首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT The development of rust epidemics caused by Tranzschelia discolor on leaves and stems of cling peach was studied in California orchards. Sporulating stems lesions were only detected from late March until July in 1997 and 1998. When rust was present in the fall, the quadratic equation Y = -82.51 + 1.97JD - 0.01JD(2) using Julian day (JD) described the incidence of sporulating lesions on stems of cv. Andross (R(2) = 0.73; P /=117.3 mm of total precipitation and maximum temperatures of 相似文献   

2.
信息素迷向法规模化防治梨小食心虫   总被引:4,自引:1,他引:3  
梨小食心虫是梨树和桃树上一种重要的蛀食性害虫,为了推动果园害虫的无公害防治,2010年在山东省莱阳市的桃园和梨园应用信息素散发器对梨小食心虫进行了迷向防治研究。在应用信息素散发器的桃园与梨园中,梨小食心虫发生数量明显低于对照园,使用密度增加,梨小食心虫的发生数量降低,迷向率增加。每公顷施用信息素散发器450、900、1350根的桃园,对梨小食心虫的迷向率分别为67.80%、80.14%、89.29%,而梨园中对梨小食心虫的迷向率分别为84.17%、93.41%、98.17%。桃园与梨园施用信息素散发器后,梨小食心虫的蛀果率明显低于对照园,桃园与梨园对梨小食心虫的防治效果分别在40.34%~73.57%和54.24%~92.38%之间。研究表明,梨园中信息素散发器对梨小食心虫的防治效果高于桃园。  相似文献   

3.
ABSTRACT We evaluated the impact of roguing on the spread and persistence of the aggressive Plum pox virus strain M (PPV-M) in 19 peach orchard blocks in Southern France. During a 7- to 10-year period, orchards were visually inspected for PPV symptoms, and symptomatic trees were removed every year. Disease incidence was low in all orchards at disease discovery and was <1% in 16 of the 19 orchard blocks. The spread of Sharka disease was limited in all 19 blocks, with an annual disease incidence between 2 and 6%. However, new symptomatic trees were continuously detected, even after 7 to 10 years of uninterrupted control measures. An extended Cox model was developed to evaluate to what extent tree location, orchard characteristics, environment, and disease status within the vicinity influenced the risk of infection through time. Eleven variables with potential effect on tree survival (i.e., maintenance of a tree in a disease- free status through time) were selected from survey data and databases created using a geographical information system. Area of the orchard, density of planting, distance of a tree from the edge of the orchard block sharing a boundary with another diseased orchard, and distance to the nearest previously detected symptomatic tree had a significant effect on the risk for a tree to become infected through time. The combined results of this study suggest that new PPV-M infections within orchards subjected to roguing resulted from exogenous sources of inoculum, disease development of latent infected trees, as well as infected trees overlooked within the orchards during visual surveys. A revision of the survey and the roguing procedures used for more effective removal of potential sources of inoculum within the orchards and in the vicinity of the orchards would improve disease control suppression of PPV.  相似文献   

4.
Holb IJ  Scherm H 《Phytopathology》2007,97(9):1104-1111
ABSTRACT Epidemic development of brown rot, caused by Monilinia fructigena, was monitored in integrated and organic apple orchards at two locations in eastern Hungary between 2002 and 2005 on three cultivars with early, midseason, and late ripening periods. Disease incidence and severity measures were affected significantly (P < 0.05) by management system (organic versus integrated) and cultivar, but there was no significant management system-cultivar interaction. Epidemics started 2 to 4 weeks earlier in organic orchards and on the early cv. Prima compared with integrated orchards and the late cv. Mutsu. Disease intensity increased markedly in the final 3 to 5 weeks before harvest and was considerably lower in integrated than in organic orchards. Final brown rot incidence on fruit in the tree was correlated with incidence on dropped fruit on the orchard floor (r > 0.75, P < 0.05), whereby the lag period from the appearance of the first symptomatic fruit on the ground to the occurrence of the first symptomatic fruit in the tree ranged from 2 weeks to 2 months, depending on the cultivar. The inflection point of the disease progress curve was attained first by fruit on the ground, followed successively by fruit in the lower, middle, and upper thirds of the tree canopy. This may indicate that dropped fruit that became infected early provided a source of inoculum for subsequent epidemics by serving as a bridge between sporulation from overwintered fruit mummies in the spring and the first fruit with sporulating lesions in the tree in midsummer. Removal of dropped fruit from the orchard floor resulted in a significantly lower disease incidence on fruit in the tree on all cultivars; thus, drop-removal may be useful as a brown rot management practice in apple orchards.  相似文献   

