首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Butachlor is a systemic selective pre-emergent herbicide most commonly used to control grasses and broadleaf weeds. Residual butachlor in soil can have harmful ecotoxological effects and remediation is, therefore, important. Effects of Rhodopseudomonas marshes in wastewater effluent on biorestoration of butachlor in soil were investigated. Over a time period of one day, butachlor induced EthB gene expression to synthesize cytochrome P450 monooxygenase which led to the successful bioremediation of the herbicide. Residual organics in wastewater effluent provided sufficient carbon sources for continued growth of R. marshes beyond one day.  相似文献   

2.
研究和建立了氟啶虫胺腈在土壤、棉籽和棉叶中的高效液相色谱检测方法,并在天津和杭州两地开展了氟啶虫胺腈在棉花中的田间残留试验研究。样品采用乙腈提取,正己烷萃取,氟罗里硅土柱层析净化,正己烷/丙酮(体积比6∶4)混合液洗脱,减压浓缩至干,甲醇定容,高效液相色谱配可变波长紫外检测器进行检测。当分别在空白土壤、棉籽和棉叶样品中添加浓度为0.05~2.5mg·kg-1的氟啶虫胺腈标准品时,其平均添加回收率在76.81%~94.43%之间,相对标准偏差(RSD)在0.54%~7.20%之间;氟啶虫胺腈的最小检出量为1 ng,在所有样品中的最低检出浓度均为0.05mg·kg-1。田间残留试验结果表明,氟啶虫胺腈在土壤和棉叶中的消解规律符合一级动力学模型Ct=C0e-kt,消解半衰期分别为1.36~5.10 d和6.13~9.37d。最终残留试验结果表明,在棉花田手动喷雾施用50%氟啶虫胺腈水分散粒剂,按推荐剂量和1.5倍推荐剂量施药,兑水喷雾处理2~3次,每次施药间隔7 d,在距最后1次施药7、14 d和21d时,氟啶虫胺腈在棉籽和土壤中的残留量均小于方法最低检出浓度0.05mg·kg-1。  相似文献   

3.
土壤样品中痕量丁草胺的分析方法   总被引:2,自引:0,他引:2  
本研究完善了土壤中除草剂丁草胺残留的分析测试方法。在实验室条件下,利用超声提取、弗罗里硅土柱(湿法填柱和干法填柱)进行净化和分离、毛细管气相色谱分析测试,进一步优化了弗罗里硅土柱净化分离丁草胺的条件。土壤中丁草胺的平均回收率为97.46%,检出限为0.002mgkg-1,变异系数小于10%。本方法灵敏度高、重复性好、可排除有机污染物对微量丁草胺残留物测定的干扰,同时减少了有机试剂的用量,适用于土壤样品中痕量丁草胺的分析测试。  相似文献   

4.
There is increasing concern about modifications to pesticide persistence in soil from the application of organic wastes as fertilizers. This study was conducted to discriminate the multiple effects of biogas residues (BR) amendment, including soil nutrients, soil microbial activity and biodiversity, and adsorption and degradation of chloroacetanilide herbicides (acetochlor, metolachlor, and butachlor). Addition of BR to soil increased the release of organic materials (i.e., dissolved organic carbon, dissolved organic nitrogen, and active phosphorus). It not only stimulated soil microorganisms and caused changes to microorganism diversity but also increased herbicide adsorption. Such multiple effects led to selective decontamination of chloroacetanilide herbicides, depending on herbicide structures and BR amendment levels. Stereoselectivity in degradation of acetochlor and metolachlor with biphasic character was magnified by BR amendment, which was well explained by integrating the impacts of BR amendment. Interestingly, BR amendment induced significant accumulation of herbicidally active aS,CS-metolachlor, facilitating the utilization of herbicidal activity.  相似文献   

