首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Approximately 70,150 dry Mg of biosolids from over 450 wastewater treatment facilities are applied to the semi-arid rangelands of Colorado every year. Research on semi-arid grassland responses to biosolids has become vital to better understand ecosystem dynamics and develop effective biosolids management strategies. The objectives of this study were to determine the long-term (∼12 years) effects of a single biosolids application, and the short-term (∼2 years) effects of a repeated application, on plant and microbial community structure in a semi-arid grassland soil. Specific attention was paid to arbuscular mycorrhizal fungi (AMF) and linkages between shifts in plant and soil microbial community structures. Biosolids were surface applied to experimental plots once in 1991 (long-term plots) and again to short-term plots in 2002 at rates of 0, 2.5, 5, 10, 21, or 30 Mg ha−1. Vegetation (species richness and above-ground biomass), soil chemistry (pH, EC, total C, total N, and extractable P, NO3-N, and NH4-N), and soil microbial community structure [ester-linked fatty acid methyl esters (EL-FAMEs)], were characterized to assess impacts of biosolids on the ecosystem. Soil chemistry was significantly affected and shifts in both soil microbial and plant community structure were observed with treatment. In both years, the EL-FAME biomarker for AMF decreased with increasing application rate of biosolids; principal components analysis of EL-FAME data yielded shifts in the structure of the microbial communities with treatment primarily related to the relative abundance of the AMF specific biomarker. Significant (p≤0.05) correlations existed among biomarkers for Gram-negative and Gram-positive bacteria, AMF and specific soil chemical parameters and individual plant species' biomass. The AMF biomarker was positively correlated with biomass of the dominant native grass species blue grama (Bouteloua gracilis [Willd. ex Kunth] Lagasca ex Griffiths) and was negatively correlated with western wheatgrass (Agropyron smithii Rydb.) biomass. This study demonstrated that applications of biosolids at relatively low rates can have significant long-term effects on soil chemistry, soil microbial community structure, and plant community species richness and structure in the semi-arid grasslands of northern Colorado. Reduced AMF and parallel shifts in the soil microbial community structure and the plant community structure require further investigation to determine precisely the sequence of influence and resulting ecosystem dynamics.  相似文献   

2.
Restoration of soils burned by a wildfire using composted amendments of different origin (biosolids and municipal organic wastes) and final particle size (screened and unscreened) was studied after 6 and 12 months of application in a field trial in semiarid NW Patagonia. Composts were applied at 40 Mg ha−1. A fertilized treatment with soluble N (100 kg ha−1) and P (35 kg ha−1), and a non-treated control were also included. As indicators of soil response, chemical (electrical conductivity, pH, organic C, total N, extractable P), biological (potential microbial respiration, potential net N mineralization, N retained in microbial biomass) and physical (temperature and soil moisture) properties were evaluated. Plant soil cover was also estimated. Soil chemical and biological properties showed a high response to organic amendment addition, more evident after the wet season (12 months of application). Soil organic C, total N and extractable P increased significantly with biosolids composts (BC), and soil pH with municipal composts (MC). Potential microbial C respiration and net N mineralization were similar for both MC and BC, and significantly higher than in the control and the inorganic fertilized treatment; when calculated on C or N basis the highest values corresponded to MC. Results imply that in terms of organic C accretion, BC were more effective than MC due to higher amounts of total and recalcitrant C. Screened and unscreened composts did not differ significantly in their effects on soil properties. The increase of organic C with BC did not contribute to increase soil moisture, which was even higher in control plots after the wet season; higher plant cover and water consumption in amended plots could also explain this pattern. Inorganic fertilization enhanced higher plant cover than organic amendments, but did not contribute to soil restoration.  相似文献   

