首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
邱馨月  郅军锐  张涛  曾广 《植物保护》2023,49(2):192-200
为探明外源物质对菜豆植株防御酶活性和西花蓟马取食偏好性的影响。本试验分别采用CaCl2和茉莉酸(JA)进行灌根,研究了西花蓟马取食前后菜豆叶片脂氧合酶(LOX)、丙二烯氧化物合酶(AOS)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)和多酚氧化酶(PPO)活性的变化,并研究了西花蓟马对JA和CaCl2处理后的菜豆植株的取食偏好性。结果表明:不论CaCl2还是JA灌根均可诱导菜豆防御酶AOS、LOX、CAT和SOD活性的上升,其中对CAT活性影响最大,其活性分别上升至对照的2.83倍和3.57倍,但对POD和PPO活性没有影响。西花蓟马取食CaCl2处理的菜豆植株,能诱导LOX、POD和PPO活性分别上升1.40、2.03倍和2.26倍,而SOD活性则被显著抑制。西花蓟马取食JA灌根的菜豆植株能明显诱导POD和PPO活性的升高,二者活性分别是未取食植株的1.67倍和1.45倍,但AOS、LOX、CAT和SOD活性被抑制。西花蓟马2龄若虫取食CaCl2和JA...  相似文献   

2.
为探索茉莉酸甲酯(methyl jasmonate,MeJA)诱导水稻抗白叶枯病的效应,采用MeJA喷雾处理剪叶接种法,测定MeJA对水稻幼苗的白叶枯病病情指数、白叶枯病病菌Xanthomonas oryzae pv.oryzae的抑菌效果及对叶片过氧化物酶(peroridase,POD)、过氧化氢酶(catalase,CAT)、超氧化物歧化酶(superoxide dismutase,SOD)、多酚氧化酶(polyphenol oxidase,PPO)和苯丙氨酸解氨酶(phenylalnaine ammonialyase,PAL)等相关防御酶活性的影响.0.05 ~ 2.0 mmol/L的MeJA能降低水稻幼苗白叶枯病的病情指数,但对水稻白叶枯病菌无直接抑菌活性;0.1 mmol/L MeJA的诱导效果最好,处理48h后,感病品种温229和抗病品种嘉早312的诱导效果分别为73.18%和70.43%;0.05 ~2.0mmol/L的MeJA处理水稻叶片中POD、CAT、SOD、PPO和PAL活性呈上升趋势.研究表明MeJA能诱导水稻幼苗对白叶枯病的抗性,且诱导抗性的产生与MeJA提高水稻相关防御酶的活性有关.  相似文献   

3.
为明确美洲棉铃虫Helicoverpa zea幼虫腹侧可外翻腺(ventral eversible gland,VEG)分泌物对植物抗虫反应的影响,在宾夕法尼亚州立大学帕克分校校园日光温室大棚内分别测定取食未损伤、机械损伤后涂抹磷酸缓冲盐溶液(phosphate buffer saline,PBS)和机械损伤后涂抹VEG分泌物3种处理的番茄叶片后美洲棉铃虫幼虫体重增加量,不同处理番茄叶片中防御关键酶多酚氧化酶(polyphenol oxidase,PPO)活性、胰蛋白酶抑制剂(trypsin proteinase inhibitors,TPI)抑制率以及防御相关的蛋白酶抑制剂Ⅱ(proteinase inhibitor Ⅱ,PIN2)基因相对表达量。结果显示,3种处理中,取食机械损伤后涂抹VEG分泌物的番茄叶片的美洲棉铃虫幼虫体重较处理前增加量最少,为4.27 mg,显著低于其它2种处理;机械损伤后涂抹VEG分泌物的番茄叶片中PPO活性和TPI抑制率最高,分别为109.16 U/mg和27.48%,分别显著高于其它2种处理;同时机械损伤后涂抹VEG分泌物的番茄叶片中PIN2基因相对表达量显著上调,分别是未损伤和机械损伤后涂抹PBS缓冲液处理的11.83倍和1.17倍。表明美洲棉铃虫幼虫VEG分泌物能够促使防御关键酶的大量积累,使得防御相关基因的相对表达量上调,显著诱导番茄的抗虫反应,阻止后续昆虫的取食。  相似文献   

