首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in land cover affect climate through the surface energy and moisture budgets. Here we assess the importance of these biogeophysical effects for present-day climate, and quantify the radiative forcing of historical climate change by land use change for comparison with radiative forcings due to anthropogenic changes in greenhouse gases and aerosols. We also discuss the implications of biogeophysical effects for the use of forestry as a tool for mitigating climate change through carbon sequestration. Our model results suggest that since most historical deforestation has taken place in temperate regions where the main climatic effect is an increase in surface albedo, the dominant biogeophysical effect of past land cover change has been a cooling. The northern mid-latitude agricultural regions are simulated to be approximately 1–2 K cooler in winter and spring in comparison with their previously forested state. This conflicts with the suggestion that land use change is responsible for the warming observed over the 20th century. The increase in albedo by 1750 is simulated to exert a negative radiative forcing of approximately −2 W m−2 locally over Europe, China and India, suggesting a potential anthropogenic influence on climate before fossil fuel burning began. The present-day global mean radiative forcing by anthropogenic surface albedo change relative to the natural state is simulated to be −0.2 W m−2, which is comparable with the estimated forcings relative to pre-industrial times by stratospheric and tropospheric ozone, N2O, the halocarbons, and the direct effect of anthropogenic aerosols. In cold regions, afforestation or reforestation would decrease the surface albedo and induce a positive radiative forcing (warming) which could partly or completely offset the negative forcing (cooling) due to carbon sequestration. This suggests that carbon sink plantations could be less effective than expected at reducing warming, and could even cause further warming. However, we note that reforestation (or avoided deforestation) in tropical regions could exert a double cooling effect through carbon sequestration and increased evaporation and cloud cover.  相似文献   

2.
《Soil biology & biochemistry》2001,33(4-5):503-509
The distribution of vegetation types in Venezuelan Guyana (in the ‘Canaima’ National Park) represents a transitional stage in a long term process of savannization, a process considered to be conditioned by a combined chemical and intermittent drought stress. All types of woody vegetation in this environment accumulate large amounts of litter and soil organic carbon (SOC). We hypothesized that this accumulation is caused by low microbial activity. During 1 year we measured microbial biomass carbon (Cmic), microbial respiration and soil respiration of stony Oxisols (Acrohumox) at a tall, a medium and a low forest and with three chemical modifications of site conditions by the addition of NO3, Ca2+ and PO43− as possible limiting elements. Due to high SOC contents, mean Cmic was 1 mg g soil−1 in the mineral topsoil and 3 mg g soil−1 in the forest floor. Mean microbial respiration in the mineral topsoil and the forest floor were 165 and 192 μg CO2-C g soil−1 d−1, respectively. We calculated high mean metabolic quotients (qCO2) of 200 mg CO2-C g Cmic−1 d−1 in the litter layer and 166 mg CO2-C g Cmic−1 d−1 in the mineral topsoil, while the Cmic-to-SOC ratios were as low as 1.0% in the litter layer and 0.8% in the mineral topsoil. Annual soil respiration was 9, 12 and 10 Mg CO2-C ha−1 yr−1 in the tall, medium and low forest, respectively. CO2 production was significantly increased by CaHPO4 fertilization, but no consistent effects were caused by Ca2+ and NO3, fertilization. Our findings indicate that Cmic and microbial respiration are reduced by low nutrient concentrations and low litter and SOC quality. Reduced microbial decomposition may have contributed to SOC accumulation in these forests.  相似文献   

3.
Underestimation of nocturnal CO2 respiration using the eddy covariance method under calm conditions remains an unsolved problem at many flux observation sites in forests. To evaluate nocturnal CO2 exchange in a Japanese cypress forest, we observed CO2 flux above the canopy (Fc), changes in CO2 storage in the canopy (St) and soil, and trunk and foliar respiration for 2 years (2003–2004). We scaled these chamber data to the soil, trunk, and foliar respiration per unit of ground area (Fs, Ft, Ff, respectively) and used the relationships of Fs, Ft, and Ff with air or soil temperature for comparison with canopy-scale CO2 exchange measurements (=Fc + St). The annual average Fs, Ft, and Ff were 714 g C m−2 year−1, 170 g C m−2 year−1, and 575 g C m−2 year−1, respectively. At small friction velocity (u*), nocturnal Fc + St was smaller than Fs + Ft + Ff estimated using the chamber method, whereas the two values were almost the same at large u*. We replaced Fc + St measured during calm nocturnal periods with a value simulated using a temperature response function derived during well-mixed nocturnal periods. With this correction, the estimated net ecosystem exchange (NEE) from Fc + St data ranged from −713 g C m−2 year−1 to −412 g C m−2 year−1 in 2003 and from −883 g C m−2 year−1 to −603 g C m−2 year−1 in 2004, depending on the u* threshold. When we replaced all nocturnal Fc + St data with Fs + Ft + Ff estimated using the chamber method, NEE was −506 g C m−2 year−1 and −682 g C m−2 year−1 for 2003 and 2004, respectively.  相似文献   