3.
One of the challenges in organic farming systems is to match nitrogen (N) mineralization from organic fertilizers and crop demand for N. The mineralization rate of organic N is mainly determined by the chemical composition of the organic matter being decomposed and the activity of the soil microflora. It has been shown that long-term organic fertilization can affect soil microbial biomass (MB), the microbial community structure, and the activity of enzymes involved in the decomposition of organic matter, but whether this has an impact on short-term N mineralization from recently applied organic substances is not yet clear. Here, we sampled soils from a long-term field experiment, which had either not been fertilized, or fertilized with 30 or 60 t ha−1 year−1 of farmyard manure (FYM) since 1989. These soil samples were used in a 10-week pot experiment with or without addition of FYM before starting (recent fertilization). At the start and end of this experiment, soil MB, microbial basal respiration, total plant N, and mineral soil N content were measured, and a simplified N balance was calculated. Although the different treatments used in the long-term experiment induced significant differences in soil MB, as well as total soil C and N contents, the total N mineralization from FYM was not significantly affected by soil fertilization history. The amount of N released from FYM and not immobilized by soil microflora was about twice as high in the soil that had been fertilized with 60 t ha−1 year−1 of FYM as compared with the non-fertilized soil (p < 0.05).  相似文献   

4.
Co‐application of biosolids and water treatment residuals (WTR) land has not been extensively studied but may be beneficial by sorbing excess biosolid‐borne or soil phosphorus (P) onto WTR, reducing the likelihood of off‐site movement. Reduction of excess soil P may affect the role of specific P‐cleaving enzymes. The research objective was to understand the long‐term effects of single co‐applications and the short‐term impacts of repeated co‐applications on soil acid phosphomonoesterase, phosphodiesterase, pyrophosphatase, and phytase enzyme activities. Test plots were 7.5 × 15 m with treatments consisting of three different WTR rates with a single biosolids rate (5, 10, and 21 Mg WTR ha?1; 10 Mg biosolids ha?1) surface co‐applied once in 1991 or reapplied in 2002. Control plots consisted of those that received no WTR–biosolids co‐applications and plots that received only 10 Mg biosolids ha?1. Plots were sampled to a 5‐cm depth in 2003 and 2004, and soil phosphatases and phytase enzyme activities were measured. Soil phosphodiesterase activity decreased in WTR‐amended plots, and pyrophosphatase activity decreased with increasing WTR application rates. In contrast, acid phosphatase and phytase activity increased with WTR addition, with WTR application possibly triggering a deficiency response causing microorganisms or plants to secrete these enzymes. Biosolids and WTR co‐applications may affect enzymatic strategies for P mineralization in this study site. Reductions in phosphodiesterase activity suggest less P mineralization from biomass sources, including nucleic acids and phospholipids. Increased acid phosphatase and phytase activities indicate that ester‐P and inositol‐P may be important plant‐available P sources in soils amended with WTR.  相似文献   

5.
This study characterized soil chemical and microbiological properties in hay production systems that received from 0 to 600 kg plant-available N (PAN) ha−1 year−1 from either swine lagoon effluent (SLE) or ammonium nitrate (AN) from 1999 to 2001. The forage systems contained plots planted with bermudagrass (Cynodon dactylon L.) or endophyte-free tall fescue (Festuca arundinaceae Schreb.). In March 2004, the plots were sampled for measurements of a suite of soil chemical and microbiological properties. Nitrogen fertilization rates were significantly correlated with soil pH and K2SO4-extractable soil C but not with total soil C, soil C/N ratio, electrical conductivity, or Mehlich-3-extractable nutrients. Soil supplied with SLE had significantly lower Mehlich-3-extractable nutrients than the soil supplied with AN. Two indicators of soil N-supplying capacity (potentially mineralizable N and amino sugar N) varied with plant species and the type of N fertilizer. However, they generally peaked at an application rate of 200 or 400 kg PAN ha−1 year−1. Soil microbial biomass C also peaked at an application rate of 200 or 400 kg PAN ha−1 year−1. Nitrification potential was significantly higher in soil supplied with AN than in the unfertilized control but was similar between SLE-fertilized and unfertilized soils. Our results indicated that an application rate as high as 600 kg PAN ha−1 year−1 did not benefit soil microbial biomass, microbial activity, and N transformation processes in these forage systems.  相似文献   