4.
茉莉酸诱导水稻幼苗对稻瘟病抗性作用研究   总被引:9,自引:1,他引:9  
 外源茉莉酸处理可以显著减轻水稻幼苗稻瘟病的发生。JA诱导稻苗产生抗病性的有效浓度是0.1~0.001mmol/L,喷雾处理后2d接种稻瘟病菌获得最佳的抗病效果。0.1mmol/L JA喷雾处理后2d接种稻瘟病菌,水稻幼苗的诱抗效果都超过了55%。JA处理的诱导抗性可以维持15d左右。用0.1mmol/L JA二次强化处理水稻幼苗可以增强诱导抗病性,延长抗性的持续期。JA诱导水稻幼苗抗性机制的结果表明:0.1mmol/L JA处理可以诱导水稻体内苯丙氨酸解氨酶、过氧化物酶活性和木质素升高。  相似文献   

5.
茉莉酸甲酯调控防御酶活性诱导猕猴桃果实抗采后软腐病   总被引:3,自引:0,他引:3  
以‘金魁’猕猴桃果实为试验材料,研究茉莉酸甲酯(methyl jasmonate,MeJA)调控防御酶活性抗猕猴桃采后软腐病的效应。测定了MeJA对猕猴桃软腐病病斑直径、软腐病菌Botryosphaeria dothidea抑菌作用及超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)、抗坏血酸过氧化物酶(APX)和多酚氧化酶(PPO)等防御酶活性的影响。结果表明:在0.001~10 mmol/L浓度范围内,MeJA对猕猴桃软腐病菌B.dothidea的抑制作用随浓度升高而增强;MeJA对猕猴桃果实最佳诱导浓度和熏蒸时间分别为0.1 mmol/L和24 h,其诱导效果分别为26.01%和26.85%;猕猴桃果实经0.1 mmol/L MeJA熏蒸处理24 h后,SOD、POD、CAT、APX和PPO活性提高,其中SOD和POD活性分别较对照增加33.85%和61.61%,差异达显著水平(P<0.05)。以上结果暗示MeJA诱导猕猴桃果实抗采后软腐病可能与其提高防御酶活性有关。  相似文献   

6.
防御酶系对山茶灰斑病诱导抗性的响应   总被引:3,自引:1,他引:2  
为揭示水杨酸(SA)诱导山茶产生抗病性反应机制,采用琼脂平板法测定了SA对山茶灰斑病菌Pestalotiopsis guepinii ( Desm.) Stey的影响.结果表明,浓度为0~5 mmol/L的SA对该菌的生长没有抑制作用.用SA喷雾涂布叶片诱导山茶抗性,其植株内过氧化物酶(POD)、多酚氧化酶(PPO )、过氧化氮酶(CAT)、苯丙氛酸解氨酶(PAL)等防御酶时山茶灰斑病菌诱导信号有不同响应.诱导并挑战接种处理的植株体内上述酶活性比只诱导不接种处理上升速度快,不同浓度的SA诱导及诱导后挑战接种植株体内的POD,PPO,CAT,PAL活性与SA浓度呈正相关.各防御酶活性与感病指数的相关性分析表明,CAT活性与感病指数显著负相关(r = - 0.9730),除PPO与感病指数的相关系数很低外,其它酶均较高,尽管未达到显著水平,但仍说明POD,PAL在诱导山茶抗病性中具有重要作用.  相似文献   

7.
茉莉酸诱导对枸杞叶生化物质及酶活性的影响   总被引:4,自引:0,他引:4  
茉莉酸是植物的重要信号抗逆物质,当植物受到刺激时,起到激素和信号传递作用。本文研究了茉莉酸处理引起枸杞叶黄酮、单宁酸、蛋白质、可溶性糖、PPO和POD含量的变化及其时间效应。结果发现,茉莉酸处理使枸杞黄酮和单宁酸含量显著增加;蛋白质和可溶性糖含量显著降低;PPO和POD活性显著增加。0.1mmol/LJA处理使枸杞黄酮和单宁酸含量增加最显著,均在处理后第5天增幅最大。0.001mmol/LJA处理使枸杞蛋白质含量降低最显著,处理后第7天降幅最大。0.1mmol/LJA处理使枸杞可溶性糖含量降低最显著,处理后第1天降幅最大。0.1mmol/LJA处理使枸杞PPO活性增加最显著,处理后第3天增幅最大。0.01mmol/LJA处理使枸杞POD活性增加最显著,处理后第7天增幅最大。  相似文献   

8.
硅对瓠瓜酚类物质代谢的影响及与抗白粉病的关系   总被引:9,自引:1,他引:9  
研究了硅酸盐和诱导接种白粉菌对瓠瓜叶片苯丙氨酸解氨酶(PAL)、多酚氧化酶(PPO)、过氧化物酶(POD)活性的动态变化和木质素含量的影响.结果表明,诱导接种提高了瓠瓜叶片的PAL、PPO、POD活性,加硅后接种处理植株叶片酶活性更明显增加;接种后瓠瓜叶片中木质素含量增加,加硅处理植株叶片木质素含量是不加硅处理的1.43倍.说明酚类物质代谢在植物抗病机制中起着重要作用,硅能提高酚类代谢的酶活性.1.7mmol/L的硅能显著降低瓠瓜白粉病的病情指数,提高其对白粉病的抗病能力.  相似文献   

