8.03 t·hm-2,RE=0.27%)。本文所采用的皮尔森相关系数法结合方差膨胀因子法可有效地考虑变量间的相关性及共线性问题,可以在一定程度上提高所构建模型的稳定性,所采用的协同克里格插值法考虑了变量的空间分布特征,与传统的统计模型相比具有较好的应用优势。【结论】本研究为应用Landsat 8多光谱影像结合协同克里格插值法快速估算森林碳储量及其他森林参数提供了新的途径。  相似文献   

9.
【目的】采用 KNN方法进行碳储量估测,并对估测后的数据进行各种校正处理,绘制森林地上碳储量的空间分布图,为我国森林碳储量和固碳潜力的研究提供基础数据和科学依据。【方法】以黑龙江省大兴安岭为研究区(50°05'—53°33'N,121°11'—127°01'E),基于2010年森林资源连续清查固定样地和同年 Landsat5 TM 影像数据,利用 k-邻近法( KNN)在像素级水平上对森林地上碳储量进行估算。采用多准则方法分东、南、北和中4个区域对样地坐标和其对应的影像光谱值进行坐标重配准,并根据实测样地数据对坐标重配置前后不同林分类型地上碳储量估测精度进行评价;针对 KNN方法像素级估测结果存在明显的高值区域低估和低值区域高估现象,应用直方图匹配方法对估测结果进行变动范围调整;并根据样地实测碳储量和 KNN 估测值间的回归关系对调整后的结果分区域进行进一步匹配校正后处理,绘制森林碳储量的空间分布图。【结果】总体来说,本研究区域像元尺度KNN估测的欧式距离优于马氏距离,均方根误差随着最邻近值 k的增大而降低,当 k大于6时变化缓慢,并逐渐趋于稳定;坐标误差校正后,各林分类型森林地上碳储量的估测精度均显著提高,平均均方根误差由17.23降低到14.3 t·hm -2;直方图匹配后,各区域样地点高值区域低估和低值区域高估现象均有很大程度改善,实测值和估测值间的相关关系明显增强,然而高值地区(碳储量大于20 t·hm -2)出现过高估计现象;经匹配校正后处理的均值、标准差、直方图和累积频率分布图更接近样地实测值,均方根误差也明显降低,高值地区过高估计现象得到很好校正。【结论】森林资源清查数据、遥感数据及 KNN方法相结合逐渐成为区域尺度森林参数空间连续估测的重要手段。同利用光谱值和森林参数建立的回归模型相比,KNN方法能够更多地考虑到森林参数同光谱值之间的非线性依赖关系;但 KNN估测方法除了受距离度量标准、最邻近值 k的大小以及影像波段的选取等因素影响外,还存在如样地坐标和对应的影像光谱值匹配误差、像素级估测结果多呈明显集中分布趋势等问题,使得该方法的应用受到一定限制。本文的研究表明,对这些因素进行合理的校正,将更有利于区域尺度森林参数的精确估计和反演。  相似文献   

10.
【目的】监测南水北调中线水源区2000—2015年森林空间分布格局,研究森林动态变化过程及其机制,为水源区森林生态系统保护和水质安全提供理论依据。【方法】基于2000、2010和2015年3期30 m分辨率国产环境灾害卫星HJ-1 A/B CCD以及Landsat TM影像数据,采用面向对象决策树分类方法,监测南水北调中线水源区的土地覆被,并运用像元二分模型和归一化植被指数估算植被覆盖度。【结果】3期土地覆被数据精度(K)分别为89. 4%、86. 9%和84. 4%,2000年用户精度为98%,2010年用户精度为96%,2015年用户精度为94%。土地覆被监测结果表明,受退耕还林和封山育林等生态工程项目实施影响,2000—2015年,南水北调中线水源区森林面积持续增加,增幅达9. 5%,增加面积主要来自草地、耕地和建设用地;然而,随着水源区大规模移民和区域经济不断发展,也使得约4 547 km^2的森林转化为耕地、草地和建设用地。分市统计分析表明,十堰市和安康市森林面积增量最大,均超过1 300 km^2,生态修复工程效果显著。2000—2015年,水源区植被覆盖度也呈增加趋势,其中森林植被覆盖度增幅达25. 4%,且植被覆盖度在0. 6以上的森林面积比例3期均超过70%。【结论】近15年来,南水北调中线水源区森林面积和森林植被覆盖度增加显著,森林密度得到提升,高密度的森林植被能够在地表形成植被保护层,降低水源区发生水力侵蚀和沟渠侵蚀的风险,从而提高水源区水土保持能力。  相似文献   