4.
The main aim of this study is to analyze the influence of 4-nonylphenol (NP) on soil water retention and biological activity. Two doses of 4-nonylphenol (25 and 50 mg kg−1) were tested in a loam soil with and without peat amendment. In general, one week after the start of the experiment, the soil water content retained at −0.75 MPa of soil suction was 18% higher in the soil amended and its basal respiration (BR) was 15% higher than soil without peat. In contrast, the microbial activity indices (CM: coefficient of mineralization or BR:total organic carbon (TOC) ratio; Cmic:Corg: microbial biomass carbon (MBC):TOC ratio; qCO2: metabolic quotient or BR:MBC ratio) were higher in the soil without peat, compared to the soil amended with peat. On the other hand, the addition of NP to soil was able to modify soil biological but not physical (water retention, desorption) properties. When soil was amended with peat, MBC was reduced one week after applying NP. In contrast, no effects of NP on MBC were observed in the soil without peat. BR was reduced by 16% one week after applying 50 mg kg−1 of NP to soil with peat, and was increased by 46% one week after applying 25 mg kg−1 of NP to soil without peat. The effects of NP on MBC and BR could be associated more with the adsorption of NP by soil organic matter, while changes in CM or Cmic:Corg ratio were more closely related to changes in soil water retention. The potential toxic effects of NP (high qCO2 values) were only observed in the absence of peat amendments. Peat addition reduced NP toxic effects on microorganisms.  相似文献   

5.
《Soil biology & biochemistry》2001,33(4-5):533-551
This study aimed to determine the factors which regulate soil microbial community organisation and function in temperate upland grassland ecosystems. Soil microbial biomass (Cmic), activity (respiration and potential carbon utilisation) and community structure (phospholipid fatty acid (PLFA) analysis, culturing and community level physiological profiles (CLPP) (Biolog®)) were measured across a gradient of three upland grassland types; Festuca–Agrostis–Galium grassland (unimproved grassland, National Vegetation Classification (NVC) — U4a); FestucaAgrostisGalium grassland, Holcus–Trifolium sub-community (semi-improved grassland, NVC — U4b); Lolium–Cynosurus grassland (improved grassland, NVC — MG6) at three sites in different biogeographic areas of the UK over a period of 1 year. Variation in Cmic was mainly due to grassland type and site (accounting for 55% variance, v, in the data). Cmic was significantly (P<0.001) high in the unimproved grassland at Torridon (237.4 g C m−2 cf. 81.2 g C m−2 in semi- and 63.8 g C m−2 in improved grasslands) and Sourhope (114.6 g C m−2 cf. in 44.8 g C m−2 semi- and 68.3 g C m−2 in improved grasslands) and semi-improved grassland at Abergwyngregyn (76.0 g C m−2 cf. 41.7 g C m−2 in un- and 58.3 g C m−2 in improved grasslands). Cmic showed little temporal variation (v=3.7%). Soil microbial activity, measured as basal respiration was also mainly affected by grassland type and site (n=32%). In contrast to Cmic, respiration was significantly (P<0.001) high in the improved grassland at Sourhope (263.4 l h−1m−2 cf. 79.6 l h−1m−2 in semi- and 203.9 l h−1m−2 unimproved grasslands) and Abergwyngregyn (198.8 l h−1m−2 cf. 173.7 l h−1m−2 in semi- and 88.2 l h−1m−2 unimproved grasslands). Microbial activity, measured as potential carbon utilisation, agreed with the respiration measurements and was significantly (P<0.001) high in the improved grassland at all three sites (A590 0.14 cf. 0.09 in semi- and 0.07 in unimproved grassland). However, date of sampling also had a significant (P<0.001) impact on C utilisation potential (v=24.7%) with samples from April 1997 having highest activity at all three sites. Variation in microbial community structure was due, predominantly, to grassland type (average v=23.6% for bacterial and fungal numbers and PLFA) and date of sampling (average v=39.7% for bacterial and fungal numbers and PLFA). Numbers of culturable bacteria and bacterial PLFA were significantly (P<0.001) high in the improved grassland at all three sites. Fungal populations were significantly (P<0.01) high in the unimproved grassland at Sourhope and Abergwyngregyn. The results demonstrate a shift in soil microbial community structure from one favouring fungi to one favouring bacteria as grassland improvement increased. Numbers of bacteria and fungi were also significantly (P<0.001) higher in August than any other sampling date. Canonical variate analysis (CVA) of the carbon utilisation data significantly (P<0.05) differentiated microbial communities from the three grassland types, mainly due to greater utilisation of sugars and citric acid in the improved grasslands compared to greater utilisation of carboxylic acids, phenolics and neutral amino acids in the unimproved grasslands, possibly reflecting substrate availability in these grasslands. Differences in Cmic, activity and community structure between grassland types were robust over time. In addition, broad scale measures of microbial growth and activity (Cmic and respiration) showed little temporal variation compared to measures of soil microbial community structure, which varied quantitatively with respect to environmental variables (temperature, moisture) and plant productivity, hence substrate supply.  相似文献   