9.
美洲斑潜蝇取食产卵选择与菜豆叶片物理性状的相关研究   总被引:3,自引:0,他引:3  
美洲斑潜蝇对不同菜豆品种5d、10d、15d、20d叶龄叶片的取食、产卵的选择性强弱与叶片表皮毛的密度、长度呈负相关,与叶片面积呈正相关。随着叶龄的增长,叶片表皮毛密度减少,叶片面积增大,美洲斑潜蝇的取食、产卵选择性增强,取食痕与产卵痕数增多。  相似文献   

10.
高温浸水处理对美洲斑潜蝇羽化率的影响   总被引:3,自引:1,他引:2  
周国义  龚伟荣 《植物检疫》1999,31(6):372-372
温度和湿度是影响美洲斑潜蝇生长发育的关键因素。本文利用高温和浸水处理美洲斑潜蝇蛹,观察对羽化率的影响,为美洲斑潜蝇综合治理提供理论依据。1 材料和方法1.1 供试虫源1998年9月中下旬,在南京市郊区、扬州市郊区采集虫道内有美洲斑潜蝇幼虫的菜豆叶片,采集地在近期?..  相似文献   

11.
Induced resistance was studied in three sorghum genotypes (IS2205, ICSV1 and ICSV700) against Chilo partellus (Swinhoe) (Lepidoptera; Pyralidae) infestation and jasmonic acid (JA) and salicylic acid (SA) application. The activity of plant defensive enzymes [peroxidase (POD), polyphenol oxidase (PPO), superoxide dismutase (SOD), and catalase (CAT)], and the amounts of total phenols, hydrogen peroxide (H2O2), malondialdehyde (MDA), and proteins were recorded at 6 days after infestation. The induction of enzyme activities and the amounts of secondary metabolites varied among the genotypes and treatments. The genotype IS2205 showed a stronger effect than that of ICSV1 or ICSV 700. Treatment with JA followed by insect infestation induced greater levels of enzymes and secondary metabolites. The results suggest that JA induces greater levels of resistance components in sorghum plants against insect pests. Thus, pretreatment of plants with elicitors including JA and SA could provide a greater opportunity for plant defense against herbivores.  相似文献   

12.
不同寄主植物对美洲斑潜蝇种群参数的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
在温度为25℃的实验条件下,测定了四季豆(红花架豆和红花地豆)、长豇豆和黄瓜等寄主对美洲斑潜蝇种群参数的影响。结果表明,除卵历期外,美洲斑潜蝇幼虫、蛹、卵-蛹历期、雌成虫寿命和生殖力在四季豆、长豇豆和黄瓜3种寄主植物上均存在极显著的差异(p<0.01),而在四季豆的两个不同品种上差异不显著(p>0.05)。美洲斑潜蝇在选择性强的四季豆上发育历期最短,化蛹率最高,雌成虫寿命最长、生殖力最高;在选择性差的黄瓜上发育历期最长,化蛹率最低,雌成虫寿命最短,生殖力最低。孵化率、羽化率和成虫性比在供试寄主间差异很小。  相似文献   

13.
以琼胶寡糖作为激发子处理菜豆叶片,研究其诱导菜豆的抗性反应及作用机理.结果表明,100μg·mL-1的琼胶寡糖处理菜豆叶片下表皮,会促进菜豆叶片下表皮保卫细胞释放H2O2和气孔关闭.同时100μg·mL-1的琼胶寡糖喷施菜豆植株,能显著提高脂氧合酶(LOX)活性(P<0.05),在3h达最高,并检测到具有抑菌作用的挥发性物质2,3-butanedione、2-methyl-butanoic acid、1-octen-3-ol和junipene含量增加.综上所述,100μ.g·mL-1的琼胶寡糖激发菜豆产生活性氧,并产生抗菌物质,进而增强其防御抗性.  相似文献   