6.
Little is know on the impact of biosolids application on soil organic matter (SOM) stability, which contributes to soil C sequestration. Soil samples were collected in 2006 at plow layer from fields that received liquid and dry municipal biosolids application from 1972 to 2004 at the cumulative rate of 1416 Mg ha−1 in mined soil and 1072 Mg ha−1 in nonmined soil and control fields that received chemical fertilizer at Fulton County, western Illinois. The biosolids application increased the soil microbial biomass C (SMBC) by 5-fold in mined soil and 4-fold in nonmined soil. The biosolids-amended soils showed a high amount of basal respiration and N mineralization, but low metabolic quotient, and low rate of organic C and organic N mineralization. There was a remarkable increase in mineral-associated organic C from 6.9 g kg−1 (fertilizer control) to 26.6 g kg−1 (biosolids-amended) in mined soil and from 8.9 g kg−1 (fertilizer control) to 23.1 g kg−1 (biosolids-amended) in nonmined soil. The amorphous Fe and Al, which can improve SOM stability, were increased by 2–7 folds by the long-term biosolids application. It is evident from this study that the biosolids-modified SOM resists to decomposition more than that in the fertilizer treatment, thus long-term biosolids application could increase SOM stability.  相似文献   

7.
In the traditional shifting cultivation system practiced by the Karen people in northern Thailand, the effects of burning on the content of extractable organic matter, microbial biomass, and N mineralization process of the soils were studied. Five plots (5×5 m2 quadrat) with 0, 10, 20, 50, and 100 Mg ha-1 of slashed materials were arranged and burned. Ten to 20 Mg ha-1 of slashed biomass corresponded to the amount commonly burned by the Karen people. During the burning process, the soil temperature at the depth of 2.5 cm in the 100 Mg ha-1 plot almost evenly increased to 300°C while the temperature in the 10 to 50 Mg ha-1 plots increased with large variations from 50 to 300°C. Burning caused a conspicuous increase in the contents of organic C and (organic + mineral)-N extracted at room temperature and a simultaneous decrease in the contents of microbial biomass C and N, especially in the soil of the 100 Mg ha-1 plot. In the rainy season, the values of the changes induced by burning reverted to the values recorded before burning, except for the microbial biomass in the 100 Mg ha-1 plot, which still remained lower. Based on an incubation experiment, N mineralization rate was higher in the soils taken just after burning, especially in the 100 Mg ha-1 plot, than in the soils taken during the rainy season. However, the soil in the 100 Mg ha-1 plot was considered to have the lowest ability to supply mineral N among the soils in the rainy season. Burning of 10 to 20 Mg ha-1 biomass corresponding to the values recorded in Karen peoples' shifting cultivation system was more compatible with soil ecology in terms of N supply at the initial stage of crop growth and of microbial biomass recovery during the rainy season, compared to the burning of 100 Mg ha-1 biomass corresponding to the value recorded in a natural forest. Thus, the shifting cultivation system implemented by the Karen people can be considered to be a well-balanced agricultural system.  相似文献   

8.
We studied the effects of applications of traditionally composted farmyard manure (FYM) and two types of biodynamically composted FYM over 9 years on soil chemical properties, microbial biomass and respiration, dehydrogenase and saccharase activities, decomposition rates and root production under grass-clover, activity and biomass of earthworms under wheat, and yields in a grass-clover, potatoes, winter wheat, field beans, spring wheat, winter rye crop rotation. The experiment was conducted near Bonn, on a Fluvisol using a randomised complete block design (n=6). Our results showed that plots which received either prepared or non-prepared FYM (30 Mg ha–1 year–1) had significantly increased soil pH, P and K concentrations, microbial biomass, dehydrogenase activity, decomposition (cotton strips), earthworm cast production and altered earthworm community composition than plots without FYM application. Application of FYM did not affect the soil C/N ratio, root length density, saccharase activity, microbial basal respiration, metabolic quotient and crop yields. The biodynamic preparation of FYM with fermented residues of six plant species (6 g Mg–1 FYM) significantly decreased soil microbial basal respiration and metabolic quotient compared to non-prepared FYM or FYM prepared with only Achillea. The biodynamic preparation did not affect soil microbial biomass, dehydrogenase activity and decomposition during 62 days. However, after 100 days, decomposition was significantly faster in plots which received completely prepared FYM than in plots which received no FYM, FYM without preparations or FYM with the Achillea preparation. Furthermore, the application of completely prepared FYM led to significantly higher biomass and abundance of endogeic or anecic earthworms than in plots where non-prepared FYM was applied.  相似文献   