5.
Pseudocercospora fruit and leaf spot (PFLS) of citrus, caused by Pseudocercospora angolensis, was recently described in Ghana and has spread in most citrus-growing areas of the country. A survey of PFLS incidence was conducted in the Eastern Region. Orchards were georeferenced and data on altitude, annual mean temperature, and annual precipitation were obtained from the WorldClim database. Fruit drop due to PFLS and other pests and diseases was evaluated in three orchards. Field efficacies of 4-week, 6-week and 8-week schedules with carbendazim + mancozeb were evaluated in the major and minor fruit production seasons. Ordinal logistic regression and generalized linear models were fitted in each case according to the nature of the data and possible overdispersion. Disease incidence in the sweet orange orchards surveyed was 25–100 %, with higher values in higher altitude areas exposed to lower temperatures and higher rainfall. PFLS was the main problem causing yield losses, associated with 84–87 % of fruit dropped on the orchard floor. PFLS severity on shoots and incidence on fruit 12 weeks after full bloom was significantly reduced by all fungicide schedules evaluated. The effects of fungicides on PFLS severity in fruit at harvest were not substantial because of intense fruit drop. The 8-week schedule showed the lowest effectiveness in reducing fruit drop and thus the 6-week schedule is preferred. Further research is needed for an integrated management of PFLS in Ghana.  相似文献   

6.
Fungi within the Colletotrichum acutatum species complex occur asymptomatically on plant parts of many different plant species. Leaves from apple orchards in southern Norway were sampled, frozen for five hours and incubated for six days to reveal presence of asymptomatic infections of C. acutatum. Number of leaves (incidence) and leaf area covered (severity) with conidial masses of C. acutatum were assessed biweekly on cv. Aroma from late May to late September during three growing seasons. The first finding of conidial masses occurred in the second half of July, and there was a higher incidence occurring in August and September. Sampling of leaves from fruit spurs and vegetative shoots of cvs. Aroma and Elstar showed that conidial masses of C. acutatum developed on leaves on both shoot types, and there was no difference in incidence between these two types. The fungus was detected on leaves from six of eight commercial orchards of cv. Aroma over three years, with a mean incidence of 5.5 %. After storage, bitter rot was found on apple fruit from all eight orchards. There was no correlation between incidence of conidial masses of C. acutatum on leaves and on fruit. In all orchards and seasons investigated, incidence and severity on leaves varied from 0 to 67 % and 0 to 85 %, respectively. The discovery of apple leaves containing conidial masses of C. acutatum clearly indicate for leaves as a potential source of inoculum for fruit infections.  相似文献   

7.
Modifying crop canopies can suppress plant diseases in some crops. For example, in carrot, lateral trimming of the canopy by 30–40 % after canopy closure reduced sclerotinia rot (Sclerotinia sclerotiorum) to zero under moderate disease pressure without the use of fungicides. Trimming reduced relative humidity within the carrot canopy and increased air and soil temperature, inhibiting the formation of apothecia of S. sclerotiorum. Trimming also severed infected petioles, which reduced the opportunity for infection to progress to the carrot crown. Trimming combined with application of foliar fungicide was even more effective. Trimming reduced carrot leaf blights (Alternaria dauci, Cercospora carotae) in 1 of 3 years, when disease pressure was low. However, there was no advantage of combining trimming and fungicide sprays for leaf blight control. Canopy modification also reduces disease in legume crops. Soybean cultivars with reduced height and lodging, and early maturity, had up to a 74 % reduction in apothecia of S. sclerotiorum within the crop, and up to an 88 % reduction in disease incidence at harvest. In field pea, artificially supporting plants to reduce lodging, in combination with fungicide application, reduced the severity of mycosphaerella blight (Mycosphaerella pinodes) on pods by 67 % and increased seed yield by 54 %. In chickpea, paired-row planting that opened the canopy increased seed yield by 12 %, likely by increasing fungicide deposition. Modifications of the crop canopy can reduce disease, the need for fungicide sprays, and sometimes improve fungicide efficacy, but the results are often pathosystem-specific.  相似文献   