6.
The purpose of this study was to investigate the effects of high cadmium and nickel soil concentrations on selected physiological parameters of Arundo donax L. A 2-year pot experiment was held in the field and the pots were irrigated with aqueous solutions of Cd and Ni in concentrations of 5, 50 and 100 ppm, against the control (tap water). At the end of the cultivation periods the pots soil was divided into three equal zones and total and NH4OAc extractable Cd and Ni concentrations were determined. The top zone exhibited the highest metal content. Cadmium and nickel total concentrations at the end of the experiment were up to 973.8 mg kg−1 and 2543.3 mg kg−1 respectively, while NH4OAc extractable Cd was up to 291.7 mg kg−1 and Ni up to 510.3 mg kg−1. Stomatal conductance ranged between 0.3 and 0.8 mol CO2 m−2 s−1, intercellular CO2 concentration ranged between 212.9 and 243.0 ppm CO2, stomatal resistance between 0.6 and 1.3 s cm−1, chlorophyll content (SPAD values) between 46.3 and 57.0 and chlorophyll fluorescence (Fv/Fm) ranged between 0.8 and 0.9. All studied physiological parameters did not show statistically significant differences among control and heavy metal treated plants for both years; therefore, high soil cadmium and nickel concentration did not inhibit stomatal opening and did not affect the function of the photosynthetic machine of A. donax plants.  相似文献   

7.
《Applied soil ecology》2005,28(3):247-257
Carbon dioxide emissions from soils beneath canopies of two Mediterranean plants, Artemisia absinthium L. and Festuca pratensis Huds. cv. Demeter, were monitored over a 7-day period that included an artificial precipitation event of 4 cm. The experiments were conducted using 0.2 m3 soil microcosms inside greenhouses with CO2 concentrations of either 360 or 500 μmol mol−1. Carbon dioxide flux from the soil surface, as calculated using a diffusive transport model agreed well with CO2 flux measurements made using a dynamic flow system. Soil CO2 emissions did not differ significantly between the 360 and 500 μmol mol−1 CO2 treatments when soils were dry (volumetric soil moisture content ≤9%). A simulated precipitation event caused an immediate exhalation of CO2 from soil, after which CO2 emissions declined slightly and remained constant for approximately 36 h. CO2 emissions from soil microcosms with F. pratensis plants growing in 500 μmol mol−1 CO2 then rose to levels that were significantly greater than CO2 emissions from soils in the microcosms exposed to 360 μmol mol−1 CO2. For A. absinthium growing in 500 μmol mol−1 CO2, the rise in soil CO2 emissions following the wetting event was not significantly greater than emissions from soils with A. absinthium growing under 360 μmol mol−1 CO2. A. absinthium above ground biomass increased by 46.1 ± 17.9% (mean ± S.E., n = 4, P ≤ 0.05). Above ground biomass did not significantly increase for F. pratensis (14.4 ± 6.5%, P ≥ 0.10). Root biomass, on the other hand, increased for both species; by 50.6 ± 17.9% (P ≤ 0.05) for A. absinthium and by 55.9 ± 12.7% (P ≤ 0.05) for F. pratensis. Our results demonstrate two events following precipitation onto dry soils, an immediate release of CO2 followed by a gradual increase from enhanced biological activity The gradual increase was greater for the herbaceous ruderal perennial F. pratensis under elevated CO2.  相似文献   