5.
The action of safener benoxacor on the detoxification of terbuthylazine (TBA) in Zea mays and Festuca arundinacea was ascertained by the investigation of the effects of benoxacor on the activity of glutathione-S-transferases (GSTs) in the shoots of the two plant species. TBA treatment generally reduced GST activity toward 1-chloro-2,4-dinitrobenzene (CDNB) in corn and did not affect the enzyme activity in festuca. When applied alone, benoxacor stimulated GST activity in both plants; however, when it was applied in mixture with TBA, generally, an enhancement of the enzyme activity was found in corn but not in festuca in comparison with the respective TBA-treated samples. The enhancement of GST activity in response to the benoxacor treatment in both corn and festuca resulted to be concomitant with decreases in apparent K(M) in both the plant species, with V(max) unaffected, and with an increased expression of proteins having molecular masses in the characteristic range of plant GSTs. After the benoxacor treatment, increased GST activity toward TBA as a substrate was observed in both corn and festuca. As a consequence, lesser amounts and persistence of TBA residues were found in shoots of corn and festuca treated with the TBA and benoxacor mixture compared to TBA-only-treated samples. Therefore, benoxacor enhances TBA detoxification in both corn and festuca; the induction of detoxifying activity in a nondomesticated grass is discussed in view of its use in vegetating buffer strips around crops to prevent TBA pollution.  相似文献   

6.
浓硫酸纯化-气相色谱法测定土壤中拟除虫菊酯农药残留   总被引:5,自引:0,他引:5  
吴萍  施海燕  韩志华  王鸣华 《土壤》2008,40(5):744-749
建立了土壤中拟除虫菊酯类农药新的前处理方法。样品以乙腈提取,浓硫酸-乙醇进行纯化,毛细管柱气相色谱法测定土壤中的拟除虫菊酯农药。结果表明:4种菊酯在3种土壤样品中的添加回收率在84.14%~105.51%之间,变异系数为1.24%~5.82%。该方法具有省时、省溶剂、操作简单、纯化效果好、实用性强的特点。  相似文献   

7.
从处理农药生产废水的膜生物反应器中分离到一株能以丁草胺为惟一碳源和能源生长的细菌BD-1,经鉴定为施氏假单孢菌(Pseudomonas stutzeri)。在纯培养的条件下测定了BD-1对丁草胺的降解性能。结果表明,在接种量为菌浓度OD415萨0.2,pH7.0、30℃条件下,BD-1对丁草胺的降解符合一级动力学特征,1.0、10.0和100.0mg·L^-1的丁草胺的降解半衰期分别为0.11、0.60和0.96d。BD-1在不同pH及温度下对丁草胺的降解作用为pH7.0〉pH6.0〉pH8.0,30℃〉20℃〉40℃。GC/MS初步分析结果表明,丁草胺的主要微生物降解产物为2-氯-2’,6’-二乙基乙酰苯胺和2,6-二乙基苯胺。  相似文献   

8.
为探讨除草剂施用对柑橘园土壤氮转化及温室气体排放的影响,在实验室培养条件下,研究了0年(林地)、种植10年和30年的柑橘园土壤中分别添加除草剂草甘膦和丁草胺后,尿素态氮含量、硝化和反硝化作用以及温室气体排放的变化。研究结果表明,橘园土壤中尿素第1 d的水解率、氮肥硝化率、反硝化作用损失总量以及N_2O和CO_2排放量显著高于林地土壤(P0.05)。与10年橘园土壤相比,30年橘园土壤显著增加了尿素的水解速率、氮肥硝化率和CO_2排放量(P0.05),但二者的反硝化损失量没有显著差异。施用草甘膦和丁草胺都显著促进了林地土壤的尿素水解(P0.05),第1 d尿素态氮含量分别降低11.20%和12.43%;但对3种土壤氮肥的硝化率均没有明显影响。施用丁草胺显著降低了林地土壤的CO_2排放量(P0.05),对两种橘园土壤的CO_2排放没有明显影响,但明显增加了两种橘园土壤的N_2O排放总量(P0.05),分别比不施除草剂增加56.27%和85.41%;施用草甘膦对3种土壤的N_2O和CO_2排放均没有明显影响。可见,草甘膦和丁草胺的施用不会对柑橘园土壤的氮转化过程产生影响,但丁草胺显著增加了柑橘园土壤的N_2O排放。  相似文献   