11.
基于30 m分辨率的2018年Landsat数据、气象数据和森林资源年度监测小班数据等资料,考虑最大光能利用率在不同森林类型中的差异,采用CASA模型对浙江省湖州市的森林植被净初级生产力(NPP)进行估算,分析其空间分布特征,对估算结果进行精度检验,并与其他学者的NPP测算值进行结果对比.结果表明:(1)湖州市森林植被...  相似文献   

12.
【目的】采用TanDEM-X单极化InSAR数据,研究基于相干系数的SINC模型森林高度估测方法,并分析5 m高分辨率的LiDAR DEM和30 m中等分辨率的SRTM DEM对模型估测精度和稳定性的影响。【方法】首先对观测的相干性进行非体散射失相干校正得到体散射失相干γVol,然后基于SINC模型将γVol的相干系数作为输入估测森林高度。以LiDAR提取的森林高度为验证数据,均匀选取150个检验样本,分别在15 m×15 m、30 m×30 m、50 m×50 m和100 m×100 m大小的样本尺度上进行精度评价,并与DSM-DEM差分法进行对比,分析2种方法的精度和适用性。【结果】5 m和30 m分辨率的参考DEM对SINC模型森林高度估测结果影响较小,随样本尺度增大其影响可逐渐忽略,当样本大小为100 m×100 m时,LiDAR DEM和SRTM DEM估测结果的R~2分别为0.54、0.51,RMSE分别为2.38、2.51 m,精度分别为77.19%、75.99%;相比SINC模型法,DSM-DEM差分法在各样本尺度上的表现更好,但森林高度估测结果存在明显低估现象,必须采用森林高度实测数据进行校正,当样本大小为100 m×100 m时,R2为0.79,校正前后的RMSE分别为2.57、1.63 m,精度分别为75.44%、84.41%。【结论】基于相干系数的SINC模型法估测森林高度,以30 m空间分辨率的SRTM DEM进行地形补偿和地理编码,可以取得较好结果;虽然该方法的精度相比DSM-DEM差分法略有下降,但既不需要实测森林高度数据进行标定,也不需要输入高分辨率的DEM,具有大范围森林高度制图的潜力和更大的实际应用价值。  相似文献   

13.
基于幂律分布的森林燃烧生物量卫星遥感估测方法   总被引:1,自引:0,他引:1  
【目的】利用长时间序列卫星遥感数据产品按森林类型建立大区域燃烧生物量估测模型,并按年生成不同森林类型的燃烧生物量,为我国年林火碳排放估测提供一种新的技术手段。【方法】采用覆盖我国陆地区域的2001—2014年MODIS火产品数据(MOD14A2),按3种森林类型分析该数据产品中的火灾辐射率(FRP)分布特性,并按森林类型构建基于幂律分布的燃烧生物量估测模型,对我国2001—2014年各年林火消耗的森林生物总量进行估测;利用对数形式的概率分布函数线性回归拟合方法求解模型幂参数m;选取每年10场左右的典型森林火灾建立回归方程,修正每年的火灾持续时间d,并以年为单位估测我国不同森林类型因燃烧消耗掉的生物量;同时,利用林火排放物计算模型结合MODIS火烧迹地数据集(MCD45A1),对估测的燃烧生物量进行对比分析。【结果】阔叶林、针叶林和灌木林的FRP数据均呈幂律分布规律,在2001—2014年14年中,林火导致全国的阔叶林年消耗总生物量在0.94~1.37 Mt之间、针叶林在0.80~1.92 Mt之间、灌木林在0.37~0.53 Mt之间。通过与林火排放物计算模型对比分析发现,这2种方法的估测结果在某些年份差异显著,甚至林火排放物计算模型估测的某些年份森林燃烧生物量超过本文研究方法估测的14年总结果。相比国家统计局公布的森林火灾发生次数和森林过火面积,本文研究方法估测的结果和年际变化更符合我国森林火灾发生规律。【结论】基于长时间序列的MODIS火产品数据表明,我国阔叶林、针叶林和灌木林燃烧释放的能量具有幂律分布特性;基于该分布特性,构建按森林类型估测全国森林因燃烧消耗的年森林生物总量模型,并估测出逐年森林因燃烧消耗的森林生物总量,通过与林火排放物计算模型估测的全国同年林火消耗掉的森林生物总量进行对比,该方法比林火排放物计算模型的估测结果更准确。  相似文献   