8.
An investigation of the detection of water stress in non-homogeneous crop canopies such as orchards using high-spatial resolution remote sensing thermal imagery is presented. An airborne campaign was conducted with the Airborne Hyperspectral Scanner (AHS) acquiring imagery in 38 spectral bands in the 0.43–12.5 μm spectral range at 2.5 m spatial resolution. The AHS sensor was flown at 7:30, 9:30 and 12:30 GMT in 25 July 2004 over an olive orchard with three different water-deficit irrigation treatments to study the spatial and diurnal variability of temperature as a function of water stress. A total of 10 AHS bands located within the thermal-infrared region were assessed for the retrieval of the land surface temperature using the split-window algorithm, separating pure crowns from shadows and sunlit soil pixels using the reflectance bands. Ground truth validation was conducted with infrared thermal sensors placed on top of the trees for continuous thermal data acquisition. Crown temperature (Tc), crown minus air temperature (Tc  Ta), and relative temperature difference to well-irrigated trees (Tc  TR, where TR is the mean temperature of the well-irrigated trees) were calculated from the ground sensors and from the AHS imagery at the crown spatial resolution. Correlation coefficients for Tc  TR between ground IRT sensors and airborne image-based AHS estimations were R2 = 0.50 (7:30 GMT), R2 = 0.45 (9:30 GMT) and R2 = 0.57 (12:30 GMT). Relationships between leaf water potential and crown Tc  Ta measured with the airborne sensor obtained determination coefficients of R2 = 0.62 (7:30 GMT), R2 = 0.35 (9:30 GMT) and R2 = 0.25 (12:30 GMT). Images of Tc  Ta and Tc  TR for the entire field were obtained at the three times during the day of the overflight, showing the spatial and temporal distribution of the thermal variability as a function of the water deficit irrigation schemes.  相似文献   

9.
《Soil biology & biochemistry》2001,33(7-8):1103-1111
Biologically active fractions of soil organic matter are important in understanding decomposition potential of organic materials, nutrient cycling dynamics, and biophysical manipulation of soil structure. We evaluated the quantitative relationships among potential C and net N mineralization, soil microbial biomass C (SMBC), and soil organic C (SOC) under four contrasting climatic conditions. Mean SOC values were 28±11 mg g−1 (n=24) in a frigid–dry region (Alberta/British Columbia), 25±5 mg g−1 (n=12) in a frigid–wet region (Maine), 11±4 mg g−1 (n=117) in a thermic–dry region (Texas), and 12±5 mg g−1 (n=131) in a thermic–wet region (Georgia). Higher mean annual temperature resulted in consistently greater basal soil respiration (1.7 vs 0.8 mg CO2–C g−1 SOC d−1 in the thermic compared with the frigid regions, P<0.001), greater net N mineralization (2.8 vs 1.3 mg inorganic N g−1 SOC 24 d−1, P<0.001), and greater SMBC (53 vs 21 mg SMBC g−1 SOC, P<0.001). Specific respiratory activity of SMBC was, however, consistently lower in the thermic than in the frigid regions (29 vs 34 mg CO2–C g−1 SMBC d−1, P<0.01). Higher mean annual precipitation resulted in consistently lower basal soil respiration (1.1 vs 1.3 mg CO2–C g−1 SOC d−1 in the wet compared with the dry regions, P<0.01) and lower SMBC (31 vs 43 mg SMBC g−1 SOC, P<0.001), but had inconsistent effects on net N mineralization that depended upon temperature regime. Specific respiratory activity of SMBC was consistently greater in the wet than the dry regions (≈33 vs 29 mg CO2–C g−1 SMBC d−1, P<0.01). Although the thermic regions were not able to retain as high a level of SOC as the frigid regions, due likely to high annual decomposition rates, biologically active soil fractions were as high per mass of soil and even 2–3-times greater per unit of SOC in the thermic compared with the frigid regions. These results suggest that macroclimate has a large impact on the portion of soil organic matter that is potentially active, but a relatively small impact on the specific respiratory activity of SMBC.  相似文献   