9.
A long-term (30 years) soybean–wheat experiment was conducted at Hawalbagh, Almora, India to study the effects of organic and inorganic sources of nutrients on grain yield trends of rainfed soybean (Glycine max)–wheat (Triticum aestivum) system and nutrient status (soil C, N, P and K) in a sandy loam soil (Typic Haplaquept). The unfertilized plot supported 0.56 Mg ha−1 of soybean yield and 0.71 Mg ha−1 of wheat yield (average yield of 30 years). Soybean responded to inorganic NPK application and the yield increased significantly to 0.87 Mg ha−1 with NPK. Maximum yields of soybean (2.84 Mg ha−1) and residual wheat (1.88 Mg ha−1) were obtained in the plots under NPK + farmyard manure (FYM) treatment, which were significantly higher than yields observed under other treatments. Soybean yields in the plots under the unfertilized and the inorganic fertilizer treatments decreased with time, whereas yields increased significantly in the plots under N + FYM and NPK + FYM treatments. At the end of 30 years, total soil organic C (SOC) and total N concentrations increased in all the treatments. Soils under NPK + FYM-treated plots contained higher SOC and total N by 89 and 58% in the 0–45 cm soil layer, respectively, over that of the initial status. Hence, the decline in yields might be due to decline in available P and K status of soil. Combined use of NPK and FYM increased SOC, oxidizable SOC, total N, total P, Olsen P, and ammonium acetate exchangeable K by 37.8, 42.0, 20.8, 30.2, 25.0, and 52.7%, respectively, at 0–45 cm soil layer compared to application of NPK through inorganic fertilizers. However, the soil profiles under all the treatments had a net loss of nonexchangeable K, ranging from 172 kg ha−1 under treatment NK to a maximum of 960 kg ha−1 under NPK + FYM after 30 years of cropping. Depletion of available P and K might have contributed to the soybean yield decline in treatments where manure was not applied. The study also showed that although the combined NPK and FYM application sustained long-term productivity of the soybean–wheat system, increased K input is required to maintain soil nonexchangeable K level.  相似文献   

10.
This study aims to examine the effects of long‐term fertilization and cropping on some chemical and microbiological properties of the soil in a 32 y old long‐term fertility experiment at Almora (Himalayan region, India) under rainfed soybean‐wheat rotation. Continuous annual application of recommended doses of chemical fertilizer and 10 Mg ha–1 FYM on fresh‐weight basis (NPK + FYM) to soybean (Glycine max L.) sustained not only higher productivity of soybean and residual wheat (Triticum aestivum L.) crop, but also resulted in build‐up of total soil organic C (SOC), total soil N, P, and K. Concentration of SOC increased by 40% and 70% in the NPK + FYM–treated plots as compared to NPK (43.1 Mg C ha–1) and unfertilized control plots (35.5 Mg C ha–1), respectively. Average annual contribution of C input from soybean was 29% and that from wheat was 24% of the harvestable aboveground biomass yield. Annual gross C input and annual rate of total SOC enrichment from initial soil in the 0–15 cm layer were 4362 and 333 kg C ha–1, respectively, for the plots under NPK + FYM. It was observed that the soils under the unfertilized control, NK and N + FYM treatments, suffered a net annual loss of 5.1, 5.2, and 15.8 kg P ha–1, respectively, whereas the soils under NP, NPK, and NPK + FYM had net annual gains of 25.3, 18.8, and 16.4 kg P ha–1, respectively. There was net negative K balance in all the treatments ranging from 6.9 kg ha–1 y–1 in NK to 82.4 kg ha–1 y–1 in N + FYM–treated plots. The application of NPK + FYM also recorded the highest levels of soil microbial‐biomass C, soil microbial‐biomass N, populations of viable and culturable soil microbes.  相似文献   