8.
Yield losses due to rust and angular leaf spot (ALS) of snap beans may reach 100% in Eastern Africa. Where susceptible varieties are grown, farmers control these diseases with routine fungicide applications. To determine an optimum application rate and spray schedule for Orius® (tebuconazole 250 g/L), we sprayed 10 mL and 20 mL Orius® per 15 L spray water twice at two trifoliate leaf stage and 50% flowering, and three times at the same stages, with an additional application at pod initiation. In farmers’ fields, we tested the effect of fungicide sprays, use of resistant variety, intercropping, increased plant spacing and farmyard manure on rust and ALS diseases. Application three times of 20 mL Orius® per 15 L spray water reduced rust severity scores by 5.7 and 2.4 in 2010 and 2011, respectively. Lowest rust and ALS severities were observed when a resistant variety, fungicide or farmyard manure was used. Pod yield increments due to disease management ranged between 13% and 242%. Prophylactic fungicide application, use of resistant varieties and farmyard manure can be used to reduce disease severity and improve snap bean quality on smallholder farms.  相似文献   

9.
A 2-year study was conducted to determine the widespread occurrence of overwintered conidial inoculum of Venturia inaequalis and its impact on the apple scab control in 18 apple orchards (organic and integrated) with various levels of scab in the Netherlands. Autumn assessments of scab lesions showed that the integrated orchards had a significantly lower scab incidence (<20%) compared to that of the organic orchards (>60%). At the bud-break phenological stage, the mean numbers of nonviable and viable conidia on 1 cm pieces of shoots ranged from 1 to about 90 and from 6 to more than 1000 in the integrated and the organic orchards, respectively, for both years. However, viable conidia on shoots were found only in 2 integrated and 6 organic orchards out of the 18 and the viability of conidia was below 2%. The mean numbers of viable and nonviable conidia per 100 buds ranged from 24 to more than 1000 and from 230 to almost 5000 in the integrated and the organic orchards, respectively, for both years. In both years, some 60–85% of the conidia was found on the outer bud scales. The percentage viability associated with the outer bud tissues was below 2% for all the orchards. However, the percentage of viable conidia within the inner bud tissues ranged from 0% to 6% in the integrated and from 2% to 11% in the organic orchards for both years. Differences between the organic and the integrated orchards were clearly demonstrated for overwintered conidia associated with both shoot and bud samples. The relationship between autumn scab incidence and numbers of overwintered conidia associated with shoots or buds was exponential. If the autumn scab incidence was above 40%, then the number of overwintered conidia markedly increased. We conclude that specific treatments for overwintering conidia of Venturia inaequalis may not be necessary in integrated orchards with a low scab incidence in the previous autumn. However, the risk of early scab epidemics initiated by overwintered conidia potentially is high in organic orchards. Preventative measures in early spring and also in the previous year must be established in these orchards.  相似文献   

10.
In a three-year Hungarian study, conidial density of Monilinia fructigena in the air determined from mid-May until harvest was related to brown rot disease progress in integrated and organic apple orchards. Conidia of M. fructigena were first trapped in late May in both orchards in all years. Number of conidial density greatly increased after the appearance of first infected fruit, from early July in the organic and from early August in the integrated orchard. Conidial number continuously increased until harvest in both orchards. Final brown rot incidence reached 4.3–6.6% and 19.8–24.5% in the integrated and organic orchards, respectively. Disease incidence showed a significant relationship with corresponding cumulative numbers of trapped conidia both in integrated and organic orchards, and was described by separate three-parameter Gompertz functions for the two orchards. Time series analyses, using autoregressive integrated moving average (ARIMA) models, revealed that the temporal patterns of the number of airborne conidia was similar in all years in both integrated and organic orchards. Conidia caught over a 24-h period showed distinct diurnal periodicity, with peak spore density occurring in the afternoon between 13.00 and 18.00. Percent viability of M. fructigena conidia ranged from 48.8 to 70.1% with lower viability in dry compared to wet days in both orchards and all years. Temperature and relative humidity correlated best with mean hourly conidial catches in both integrated and organic apple orchards in each year. Correlations between aerial spore density and wind speed were significant only in the organic orchard over the 3-year period. Mean hourly rainfall was negatively but poorly correlated with mean hourly conidial catches. Results were compared and discussed with previous observations.  相似文献   