14.
森林面积多阶遥感监测方法   总被引:1,自引:0,他引:1  
【目的】从林业数据采集的迫切需求出发,采用遥感技术实现森林资源数据的快速年度出数,以及时掌握区域森林资源变化信息。【方法】建立遥感3阶抽样与地面调查技术相结合的森林资源遥感监测技术体系,并以辽宁省为例,利用2013—2014年高、中、低多源遥感数据,进行基于多阶抽样的省级森林面积监测方法实践。【结果】遥感结合地面样地实测,建立了地面样地与高分样地,高、中分样地以及中、低分样地的森林面积回归模型,其模型确定系数(R2)分别为0.99、0.91和0.70,模型精度较高;基于3阶分层抽样的遥感监测方法得到辽宁省2014年森林面积预测值为590.83×10~4hm~2,森林覆盖率为40.54%,略高于清查结果(40.49%);从抽样精度来看,采用分层抽样方法得到的森林面积最为可靠,抽样精度达99%以上;通过精度分层控制,基于MODIS NDVI阈值法制作了辽宁省森林分布图,实现了辽宁省森林面积和空间分布的年度产出。【结论】基于遥感抽样与地面调查技术相结合的森林面积多阶遥感监测方法可行,既可提高监测成果的时效性,又能缩短成果产出周期,具有很好的应用前景,可为下一步建立全国遥感监测体系提供重要的技术支持。  相似文献   

15.
江西金盆山林区天然常绿阔叶林生态系统碳储量研究   总被引:1,自引:0,他引:1  
【目的】探讨亚热带典型天然常绿阔叶林碳储量及其碳分布格局,以期为常绿阔叶林生态系统碳汇功能评价提供基础数据和理论依据。【方法】以江西省金盆山林区优势树种生态系统生物量研究为基础,结合主要优势树种碳含量实测数据,对金盆山典型常绿阔叶林丝栗栲林、南岭栲林、米槠林的碳储量及碳空间分布格局进行研究,并以这3种林分的碳密度均值计算整个金盆山林区天然常绿阔叶林总碳储量。【结果】金盆山林区丝栗栲林、南岭栲林、米槠林生态系统碳密度分别为294.82、307.63、318.97 t/hm^2,林区生态系统总碳密度为307.14 t/hm^2,林区现存碳总量为2.25×10^6 t;生态系统碳密度分布规律为植被层>土壤层>凋落物层,植被层碳密度分布规律为乔木层>灌木层>草本层,其中乔木层主干的碳密度占56.54%;土壤层碳密度随着土壤层的加深呈下降趋势,40 cm以下土层间的碳密度变化不明显。【结论】金盆山林区常绿阔叶林不同林分间生态系统碳密度差异不显著,生态系统内碳密度有较强的空间分布规律,生态系统碳密度高于我国森林生态系统平均碳密度和多种典型森林类型碳密度,具有较强的碳汇功能。  相似文献   

16.
【目的】选取海南岛尖峰岭国家级自然保护区内60 hm2大型固定森林样地作为研究区域,利用高通量测序技术和统计推断估算方法,对土壤细菌和真菌的物种丰富度进行估算,比较5种参数和非参数估算方法的精度。【方法】通过Illumina MiSeq测序技术,获得大样地内的500个(40 m×30 m)样方的0~10 cm土壤层的细菌16S rRNA和真菌的ITS2 rRNA基因序列。通过参数估计量SAC和SAD和非参数估计量Chao2、ICE和Jackknife1,对样地内土壤微生物群落OTU丰富度进行估算;并基于OTU在所有样方中的丰度和出现频率,利用R包i NEXT分析样品覆盖率。【结果】从500个样品中分别获得属于土壤细菌和真菌的高质量DNA序列条数分别为14 000 317和7 656 130条,这些序列数据被鉴定为细菌和真菌OTU数量分别有42 873个和22 923个。比较5种参数和非参数估计量估算结果,发现各估计量之间的估算结果相差较小且都呈现略高于观察到的物种数,其中非参数Chao2的估算结果最精确。Chao2准确地外推估算出细菌的OTU个数为42 828,真菌的OTU个数为23 137。i NEXT分析结果表明,本研究测序所获得的序列数和采集的土壤样品对样地内土壤微生物类群的覆盖率均高达99%以上,特别是基于土壤微生物OTU丰度的样品覆盖率均达100%。【结论】1)非参数Chao2是所有估计量中最优的估计量,该估计量表现出较低的外推误差; 2)要准确估算微生物的丰富度,至少需要281个土壤样品和742 767条DNA序列才覆盖99%的土壤细菌OTU丰富度,而对土壤真菌群落的OTU丰富度则至少需要386个土壤样品和383 189条DNA序列。本研究可为后期海南尖峰岭热带山地雨林60 hm2大样地土壤微生物多样性研究提供数据基础,为更好地估算微生物多样性提供方法、采样量和测序深度等方面的参考。  相似文献   