10.
It is reported a simple approach to transform daily values of grass net (all-wave) radiation (Rn, MJ m−2 day−1), as measured over standard grass surface at meteorological stations, into whole tree canopy net radiation (A, MJ tree−1 day−1). The revolving Whirligig device [McNaughton, K.G., Green, S.R., Black, T.A., Tynam, B.R., Edwards, W.R.N., 1992. Direct measurement of net radiation and photosynthetically active radiation absorbed by a single tree. Agric. For. Meteorol. 62, 87–107] describing a sphere about the tree measured A in five trees of different species (walnut, dwarf apple, normal apple, olives and citrus), with leaf area LA varying from 8.65 to 40 m2. For each tree, A and Rn were linearly related (A = bRn), as previously reported elsewhere, but it was found that the slope of such regression was also a linear function of LA or, b = 0.303 (±0.032) LA. Consequently, the hypothesis that total daily tree canopy net radiation per unit leaf area is linearly related to grass net radiation could not be rejected after 86 days of measurements in five locations, and the empirical relationship is A = 0.303 (±0.032) RnLA (R2 = 0.9306).  相似文献   

11.
Old-growth forests are often assumed to exhibit no net carbon assimilation over time periods of several years. This generalization has not been typically supported by the few whole-ecosystem, stand-scale eddy-covariance measurements of carbon dioxide exchange in old-growth forests. An eddy-flux tower installed in a >300-year-old hemlock–hardwood forest near the Sylvania Wilderness, Ottawa National Forest, MI, USA, observed a small annual carbon sink of CO2 of −72 ± 36 g C m−2 year−1 in 2002 and −147 ± 42 g C m−2 year−1 in 2003. This carbon sink was much smaller than carbon sinks of −438 ± 49 g C m−2 year−1 in 2002 and −490 ± 48 g C m−2 year−1 in 2003 observed by a nearby flux tower in a 70-year-old mature hardwood forest (Willow Creek, WI). The mature forest had vegetation similar to the old-growth site prior to European settlement. Both sites had slightly larger carbon sinks in 2003, which was a drier and cooler year than 2002. However, the difference in sink strength between the two years was smaller than the uncertainty in the results arising from missing and screened data. Both sites also had significant systematic errors due to non-representative fluxes during certain micrometeorological conditions, which required careful screening. The difference in sink strength between the two sites was driven mainly by greater ER at the old-growth site (965 ± 35 g C m−2 year−1 in 2002 and 883 ± 69 g C m−2 year−1 in 2003) compared to the mature site (668 ± 21 g C m−2 year−1 in 2002 and 703 ± 17 g C m−2 year−1 in 2003). GEP was lower at the old-growth site (1037 ± 47 g C m−2 year−1 in 2002 and 1030 ± 41 g C m−2 year−1 in 2003) compared to the mature site (1106 ± 47 g C m−2 year−1 in 2002 and 1192 ± 51 g C m−2 year−1 in 2003), especially in 2003. Observations also suggested that growing season ER had greater interannual variability at the old-growth site. These results imply that old-growth forests in the region may be carbon sinks, though these sinks are smaller than mature forests, mostly likely due to greater ER.  相似文献   