14.
Helicoverpa armigera is the most serious insect pest in chickpea that causes significant yield losses due to its feeding on vegetative (leaves) and reproductive (developing pods and seeds) parts of plants. The present aim of study was to explore response dynamics of induced defence mechanism in leaves, podwall and seeds of ten chickpea genotypes (ICC 506, ICCV 10, ICC 10393, 5283, RSG 963, GL 25016, GL 26054, ICCL 86111, ICC 3137, L 550) after insect infestation. Two chickpea genotypes namely ICC 3137 and L 550 were found to be highly susceptible to Helicoverpa armigera infestation due to higher leaf and pod damage in them as compared to rest of eight genotypes which are found to be considerably resistant due to lower damage. Insect infestation induced decreased activities of defensive enzymes such as peroxidase (POD), catalase (CAT), glutatione reductase (GR) and polyphenol oxidase (PPO), decreased free radical scavenging activities in terms of 2,2-diphenyl-1-picryl hydrazyl (DPPH), decreased contents of signaling molecules such as nitric oxide ((NO), hydrogen peroxide (H2O2), reduced content of insect feeding behaviour regulating molecules such as total phenols, trypsin inhibitor and accumulation of membrane damage marker such as malondialdehyde (MDA) in leaves of ICC 3137 and L 550; decreased POD activity, nitric oxide content and H2O2 in podwall of L550; decreased SOD, GR, nitric oxide content and H2O2 in seeds of L550 resulted in aggravation of infestation induced oxidative stress and makes these genotypes more vulnerable to insect damage. The resistance of rest eight chickpea genotypes to insect infestation was due to the integrative effect of up regulated defensive components in leaves, podwall and seeds such as enhanced activities of CAT, POD, GR, PPO and PAL along with accumulation of H2O2` and total phenols in leaves, increased SOD, POD, GR and PPO activities along with increased contents of trypsin inhibitor and total phenols in podwall; increased SOD, GR, PPO activities and accumulated total phenols in seeds of resistant chickpea genotypes might be responsible for causing significant shift in oxidative status of these genotypes due to scavenging of free radicals, maintenance of membrane integrity and deterrent to insect feeding. Induced glycine betaine after herbivory was found to be positively correlated with superoxide dismutase and trypsin inhibitors. H2O2 content was positively correlated with trypsin inhibitor, DPPH, ferric reducing antioxidant power (FRAP) and total phenols in leaves and with FRAP, DPPH and total phenols in pod wall indicating that H2O2 might be stimulating the cascade that will be helping to scavenge free radical species and correlation with phenols and trypsin inhibitor indicated that it act as toxicant to insect feeding.  相似文献   

15.
BTH诱导花椰菜对菌核病的抗性研究   总被引:3,自引:0,他引:3  
 利用苯并噻二唑BTH处理菌核病抗性不同的花椰菜品种幼苗, 采用营养生长期活体叶片菌丝块接种鉴定法评价菌核病抗性诱导效果,结果表明经BTH处理的植株菌核病病情指数明显下降, 对感病品种和抗病品种的诱抗效果分别达到81.5%和63.8%。对于花椰菜重要的防御酶活性变化研究结果表明,BTH诱导处理的花椰菜植株过氧化物酶(POD)、抗坏血酸酶( SOD )、过氧化氢酶(CAT)、苯丙氨酸解氨酶(PAL)和多酚氧化酶( PPO)的活性均有所提高。同时病程相关蛋白几丁质酶和β-1,3-葡聚糖酶的活性也增加。 利用半定量RT-PCR方法检测防御反应基因表达,结果表明BTH诱导首先激发了植株 PR-1等基因参与的水杨酸信号传导防御反应途径的发生,同时PDF1.2 基因的上调表达说明BTH诱导也影响了茉莉酸信号传导途径。  相似文献   

16.
Plant secondary compounds have been documented to be deleterious to insects and other herbivores in diverse ways. In this study, the effect of catechol (phenolics), gramine (alkaloid) and L-ornithine-HCI (non-protein amino acid) on the activities of xenobiotic metabolizing enzymes in English grain aphid, Sitobion avenae, was evaluated. Phase I enzymes investigated in this study included carboxylesterase (CarE), and oxidoreductase, whereas Phase II enzymes were represented by glutathione S-transferase (GST). In general, CarE and GST activities in S. avenae were positively correlated with the concentration of plant secondary compounds in artificial diets. Oxidoreductase activity, however, displayed a different profile. Specifically, peroxidase (POD) and polyphenol oxidase (PPO) activities in S. avenae were positively correlated with concentrations of dietary catechol and gramine, respectively, whereas catalase (CAT) activity was significantly suppressed by the higher concentration of catechol, gramine and L-ornithine-HCl. These combined results suggest that CarE and GST in S. avenae are key enzymes to breakdown a broad spectrum of plant secondary compounds, whereas oxidoreductase, including PPO and POD, degrades specific groups of plant secondary compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号