11.
为减少实蝇粘虫板对天敌的诱杀作用,完善实蝇粘虫板在果园的使用方法,于2018年和2019年分别在湖南省农业科学院园艺研究所橘园、桃园、梨园悬挂实蝇粘虫板,调查其诱杀的橘小实蝇、其他害虫和天敌数量。结果表明,橘园、梨园和桃园共诱杀到15个种、4个科和9个类群,包括靶标害虫橘小实蝇、其他害虫和天敌。3种果园中粘虫板诱杀的昆虫种、科或类群数量有差异,其中梨园中诱杀的昆虫总数最多,为13 653头,其次是桃园,橘园中诱杀的昆虫总数最少。在橘园、梨园和桃园中,橘小实蝇的相对丰富度分别为5.90%、23.45%和21.73%,最早出现时间均为6月;在橘园中橘小实蝇诱杀量高峰期在8月下旬至10月上旬,下半年天敌诱杀量高峰期略滞后于橘小实蝇的诱杀量高峰期,在梨园和桃园中橘小实蝇诱杀量高峰期主要集中在7月中下旬至10月中旬,橘小实蝇诱杀量高峰期与天敌诱杀量高峰期无明显相关性;3种果园中粘虫板诱杀的主要天敌有瓢虫、食蚜蝇、草蛉、寄生蜂,桃园和梨园中诱杀的草蛉较多,橘园中诱杀的瓢虫和寄生蜂较多。应用实蝇粘虫板防控橘小实蝇时,梨园和桃园应从6月上旬开始悬挂,橘园应从8月上旬开始悬挂,先少量悬挂,根据诱杀橘小实蝇数量,再逐渐增加粘虫板。  相似文献   

12.
Aerated compost tea (ACT), prepared from immature compost, was applied to foliage and fruit of grapevines (Vitis vinifera) to assess its potential for suppressing two important diseases: botrytis bunch rot, caused by Botrytis cinerea, and powdery mildew, caused by Erysiphe necator. An ACT applied to leaves of Cabernet Sauvignon vines in pots 7 days before inoculation with E. necator conidia reduced mean powdery mildew severity on the three youngest expanded leaves (at inoculation) to less than 1 %; mean severity on non-treated, inoculated leaves was 15 %. Multiple applications of ACTs at two vineyards in different growing seasons suppressed powdery mildew to <1 % mean severity on Chardonnay leaves (non-treated 79 % severity) and bunches (non-treated 77 % severity), and on Riesling leaves (non-treated 24 % severity). The same treatments reduced the incidence of Chardonnay bunches with latent B. cinerea and Riesling bunches with sporulating B. cinerea, although the level of botrytis bunch rot in both experiments was not economically damaging. The numbers of culturable bacteria, fungi and yeasts on Chardonnay leaves were higher than pre-treatment levels 10 days after ACT application, as were fungal numbers on Riesling leaves 21 days after treatment. Suppression by ACTs of two fruit and foliar pathogens of grapevine with different biology and epidemiology indicated potential for their use as a tactic in integrated disease management. Further testing of ACTs in a range of viticultural environments and application regimes will contribute to a better understanding of the impact of this tactic on disease, grape and wine quality.  相似文献   

13.
Apple scab, caused by Venturia inaequalis, can lead to large losses of marketable fruit if left uncontrolled. The disease appears in orchards during spring as lesions on leaves. These primary lesions are caused by spores released at bud burst from overwintering sources; these spores can be sexually produced ascospores from the leaf litter or asexual conidia from mycelium in wood scab or within buds. The relative importance of conidia and ascospores as primary inoculum were investigated in an orchard in southeast England, UK. Potted trees not previously exposed to apple scab were placed next to (c. 1 m) orchard trees to trap air‐dispersed ascospores. Number and position of scab lesions were assessed on the leaves of shoots from both the potted trees (infection by airborne ascospores) and neighbouring orchard trees (infection by both ascospores and splash‐dispersed, overwintered conidia). The distribution and population similarity of scab lesions were compared in the two tree types by molecular analysis and through modelling of scab incidence and count data. Molecular analysis was inconclusive. Statistical modelling of results suggested that conidia may have contributed approximately 20–50% of the primary inoculum in early spring within this orchard: incidence was estimated to be reduced by 20% on potted trees, and lesion number by 50%. These results indicate that, although conidia are still a minority contributor to primary inoculum, their contribution in this orchard is sufficient to require current management to be reviewed. This might also be true of other orchards with a similar climate.  相似文献   