12.
《Applied soil ecology》2001,16(1):23-34
The succession of soil nematodes from initial planting with Pinus sylvestris seedling to about 30-year-old pine plantations on coal mining sands in the Lusatian lignite-mining district near Cottbus (Germany) was studied and compared with the nematode fauna of a 40-year-old semi-natural pine forest on naturally formed sandy soil. The initial stage was primarily characterised by a very low abundance (20×103 individuals/m2), which increased over a period of two years to values common in older pine plantations (500–600×103 individuals/m2). In the semi-natural forest the mean abundance of nematodes was about 1300×103 individuals/m2. Populations of Tardigrada, Rotifera and Enchytraeidae also increased with stand age. Nematode biomass increased from 49 to 543 mg m−2 in pine plantations and slightly decreased in the semi-natural forest to 301 mg m−2 over the period of investigation. The early colonisation of the initial stage was by bacterivorous (Acrobeloides) and fungal feeding (Aphelenchoides) nematodes, but the communities diversified as succession progressed with bacterivorous nematodes of the genera Plectus, Wilsonema and Metateratocephalus, root-fungal feeding Filenchus, omnivorous Aporcelaimellus and Eudorylaimus, and predacious Prionchulus becoming abundant. The abundance of plant-parasitic nematodes was very low. The greatest number of nematode genera was found in the semi-natural forest.  相似文献   

13.
The relationship between the two radiant fluxes is studied from almost a 3-year data archive of hourly photosynthetically active photon flux (QP) and global solar irradiance (RS) performed at Athalassa, Cyprus. These data are used to determine temporal variability of the ratio (QP/RS) and its dependence on sky conditions. The seasonal variation of the ratio obtained from daily data ranges from 1.942 E MJ−1 (summer) to 1.892 E MJ−1 (winter) with an annual mean value of 1.919 E MJ−1. The ratio increased from 1.865 to 2.01 E MJ−1 (daily values) or from 1.878 to 2.197 μE J−1 (hourly values), as sky conditions changed from clear to overcast. Effective atmospheric parameters such as sky clearness, brightness and path length were found to cause substantial changes to the PAR fraction.  相似文献   

14.
Sanjiang Plain is the largest concentrated area of freshwater wetlands in China, however nearly 80% of these freshwater wetlands were drained or reclaimed in the past 50 years. It is important to know whether wetlands reclamation would affect soil invertebrates, especially the winter-active invertebrates. During November 2011 to April 2012, we used pitfall traps and in-field direct observation methods to study the activity of collembolans in wetland, and a reclaimed forest plantation and soybean field. In total, 3465 collembolans were captured and identified to 8 species from 6 families. Desoria sp. 1, Desoria sp. 2 and Desoria sp. 3 were the three dominant species. Collembolan abundance and assemblages were significantly affected by the land use changes. The results showed that (1) Collembola captured by pitfall traps showed a highest abundance in wetland, with ∼50% decreased abundance in soybean field, and ∼75% decreased in the forest plantation. (2) Collembola activity changed during the winter season, their activity significantly increased from early winter to late winter; with a peak in March in all three land use types. (3) Collembola assemblages were affected by land use changes with a significant decrease of frequency of Desoria sp. 3 and a significant increase of frequency of Desoria sp. 2 in soybean field and forest plantation. (4) Collembolan densities on the snow surface usually peaked between 1400 h and 1500 h, and decreased quickly when the temperature dropped below freezing. Mean abundance reached 119 individuals m−2 on the snow surface in wetland, 152 individuals m−2 in soybean field, and 64 individuals m−2 in forest plantation. All collembolans moved up and down through the snow profile depending on temperature, no collembolans were found on the snow surface in the evening. Our study indicated that the reclamation of wetland resulted in a significant decrease of abundance and a different assemblage of winter active Collembola in Northeast China, but land use changes did not change their pattern of activity: Collembolans were rarely active in early and middle winter and mostly active in late winter. Their daily densities on the snow surface fluctuated according to both air temperatures and land use types.  相似文献   

15.
《Pedobiologia》2014,57(4-6):277-284
Assimilating atmospheric carbon (C) into terrestrial ecosystems is recognized as a primary measure to mitigate global warming. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) is the dominant enzyme by which terrestrial autotrophic bacteria and plants fix CO2. To investigate the possibility of using RubisCO activity as an indicator of microbial CO2 fixation potential, a valid and efficient method for extracting soil proteins is needed. We examined three methods commonly used for total soil protein extraction. A simple sonication method for extracting soil protein was more efficient than bead beating or freeze–thaw methods. Total soil protein, RubisCO activity, and microbial fixation of CO2 in different agricultural soils were quantified in an incubation experiment using 14C-CO2 as a tracer. The soil samples showed significant differences in protein content and RubisCO activity, defined as nmol CO2 fixed g−1 soil min−1. RubisCO activities ranged from 10.68 to 68.07 nmol CO2 kg−1 soil min−1, which were closely related to the abundance of cbbL genes (r = 0.900, P = 0.0140) and the rates of microbial CO2 assimilation (r = 0.949, P = 0.0038). This suggests that RubisCO activity can be used as an indicator of soil microbial assimilation of atmospheric CO2.  相似文献   