17.
森林地上碳储量(Aboveground Carbon, AGC)是反映森林生态系统基本特征的重要指标,也是评价森林功能结构和生产潜力的理论基础。松阳县作为浙江省九大林业重点县之一,生态地位十分重要,全县以中、低山丘陵地带为主,四面环山,如何解决复杂地形对AGC时空变异的影响,是实现山区森林AGC精准估算的关键。为此,基于Landsat TM卫星影像,并结合松阳县森林AGC调查数据,构建结合空间变异特征的地理加权回归模型(GWR)估算森林AGC,并与普通最小二乘法(OLS)的结果进行对比,最后选取最优模型预测松阳县森林AGC及其空间分布。研究表明:Landsat TM卫星影像的纹理信息对预测松阳县森林AGC有重要作用;GWR模型能够准确估算松阳县森林AGC及空间分布,并且比OLS模型精度提升了9%,R2达到0.71;松阳县森林AGC总量为3.901×106 Mg,平均AGC为23.70 Mg/hm2,占丽水市森林植被AGC总量的10%左右,在服务区域生态功能上具有较为重要的地位。研究将为松阳县森林AGC精准估算提供先进的技...  相似文献   

18.
以RS和GIS为技术支撑,基于改进的CASA模型为基础,利用MODIS数据、森林资源清查毛竹样地数据、气象数据及DEM数据等,估算了2012年福建省毛竹林NPP。结果表明,毛竹林最大光能利用率为2.399 6g C/MJ,2012年福建省毛竹林NPP平均值为1 169.10 g C/(m2!a),毛竹林碳积累总量为1.034 4×109t C。  相似文献   

19.
华北落叶松人工林生物量及碳储量遥感模型研究   总被引:2,自引:0,他引:2  
以华北落叶松人工林为研究对象,对赛罕乌拉生态系统定位站内华北落叶松人工林生物量及碳储量进行研究。应用Landsat TM影像,提取遥感影像各波段信息及相关的植被指数。将遥感影像的波段信息、相关的植被指数分别与野外实测的样地生物量数据进行一元回归分析,建立一元回归模型,分析比较后得出由波段信息建立的一元回归模型较合理;将提取的波段信息、植被指数分别与野外实测样地生物量数据进行相关分析,然后采用逐步回归的方法进行多元回归分析,建立森林生物量多元遥感回归模型;将选择出的一元回归模型与建立的多元回归模型进行对比分析,最后得到适用于研究区森林生物量研究的最优遥感回归模型,Y=-1617.863+573.312×SAVI+32.475×TM5-35.379×TM7,进而得到碳储量遥感模型。  相似文献   

20.
【目的】从反映森林冠层大小的树冠纹理结构出发,利用高空间分辨率遥感影像中树冠纹理的周期性信息,提取基于傅里叶变换纹理序列的纹理指数(FOTO,Fourier-based textural ordination)估测森林地上生物量,探究FOTO纹理因子在温带森林生物量估测上的潜力,为提取新型纹理参数估算森林生物量提供新的参考途径。【方法】以2009年9月获取的小兴安岭地区凉水国家自然保护区(47°11'N,128°53'E)高分辨率机载航空影像(空间分辨率0.5 m)为例,通过提取CCD影像的FOTO纹理参数,采用多元逐步回归方法对森林地上生物量进行参数反演,并对CCD 3个波段影像提取的9个FOTO纹理因子以及波段平均影像提取的3个FOTO纹理因子2种方法的生物量估测结果进行比较。同时,在研究中尝试采用5种不同尺寸(60 m×60 m,80 m×80 m,100 m×100 m,120 m×120 m和150 m×150 m)的窗口,产生不同尺寸的FOTO因子与生物量进行回归建模。最后,将FOTO纹理因子作为自变量与激光雷达反演的参考生物量进行拟合,利用多元逐步回归方法建立生物量模型,并采用十折交叉验证评估预测模型的泛化能力。【结果】FOTO纹理因子与森林生物量的相关性较高,CCD影像3个波段的9个FOTO纹理因子与生物量的R~2均高于0.67,窗口60 m×60 m,80 m×80 m,100 m×100 m,120 m×120 m和150 m×150 m的估测精度分别为67.3%,73.4%,74.4%,78.3%和80.9%。CCD影像波段平均影像的3个FOTO纹理因子与生物量的R~2均高于0.57,5种窗口尺寸的估测精度分别为58.2%,62.1%,64.3%,67.4%和70.9%。根据最优预测模型获得分辨率100 m的凉水试验区全覆盖生物量结果图,精度为74.41%,RMSE为50.55 t·hm~(-2)。【结论】基于FOTO算法提取的纹理因子与森林地上生物量密切相关且无明显饱和现象,对我国北方温带混交林区的生物量反演有极大潜力。FOTO纹理因子与森林地上生物量的多元线性逐步回归模型R~2达0.81,RMSE为46.78 t·hm~(-2)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号