14.
山东烟台地区是我国苹果和桃的重要产区.本研究利用性诱剂诱捕器和黄色粘虫板调查烟台地区果园中主要害虫和其他常见害虫及天敌昆虫的发生动态.结果 表明:山东烟台地区苹果园和桃园中主要害虫—梨小食心虫、桃小食心虫、小绿叶蝉在两个果园中的年发生总量存在一定差异,苹果园桃小食心虫年诱捕量为545.8头/诱捕器,显著高于桃园年诱捕量...  相似文献   

15.
为了掌握梨小食心虫Grapholita molesta在新疆和田县桃园和核桃园间的转移为害和种群动态变化规律, 以期确定核桃园内梨小食心虫的最佳防治时间, 同时在桃园和核桃园设立监测点, 通过对梨小食心虫在桃园和核桃园间的发生动态监测以及在核桃园内产卵情况和蛀果率调查, 明确了梨小食心虫在桃园和核桃园间的转移规律。研究发现梨小食心虫在和田县桃园1年发生5代, 越冬代成虫于3月下旬开始出现, 各代高峰期分别在4月上旬、5月中旬、6月下旬至7月上旬、7月下旬至8月上旬、9月上旬, 以第1代和第2代发生为害严重, 具有世代重叠现象。梨小食心虫在核桃园1年发生2代, 成虫产卵于核桃果实和叶片, 主要以幼虫为害果实。于6月下旬开始从桃园向核桃园转移, 8月下旬又从核桃园转移至桃园, 具有明显的寄主转移规律。7月初为核桃园内梨小食心虫的防治关键期。  相似文献   

16.
ABSTRACT The effect of weather conditions on the infection of peach shoots by Taphrina deformans was investigated both under orchard conditions and in controlled-environment experiments. Leaf curl incidence and severity were related to rainfall, length of wet periods, and temperature during wetness and during the incubation period, as well as to the development stage of shoots. Surface wetness was more important than rainfall for infection to occur. Minimum rainfall for infection was 3 mm, with a wet period of at least 12.5 h; higher amounts of rainfall did not cause infection when the wet period they triggered was shorter. Wet periods initiated by dew or fog were too short for infection to occur. Infection occurred only when air temperature was <16 degrees C during the wet period and <19 degrees C during incubation. Logistic equations relating relative disease incidence and either duration of wetness or temperature were developed under controlled-environment conditions, with asymptotes at >/=48 h of wetness and 相似文献   

17.
ABSTRACT Since its first detection in southwest Washington state 30 years ago, eastern filbert blight, caused by Anisogramma anomala, has spread slowly southward ( approximately 2 km/year) into the Willamette Valley of Oregon, an important hazelnut production region. Experiments were conducted to measure gradients of disease spread, rates of disease increase as affected by distance from an inoculum source and variation in host plant resistance, and dispersal of ascospores of A. anomala from diseased orchards. In each of 3 years, 1-year-old hazelnut trees placed from 0 to 150 m north of diseased orchards were infected uniformly and slopes of disease gradients were not significantly different from zero. In 1 year when trees also were placed south of an orchard, the disease gradient was significant (P < 0.05), with disease incidence high at the edge of the orchard and few trees infected at 10 m south of the orchard. Disease gradients were shallower and the magnitude of the area under the disease progress curve (AUDPC) greater in 0.1-ha mini-orchards of highly susceptible cv. Ennis than in mini-orchards of moderately susceptible cvs. Barcelona or Casina. Lower AUDPC values were observed in mini-orchards of Barcelona interplanted with a moderately resistant pollenizer Hall's Giant compared with the highly susceptible pollenizer Daviana. Fungicides applied biweekly starting at bud break reduced AUDPC values in Ennis mini-orchards to values observed in Barcelona and Casina mini-orchards. Data from aspirated spore samplers placed on towers adjacent to severely diseased hazelnut orchards indicated that spores of A. anomala dispersed horizontally and vertically away from the canopy during periods of extended branch wetness and, thus, show potential to be transported long distances in wind currents. Weather patterns in the Pacific Northwest may account for the relatively slow, southward spread of eastern filbert blight within Oregon's Willamette Valley. Of 196 precipitation events greater than 10 h in duration recorded from 1974 to 1995, conditions most favorable for ascospores discharge, periods with wind from the north were rare, representing <6% of total hours.  相似文献   