11.
A field trial was conducted on an inceptisol to assess the effect of different bio-manures on sugarcane yield, cane quality, and changes in soil physico-chemical and microbial properties in plant–ratoon system. Seven treatments, viz. control, vermicompost, farmyard manure (FYM), biogas slurry, sulphitation pressmud cake (SPMC), green manuring with intercropped Sesbania, and recommended dose of NPK (150:60:60 kg ha−1), were randomized within a block and replicated three times. Improvement in bulk density and infiltration rates was recorded after the addition of various bio-manures. The highest organic C was recorded in the vermicompost (0.54%) and pressmud (0.50%) treatments. The highest increase in soil microbial biomass C (185.5%) and soil microbial biomass N (220.2%) over its initial value was recorded with the addition of FYM. Dry matter production in plant, as well as ratoon crop, was significantly higher by bio-manure application over the control. Plant N uptake was highest in the pressmud treatment (227.7 kg ha−1), whereas P and K uptake were highest (41.4 and 226.50 kg ha−1) in vermicompost treatment. The highest number of millable canes (95.6 and 101.0 thousand ha−1) in plant and ratoon crop were obtained with the addition of pressmud. The highest yield (76.7 t ha−1) was recorded in planted cane with vermicompost application, whereas ratoon yield was highest (78.16 t ha−1) with pressmud application. In both planted and ratoon crop, organic amendments produced yields statistically similar to those with recommended NPK (76.1 and 78.1 t ha−1 for plant and ratoon cane).  相似文献   

12.
A field experiment was conducted during 2003–2005 and 2004–2006 at the Indian Institute of Sugarcane Research, Lucknow, India to study the effect of Trichoderma viride inoculation in ratoon sugarcane with three trash management practices, i.e. trash mulching, trash burning and trash removal. Trichoderma inoculation with trash mulch increased soil organic carbon and phosphorus (P) content by 5.08 Mg ha−1 and 11.7 kg ha−1 over their initial contents of 15.75 Mg ha−1 and 12.5 kg ha−1, respectively. Soil compaction evaluated as bulk density in 0- to 15-cm soil layer, increased from 1.48 Mg m−3 at ratoon initiation (in April) to 1.53 Mg m−3 at harvest (in December) due to trash burning and from 1.42 Mg m−3 at ratoon initiation (in April) to 1.48 Mg m−3 at harvest (in December) due to trash mulching. The soil basal respiration was the highest during tillering phase and then decreased gradually, thereafter with the advancement of crop growth. On an average, at all the stages of crop growth, Trichoderma inoculation increased the soil basal respiration over no inoculation. Soil microbial biomass increased in all plots except in the plots of trash burning/removal without Trichoderma inoculation. The maximum increase (40 mg C kg−1 soil) in soil microbial biomass C, however, was observed in the plots of trash mulch with Trichoderma inoculation treatment which also recorded the highest uptake of nutrient and cane yield. On an average, Trichoderma inoculation with trash mulch increased N, P and K uptake by 15.9, 4.68 and 23.6 kg ha−1, respectively, over uninoculated condition. The cane yield was increased by 12.8 Mg ha−1 with trash mulch + Trichoderma over trash removal without Trichoderma. Upon degradation, trash mulch served as a source of energy for enhanced multiplication of soil bacteria and fungi and provided suitable niche for plant–microbe interaction.  相似文献   