9.
降解菌HD接种和非接种根围土壤中丁草胺的降解动力学研究   总被引:10,自引:0,他引:10  
测定了小麦、棉花、水稻和玉米根围土壤和非根围土壤中丁草胺的降解特征和降解菌变化动态。结果表明,种植作物丰富了土壤微生物,根围土壤丰富的微生物对丁草胺的降解具有显著的促进作用。根围土壤中丁草胺的降解是非根围土壤的1.63~2.34倍,相应的半衰期缩短为非根围土壤的 42.2%~72.8%。根围土壤接种处理后这种促进作用得到进一步加强,其降解速率是非根围土壤的1.68~2.83倍,半衰期为非根围土壤的34.4%~59.4%。试验结果表明,作物根围是丁草胺残留快速降解的微环境,作物根围接种处理可以强化丁草胺残留的微生物降解。  相似文献   

10.
土壤不同粒径有机无机复合体对丁草胺的吸附特性   总被引:1,自引:0,他引:1  
为了解土壤不同粒径组分对农药吸附-解吸行为的影响和吸附贡献率,以及不同粒径组分中有机无机组分的结合方式和复合程度如何影响有机质对农药的吸附,选取我国6个省区的7种理化性质差别较大的土壤,并采用物理方法提取该7种土壤的三个粒径有机无机复合体(黏粒:0.002mm;粉粒:0.02~0.002 mm;砂粒:0.05~0.02 mm)为研究材料,采用批量平衡法研究丁草胺在不同土壤和不同粒径有机无机复合体固/液界面的分配规律。同时,定量计算土壤各粒径组分对丁草胺的吸附贡献率,并从有机无机复合体角度探讨不同粒径组分中总有机碳(TOC)对丁草胺的吸附特性。结果表明:土壤黏粒组分对丁草胺具有最大的吸附量和较小的解吸率,而砂粒组分对丁草胺则具有较小的吸附量和最大的解吸率。土壤黏粒、粉粒和砂粒组分对丁草胺的吸附贡献率分别为36.7%~72.4%、21.7%~50.5%和10%。TOC是影响各粒径组分对丁草胺吸附的主要原因,但其影响程度受各粒径组分中TOC的理化性质以及其与无机矿物的复合程度控制。  相似文献   

11.
The photolysis of metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] in a sunlight simulator under actinic radiation was investigated. The focus of the study was to determine the extent of monochloroacetic acid (MCA) production. MCA was concentrated and derivatized from photolysate as the n-propyl ester using propanol and sulfuric acid and then identified as the ester using GC/MS and GC/ECD. On the basis of regression analysis, it was shown that the direct photodegradation of approximately 10 microM metolachlor followed pseudo-first-order kinetics with respect to the metolachlor concentration, and the half-life of the herbicide ( approximately 74 h) was independent of the pH of the medium. Photolysis in synthetic field water (SFW) resulted in a significant reduction of photolysis time (t(1/2) approximately 9 h). Direct photolysis experiments indicate a 5.19 +/- 0.81% (n=3) conversion of metolachlor to MCA, while photolysis in synthetic field water and in a Don River water sample resulted in 29.8 +/- 4.6% (n = 3) and 12.6 +/- 4.1% (n = 3) conversion, respectively; MCA was shown to be hydrolytically stable over the time course of the photoreaction. The photodegradation of alachlor, butachlor and a model chloroacetanilide, 2-chloro-N-methylacetanilide, in SFW were also investigated.  相似文献   

12.
在乌鲁木齐市周边,从乌拉泊到水西沟按不同距离与深度进行土壤样品采集,采用索氏提取法与层析净化法进行预处理,高效液相色谱法测定土壤中16种多环芳烃(PAHs)的含量,并对PAHs进行对比分析、污染评价和来源分析的相关研究。结果表明:总PAHs平均浓度为998.23(306.94~3 652.16)ng/g,污染程度差异不大,处中度污染水平但更接近严重污染水平;16种PAHs的最低检测限为0.20~0.80 ng/g;一些采样点的表层土壤中苯并[a]芘的含量高于土壤质量控制标准。不同层次土壤PAHs的污染程度有所不同,其顺序为表层中层下层;高分子量(4~6环)PAHs占据了总含量的84.1%,低分子量(2~3环)PAHs占据15.9%,得出在乌鲁木齐市周边土壤中PAHs的重要来源是汽车排放,同时煤燃烧排放的贡献也很大。  相似文献   