18.
The aim of this 4‐year study was to characterize temporal development of brown rot blossom blight and fruit blight (caused by Monilinia spp.) and their sporulating areas in sour cherry orchards; and to determine the relationships amongst incidence and sporulating area of blossom blight, fruit blight and fruit rot. The study was performed in integrated and organic orchard blocks on two cultivars (Újfehértói fürtös and Érdi b?term?). On both cultivars, disease progress on flowers and fruits was 2–10 times slower in the integrated than in the organic management system. The peak incidence values were 9 and 31 days after petal fall for blossom blight and fruit blight, respectively. After these dates, no new blight symptoms on flowers and/or fruits appeared and the disease was levelling off. Final blossom blight incidence ranged from 1 to 5% and from 12 to 34%, and fruit rot incidence from 2 to 6% and from 11 to 26% in the integrated and the organic orchards, respectively. The sum of fruit blight incidence ranged from 9 to 22% for the organic system, but was below 5% for the integrated system, while the final sporulating area was 5–16 mm2 and <3 mm2, respectively. Among the five highest Pearson's correlation coefficients, relationships between blossom blight and early fruit blight stage (= 0·845, = 0·0087 integrated; = 0·901, = 0·0015 organic), and between sporulating area and fruit rot (= 0791, = 0·0199 integrated; = 0·874, = 0·0039 organic) were the most significant relationships from an epidemic standpoint as they indicated a connection between different brown rot symptom types.  相似文献   

19.
20.
ABSTRACT Laboratory and field experiments were conducted to study the dispersal of Botryosphaeria dothidea conidia using single-drop impactions and natural and simulated precipitations. For laboratory studies, 200 single drops were released from a height of 1 m on infected pistachio nuts. On pieces of photographic film, 50% of the droplets were collected within 20 mm (average droplet travel distance) of the target area, and the droplets ranged from 0.041 to 3.19 mm in diameter, with an average of 0.3 mm. Each droplet carried an average of 23 B. dothidea conidia. In 3 years of field experiments, rainwater was collected in funnels connected to bottles positioned at different heights inside the tree canopy and at different distances away from the edge of tree canopy in three commercial pistachio orchards in San Joaquin, Yolo, and Glenn counties in California. Numbers of conidia in rainwater varied among and within sampling seasons by sampling dates and orchards. Up to 67,000 conidia/ml were obtained in rainwater samples collected from an orchard in Yolo County. Rainwater from orchards in Yolo and Glenn counties contained a consistently higher number of conidia than rainwater collected from the orchard in San Joaquin County. Variation in numbers of conidia also existed among heights where bottles were located. There were significantly more conidia in rainwater collected inside than outside tree canopies. Inside tree canopies, bottles located at 100 and 150 cm above ground collected more B. dothidea conidia than those placed at 50 and 200 cm. Conidia were collected as far as 1 m from the tree canopy edge. Based on data from the Glenn County orchard, a linear relationship between number of conidia (Y) and rainfall amount (X) in millimeters was determined as Y = 240X - 3,867, with r(2) = 0.91, which meant that a minimum of 16.1 mm of rain was needed to disperse conidia of B. dothidea. The power law model best described the dispersal gradients of B. dothidea propagules in the 1999-2000 and 2001-02 sampling seasons, with r(2) values of >/=0.73, whereas the exponential law model fit best for the 2000-01 data, with r(2) values of >/=0.81. In a rain simulation experiment, the intensity of the rain generated by a nozzle at 138 kPa of pressure inside the tree canopy was approximately five times higher than rain recorded outside the tree canopy. Rain removed up to 65% of conidia from infected fruit. These results confirmed that B. dothidea is a splash-dispersed pathogen with relatively short distances of spore dispersal within pistachio orchards. Only pycnidia are present in pistachio orchards; therefore, the results also indicate that inoculum of B. dothidea should be entirely splashed dispersed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号