13.
Abstract

The objective of this paper was to evaluate the influence of different rates of biosolids on the soil nitrogen (N) availability for maize and its residuality. A field experiment was developed in a typic Argiudol located in the NE of the Buenos Aires Province. Maize was sown for two consecutive years 1997–1999. Biosolids from a sewage treatment plant of Buenos Aires outskirts were superficially applied to the soil and incorporated by plowing. There were eight treatments: Check; 8, 16, and 24 Mg of dry biosolid ha?1; 8 and 16 Mg of dry biosolid ha?1 applied one year before, 100 and 150 kg N ha?1 of calcium ammonium nitrate (CAN). The sampling and determinations were done during the second maize cycle. At presowing (PS), sowing (S), 6 expanded leaves (V6), 12 expanded leaves (V12), and Flowering (Fl) composite soil samples from 0–40 cm depth were obtained to determine ammonium and nitrate contents. At Fl maize plants were sampled in order to determine total biomass and N content. The N‐nitrate content in the soil was significantly increased by the biosolids application (p < 0.05), and varied for each increment depending on the biosolids rates and the phenological stage. After 30 days from the incorporation the increases of 1.19, 1.34, and 2.05% were observed for N‐nitrates for 8, 16, and 24 Mg ha?1, respectively. The contribution of mineral N from the biosolids was 2.48, 6.46, and 5.01 kg N Mg?1 when the rates were incremented from 0–8, 8–16, and 16–24 Mg ha?1, respectively. The nitrogen mineralization followed a release pattern with a maximum value of 296 kg N‐nitrate ha?1 at sowing for 24 Mg ha?1. Since then, the release of mineral nitrogen decreased significantly till Fl. The N‐nitrates values variation with the temperature adjusted to polinomic functions. The mineral N released from the biosolids increased as a response to the increment of soil temperature and then decreased due to the maize nitrogen absorption and the potentially mineralized nitrogen exhaustion. The application of 150 kg N ha?1 as CAN incremented significantly the soil N‐nitrate content and equalized 16 and 24 Mg of dry biosolids ha?1 at V6. But, no synchronism between the high nitrate releasing from biosolids and the increment in the nitrogen absorption by maize was observed. This fact generates a surplus of nitrate that incremented the potential of nitrogen loss by lixiviation. We observed a residual effect from the biosolids that were applied the previous year. This contribution represented the 35% of the maize requirements and was similar to the nitrate content observed in Bio 16. The biosolids might be a valuable source of nitrogen for maize crop if the synchronism between the soil supply and maize demand is observed in order to avoid nitrates surplus.  相似文献   

14.
We studied the degradability and nutrient release capacity of municipal organic waste (MOW) composts obtained with different management practices: shredding and/or mixing with wood shavings, cocomposting with biosolids, and vermicomposting. As indicators of degradability and nutrient release capacity, we measured net N and C mineralization, extractable-P release, N retained in microbial biomass, and dehydrogenase activity in 16-week laboratory incubations, using soil amended at a rate of 40 g kg−1. We also determined the extent to which these indicators were predicted from the chemical characteristics of the amendments. All products increased soil N and P availability, and the size and activity of soil microbial populations. Carbon and N mineralization, and extractable-P release were influenced by amendment chemical characteristics, especially organic matter, total N, total P, C to N ratio, extractable-P and water soluble C. Cocomposting MOW and biosolids is an important alternative for MOW management, because it was the most effective strategy at increasing product degradability and nutrient release capacity (highest net N and C mineralization, extractable-P release, and microbial biomass-N). Shredding MOW increased C mineralization, while the addition of wood shavings decreased net N mineralization, but generally did not affect C mineralization. Thus, these two practices should be used when these specific product characteristics wish to be achieved. Vermicomposting did not prove to be an efficient strategy when MOW was mixed with biosolids.  相似文献   

15.
High rates of cattle slurry application induce NO inf3 sup- leaching from grassland soils. Therefore, field and lysimeter trials were conducted at Gumpenstein (Austria) to determine the residual effect of various rates of cattle slurry on microbial biomass, N mineralization, activities of soil enzymes, root densities, and N leaching in a grassland soil profile (Orthic Luvisol, sandy silt, pH 6.6). The cattle slurry applications corresponded to rates of 0, 96, 240, and 480 kg N ha-1. N leaching was estimated in the lysimeter trial from 1981 to 1991. At a depth of 0.50 m, N leaching was elevated in the plot with the highest slurry application. In October 1991, deeper soil layers (0–10, 10–20, 20–30, 30–40, and 40–50 cm) from control and slurry-amended plots (480 kg N ha-1) were investigated. Soil biological properties decreased with soil depth. N mineralization, nitrification, and enzymes involved in N cycling (protease, deaminase, and urease) were enhanced significantly (P<0.05) at all soil depths of the slurry-amended grassland. High rates of cattle slurry application reduced the weight of root dry matter and changed the root distribution in the different soil layers. In the slurry-amended plots the roots were mainly located in the topsoil (0–10 cm). As a result of this study, low root densities and high N mineralization rates are held to be the main reasons for NO inf3 sup- leaching after heavy slurry applications on grassland.  相似文献   