13.
董昌金  赵斌 《土壤学报》2004,41(5):750-755
在接种G intraradices和G etunicatum的玉米植株盆栽钵中 ,按大田常规用量 ,施用乙草胺、丁草胺、灵达、骠马、百草敌和使它隆 6种除草剂 ,对玉米植株的生物量、AM真菌菌丝根段侵染率、菌丝碱性磷酸酶 (ALP)和琥珀酸脱氢酶 (SDH)活性及土壤中AM真菌菌丝的总量均有显著影响。第 1 0周取样 ,对玉米植株生物量影响较大的除草剂为骠马 (植株生物量为 2 1 1~ 31 3g) ,影响较小的为灵达 (植株生物量为 5 9 7~ 6 5 5g) ,而对照的生物量为 84 4~ 95 7g ;对AM真菌侵染率影响较大的为丁草胺 (AM真菌侵染率为 1 3 7%~1 8 1 %) ,影响较少的为使它隆 (AM真菌侵染率为 30 4 %~ 36 6 %) ,而对照侵染率为 6 3 0 %~ 88 2 %;对AM真菌菌丝ALP和SDH酶活性影响较大的为丁草胺 (ALP为 8 1 %~ 1 0 4 %,SDH为 1 0 6 %~ 1 4 6 %) ,影响较小的为使它隆 (ALP为 1 7 0 %~ 2 0 6 %,SDH为 2 3 1 %~ 2 8 2 %) ,而对照的ALP为 38 0 %~ 5 0 3%,SDH为4 9 7%~ 72 4 %;此外 ,除草剂对土壤中AM真菌菌丝的总量也有显著影响。  相似文献   

14.
As part of the diversity screen of the HEALTHGRAIN project, the total folate contents of bread wheat (130 winter and 20 spring wheat genotypes), durum wheat (10 genotypes), earlier cultivated diploid einkorn and tetraploid emmer wheat (5 genotypes of each), and spelt (5 genotypes), grown in the same location in a controlled manner, were determined by a microbiological assay. The total folate contents ranged from 364 to 774 ng/g of dm in winter wheat and from 323 to 741 ng/g of dm in spring wheat, thus showing a marked variation. The highest mean for total folate content was measured in the durum wheat genotypes, whereas the earlier cultivated diploid and tetraploid wheat genotypes and spelt were shown to possess comparable or even higher folate contents than bread wheat. HPLC analysis of selected genotypes showed that 5-formyltetrahydrofolate was the major vitamer. The data provide a basis for breeding wheat genotypes with improved folate content.  相似文献   

15.
Analysis by GC/MS/MS showed that a worldwide collection of 58 wheat accessions differed significantly in the production of seven phenolic acids in the roots of 17-day-old wheat seedlings. The allelochemical contents among wheat accessions ranged from 24.5 to 94.5, 19.9 to 91.7, 3.7 to 15.4, 2.2 to 38.6, 1.0 to 42.2, 19.3 to 183.6, and 11.7 to 187.6 mg/kg of root dry weight for p-hydroxybenzoic, vanillic, cis-p-coumaric, syringic, cis-ferulic, trans-p-coumaric, and trans-ferulic acids, respectively. trans-Ferulic acid was identified as the most predominant phenolic acid in the roots. Phenolic acids, with the exception of syringic acid, were more concentrated in roots than in shoots. Significant correlation was found between the roots and the shoots in the contents of vanillic, cis-p-coumaric, syringic, trans-p-coumaric, and trans-ferulic acids, and in the content of each structural group of phenolic acids. Wheat accessions with high levels of total identified phenolic acids in the roots were generally strongly allelopathic to the growth of annual ryegrass.  相似文献   