16.
Tree thinning and harvesting produces large amounts of slash material which are typically disposed of by burning, often resulting in severe soil heating. We measured soil chemical properties and microbial community structure and function over time to determine effects of slash pile burning in a ponderosa pine forest soil. Real time data were collected for soil temperature, heat flux, and soil moisture contents in one of two slash piles burned in April 2004. During the burn, soil temperatures reached 300 °C beneath the pile center and 175 °C beneath the pile edge. Slash pile burning increased soil pH, extractable N and P, and decreased total C levels within the first 15 cm of soil. Burning reduced soil bacterial biovolumes within the first 15 cm of soil and fungal biovolumes within the first 5 cm of soil. One month after the burn, soil microbial communities under the pile center were enriched in Gram-positive bacterial fatty acid markers compared to communities from under the pile edge and control (nonburned) soil. Fifteen months later, soil chemical properties had not returned to background levels, and microbial community structure in fire-affected soil, regardless of pile location, was distinct from communities of control soil. In fire-affected soil, concentrations of fungal fatty acid biomarkers were low and arbuscular mycorrhizal fungal biomarkers were absent, regardless of pile location. Slash pile burning also reduced fungal and bacterial respiration and resulted in large fluctuations in microbial potential N mineralization and immobilization activities. By altering soil properties important to soil conservation and plant reestablishment, slash pile burning negatively impacts forest ecosystems at localized scales.  相似文献   

17.
Soil microbial community structure and function are commonly used as indicators for soil quality and fertility. The present study deals with the effect of different long-term fertilizer management practices on community-level physiological profiles (CLPP) and soil enzyme activities of paddy soils. Since 1954, chemical fertilizers have been applied in the fields as N–P2O5–K2O, and compost has been added as rice straw at 0, 7.5, 22.5, and 30.0 Mg ha−1 in NPK, NPKC750, NPKC2250, and NPKC3000 treatments, respectively. Community-level functional diversity was significantly enhanced in the plots treated with both chemical fertilizer and compost as compared to only chemical fertilizer and untreated control plots. Average well color development (AWCD) obtained by the Biolog Eco plate indicates that there were few differences among soil samples. Shannon diversity and evenness indices were the highest in NPKC750-treated soil and the lowest in chemically fertilized soil. Dehydrogenase, cellulose, β-glucosidase, and acid and alkaline phosphomonoesterase activities were significantly increased depending on the amount of added compost with inorganic fertilizers; the alkaline phosphomonoesterase activity was the most sensitive to treatments. Our results demonstrated that enzyme activities can be used as sensitive and liable indicators in long-term managed rice-paddy ecosystems.  相似文献   

18.
Organic amendment and tillage reduction are two common practices to contrast soil organic matter decline, thus promoting sustainable cropping and carbon sequestration. In a horticultural land use system under Mediterranean climate, we evaluated the 9-year effects of two compost inputs (15 and 30 t ha−1 y−1, low and high input, respectively) and two tillage intensities (intensive and reduced) on soil macronutrients concentration, microbial biomass and activity. Total organic C, total N and POlsen were smaller in plots amended at low input, whilst intensive tillage decreased them at both compost inputs. These decreases in intensively tilled plots was ascribed to the disruption of soil aggregates, with consequent microbial degradation of the physically protected organic matter by oxidative processes. On the contrary, reduced tillage increased the extractable C, likely due to a higher protection of the most labile soil C fraction from the mineralization. Similarly, microbial biomass C and N increased following both doubling compost input and reducing tillage intensity, with a greater effect by the first factor. The higher values of cumulative 10-day basal and 20-h glucose-induced respiration, and metabolic quotient in intensively tilled plots suggested that high tillage favoured soil aggregate disruption and C accessibility. This was also confirmed by higher values of dehydrogenase activity/total organic C in those plots. Intensive tillage caused a higher soil aeration and organic substrates accessibility to microflora, thus undoing the fertility benefits provided by the high compost input. However, also a low compost input coupled to reduced tillage seemed to accomplish soil sustainability needs.  相似文献   