16.
Durum wheat, Triticum durum Desf., is reportedly more sensitive to aluminum (Al) toxicity in acid soils than hexaploid wheat, Triticum aestivum L. em. Thell. Aluminum‐tolerant genotypes would permit more widespread use of this species where it is desired, but not grown, because of acid soil constraints. Durum wheat germplasm has not been adequately screened for acid soil (Al) tolerance. Fifteen lines of durum wheat were grown for 28 days in greenhouse pots of acid, Al‐toxic Tatum subsoil at pH 4.5, and non‐toxic soil at pH 6.0. Aluminum‐tolerant Atlas 66 and sensitive Scout 66 hexaploid wheats were also included as standards. Based on relative shoot and root dry weight (wt. at pH 4.5/wt. at pH 6.0 X 100), durum entries differed significantly in tolerance to the acid soil. Relative shoot dry weight alone was an acceptable indicator of acid soil tolerance. Relative dry weights ranged from 55.1 to 15.5% for shoots and from 107 to 15.8% for roots. Durum lines PI 195726 (Ethiopia) and PI 193922 (Brazil) were significantly more tolerant than all other entries, even the Al‐tolerant, hexaploid Atlas 66 standard. Hence, these two lines have potential for direct use on acid soils or as breeding materials for use in developing greater Al tolerance in durum wheat. Unexpectedly, the range of acid soil tolerance available in durum wheat appears comparable to that in the hexaploid species. Hence, additional screening of durum wheat germplasm for acid soil (Al) tolerance appears warranted. Durum lines showing least tolerance to the acid soil included PI 322716 (Mexico), PI 264991 (Greece), PI 478306 (Washington State, USA), and PI 345040 (Yugoslavia). The Al‐sensitive Scout 66 standard was as sensitive as the most sensitive durum lines. Concentrations of Al and phosphorus were significantly higher in shoots of acid soil sensitive than in those of tolerant lines, and these values exceeded those reported to cause Al and phosphorus (P) toxicities in wheat and barley.  相似文献   

17.
We have quantified ribose, rhamnose, arabinose, xylose, fucose, mannose, glucose, and galactose in soil by gas chromatography (GC) simultaneously after converting to aldononitrile acetate derivatives. A recommended single-hydrolytic step by 4 M trifluoroacetic acid (TFA) at 105 °C for 4 h was more effective for releasing soil neutral sugars from non-cellulosic carbohydrates and better suited to our purification procedure compared with the sulphuric acid hydrolysis. Linearity of the GC detection for each neutral sugar was in the range of 10-640 μg ml−1 and the recovery of neutral sugars from the spiked soil samples ranged from 76% to 109.7%. The coefficients of variation of the neutral sugars in four soils were lower than 2.0% for the instrument and 4.6-7.6% for the whole determination procedures. Compared with the trimethylsilyl (TMS) derivatization, the recovery of our newly modified method was more satisfactory and the reproducibility of ribose was improved significantly. Moreover, the aldononitrile acetate derivative was more stable than TMS derivative. Therefore, it is a promising approach suitable for a routine use in the quantitative analysis of soil neutral sugars, since it is fast, sensitive, and reproducible.  相似文献   

18.
Understanding rhizodeposited carbon (C) dynamics of winter wheat (Triticum aestivum L.) is important for improving soil fertility and increasing soil C stocks. However, the effects of nitrogen (N) fertilization on photosynthate C allocation to rhizodeposition of wheat grown in an intensively farmed alkaline soil remain elusive. In this study, pot‐grown winter wheat under N fertilization of 250 kg N ha?1 was pulse‐labeled with 13CO2 at tillering, elongation, anthesis, and grain‐filling stages. The 13C in shoots, roots, soil organic carbon (SOC), and rhizosphere‐respired CO2 was measured 28 d after each 13C labeling. The proportion of net‐photosynthesized 13C recovered (shoots + roots + soil + soil respired CO2) in the shoots increased from 58–64% at the tillering to 86–91% at the grain‐filling stage. Likewise, the proportion in the roots decreased from 21–28% to 2–3%, and that in the SOC pool increased from 1–2% to 6–7%. However, the 13C respired CO2 allocated to soil peaked (17–18%) at the elongation stage and decreased to 6–8% at the grain‐filling stage. Over the entire growth season of wheat, N fertilization decreased the proportion of net photosynthate C translocated to the below‐ground pool by about 20%, but increased the total amount of fixed photosynthate C, and therefore increased the below‐ground photosynthate C input. We found that the chase period of about 4 weeks is sufficient to accurately monitor the recovery of 13C after pulse labeling in a wheat–soil system. We conclude that N fertilization increased the deposition of photoassimilate C into SOC pools over the entire growth season of wheat compared to the control treatment.  相似文献   

19.