19.
Earthworms have been shown to produce contrasting effects on soil carbon (C) and nitrogen (N) pools and dynamics. We measured soil C and N pools and processes and traced the flow of 13C and 15N from sugar maple (Acer saccharum Marsh.) litter into soil microbial biomass and respirable C and mineralizable and inorganic N pools in mature northern hardwood forest plots with variable earthworm communities. Previous studies have shown that plots dominated by either Lumbricus rubellus or Lumbricus terrestris have markedly lower total soil C than uncolonized plots. Here we show that total soil N pools in earthworm colonized plots were reduced much less than C, but significantly so in plots dominated by contain L. rubellus. Pools of microbial biomass C and N were higher in earthworm-colonized (especially those dominated by L. rubellus) plots and more 13C and 15N were recovered in microbial biomass and less was recovered in mineralizable and inorganic N pools in these plots. These plots also had lower rates of potential net N mineralization and nitrification than uncolonized reference plots. These results suggest that earthworm stimulation of microbial biomass and activity underlie depletion of soil C and retention and maintenance of soil N pools, at least in northern hardwood forests. Earthworms increase the carrying capacity of soil for microbial biomass and facilitate the flow of N from litter into stable soil organic matter. However, declines in soil C and C:N ratio may increase the potential for hydrologic and gaseous losses in earthworm-colonized sites under changing environmental conditions.  相似文献   

20.
The influence of two experimental soil treatments, Z93 and W91, on nitrogen transformations, microbial activity and plant growth was investigated in soil microcosms. These compounds are commercially marketed fermentation products (Agspectrum) that are sold to be added to field soils in small amounts to promote nitrogen and other nutrient uptake by crops in USA. In laboratory microcosm experiments, soils were amended with finely ground alfalfa-leaves or wheat straw, or left unamended, in an attempt to alter patterns of soil nitrogen mineralization and immobilization. Soils were treated in the microcosms with Z93 and W91 at rates equivalent to the recommended field application rates, that range from 0.2 to 1.1 l ha−1, (0.005-0.03 μl g−1 soil). We measured their effects on soil microbial activity (substrate-induced respiration (SIR), dehydrogenase activity (DHA) and acid phosphatase activity (PHOS)), soil nitrogen pools (microbial biomass N, mineral N, dissolved organic N), and transformations (net N mineralization and nitrification, 15N dilution of the mineral N pool, and accumulation of mineral N on ion-exchange resins), and on wheat plant germination and growth (shoot and root biomass, shoot length, N uptake and 15N enrichment of shoot tissues), for up to 56 days after treatment. To follow the movement of nitrogen from inorganic fertilizer into plant biomass we used a 15N isotopic tracer. Most of the soil and plant responses to treatment with Z93 or W91 differed according to the type of organic amendment that was used. Soil treatment with either Z93 or W91 influenced phosphatase activity strongly but did not have much effect on SIR or DHA. Both chemicals altered the rates of decomposition and mineralization of organic materials in the soil, which was evidenced by significant increases in the rates of the decomposition of buried wheat straw, and by the acceleration of net, rates of N mineralization, relative to those of the controls. Soil nitrate availability increased at the end of the experiment in response to both chemical treatments. In alfalfa-amended soils, the final plant biomass was decreased significantly by treatment with W91. Increased plant growth and N-use efficiency in straw-amended soil, resulting from treatments with Z93 or W91, was linked to increased rates of N mineralization from indigenous soil organic materials. This supports the marketing of these compounds as promoters of N uptake at these low dosage inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号