Purpose

Sorption and desorption of butachlor were simultaneously investigated on synthesized pure amorphous hydrated Fe oxides (AHOs Fe), and soils both with and without surface coating of AHOs Fe, with special interest towards how amorphous sesquioxides affect and contribute to butachlor retention in soils.

Materials and methods

The AHOs Fe was artificially synthesized pure materials. Two soils with contrasting physicochemical properties selected for study were black soil and latosol, belonging to permanent charged soil and variable charged soil, respectively. Both soils were further treated using AHOs Fe for detecting the differentiation from native soils regarding butachlor retention produced after the soils were surface-coated by AHOs Fe. A sorption experiment was conducted using a batch equilibrium technique, and desorption was carried out immediately following sorption by three sequential dilution. Hysteresis index (HI) values were calculated to investigate desorption hysteresis by developing desorption isotherms concentration dependent and time dependent, respectively.

Results and discussion

The sorption capacity for butachlor increased in the order of AHOs Fe, uncoated soils, and soils with surface coating of AHOs Fe. The sorption capacity of both soils significantly increased after surface coating by AHOs Fe (p?<?0.01), with a bigger increase achieved by black soil (52.0 %) as compared with that by latosol (45.3 %). Desorption of butachlor was coincidently hysteretic on AHOs Fe, and soils both uncoated and coated, whereas variation in desorption hysteresis was different between AHOs Fe and soils with increasing butachlor sorption loading, indicating different sorption mechanisms were operative for AHOs Fe and soils across the entire butachlor concentration range. Hysteresis of butachlor desorption was weakened after the soils were surface coated by AHOs Fe, as suggested by the changed HI values.

Conclusions

With high specific surface area and highly reactive surfaces, the “active” AHOs Fe originally has a relatively high sorption capacity and affinity for butachlor. While in natural soils, where the inevitable association derived from soil organic matter (SOM) would restrain AHOs Fe from sequestrating butachlor directly, AHOs Fe may likely contribute in a mediator way by coordinating active sites both on and within SOM. This may enhance the availability of sorption domains both on and within soils, thereby achieved an enhanced but more reversible retention for butachlor in soils after their surfaces were coated by AHOs Fe. This study has extended the observations of the role of noncrystalline sesquioxides in retention of pesticides such as butachlor from pure clay mineral systems to natural soils.  相似文献   

20.
采用室内盆栽实验,以小麦为供试植物,研究重金属镉(Cd)和吐纳麝香(AHTN)复合污染对小麦植株生物量的影响以及Cd对土壤中AHTN生物有效性的影响,并应用聚2,6-二苯基对苯醚(Tenax-TA)、固相微萃取纤维(SPME)和三油酸甘油酯-醋酸纤维素复合膜(TECAMs)对土壤中的AHTN进行提取,以评价Cd污染土壤中AHTN对小麦的生物有效性。结果表明:AHTN-Cd复合污染土壤中的小麦植株生物量低于单一AHTN污染土壤;当AHTN浓度为5 mg·kg-1时,共存重金属Cd抑制AHTN在小麦地上和地下部的累积,其抑制作用随Cd浓度的增大而增强,抑制率最高达39.1%,AHTN在小麦体内从地下到地上的迁移随着Cd浓度的增加受到抑制,且浓度越高抑制作用越强,抑制率可达到19.0%;当AHTN浓度为10 mg·kg-1时,共存重金属Cd则促进AHTN在植物体内的累积,其促进率高达38.4%,AHTN从地下到地上的迁移受到诱导,促进率高达68.5%;在AHTN和Cd单一及复合污染土壤中,Tenax 24 h、SPME 12 h和TECAMs 12 h单点提取AHTN的量与小麦根部AHTN富集量显著相关,表明Tenax 24 h、SPME 12 h以及TECAMs 12 h对土壤中AHTN的提取量可以用来评价其生物有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号