16.
《Soil & Tillage Research》2007,92(1-2):199-206
Long-term tillage and nitrogen (N) management practices can have a profound impact on soil properties and nutrient availability. A great deal of research evaluating tillage and N applications on soil chemical properties has been conducted with continuous corn (Zea Mays L.) throughout the Midwest, but not on continuous grain sorghum (Sorghum bicolor (L.) Moench). The objective of this experiment was to examine the long-term effects of tillage and nitrogen applications on soil physical and chemical properties at different depths after 23 years of continuous sorghum under no-till (NT) and conventional till (CT) (fall chisel-field cultivation prior to planting) systems. Ammonium nitrate (AN), urea, and a slow release form of urea were surface broadcast at rates of 34, 67, and 135 kg N ha−1. Soil samples were taken to a depth of 15 cm and separated into 2.5 cm increments. As a result of lime applied to the soil surface, soil pH in the NT and CT plots decreased with depth, ranging from 6.9 to 5.7 in the NT plots and from 6.5 to 5.9 in the CT plots. Bray-1 extractable P and NH4OAc extractable K was 20 and 49 mg kg−1 higher, respectively, in the surface 2.5 cm of NT compared to CT. Extractable Ca was not greatly influenced by tillage but extractable Mg was higher for CT compared to NT below 2.5 cm. Organic carbon (OC) under NT was significantly higher in the surface 7.5 cm of soil compared to CT. Averaged across N rates, NT had 2.7 Mg ha−1 more C than CT in the surface 7.5 cm of soil. Bulk density (Δb) of the CT was lower at 1.07 g cm−3 while Δb of NT plots was 1.13 g cm−3. This study demonstrated the effect tillage has on the distribution and concentration of certain chemical soil properties.  相似文献   

17.
A dual-beam surface layer scintillometer (SLS), for the estimation of sensible heat flux density H for a path length of 101 m, was used in a mixed grassland community in the eastern seaboard of South Africa for 30 months. Measurements also included Bowen ratio (BR) and eddy covariance (EC) estimates of H. Acceptable SLS data between 0600 h and 1800 h, judged by the percent of error-free 1 kHz data exceeding 25% and an inner scale of turbulence exceeding 2 mm, showed little seasonal variation and was consistently high—between 86.7% and 94.8%. An analysis of the various Monin–Obukhov similarity theory (MOST) empirical dimensionless stability functions used for estimating H from the SLS measurements showed percent differences in H that varied from ?30% to 28% for neutral to unstable conditions, respectively and for stable continuous conditions the differences in H were within 60 W m?2 with much larger differences for stable sporadic conditions. The good agreement in measurements of H over an extended period for the SLS, BR and EC methods demonstrates the applicability and robustness of the SLS method and the associated MOST empirical functions used for estimating H for a range of canopy heights, stability conditions and diurnal and seasonal weather conditions. Furthermore, there was no evidence for an underestimation in EC sensible heat compared to SLS and BR measurements, which implies that any lack of energy balance closure points to possible latent energy EC underestimation or due to energy fluxes not included in the shortened energy balance if the net irradiance and soil heat flux components are correct. A sensitivity analysis was used to determine the relative importance of the SLS data inputs of air temperature, atmospheric pressure, beam path length and beam height on H estimates. Worst-case errors in air temperature, atmospheric pressure, beam path length and beam height resulted in errors in H within 1.0%, 1.3%, 3.0% and 4.0%, respectively. Overall, the worst-case total percent error in SLS-estimated H is within 5.3% and the typical percent error is within 3.9%. Accounting for the error in net irradiance and soil heat flux measurements, the seasonal variation in the error in daily evaporation estimated as a residual of the energy balance is generally less than 0.2 mm (0.49 MJ m?2) in winter when the daily evaporation was about 1 mm (2.45 MJ m?2) and typically less than 0.4 mm (0.98 MJ m?2) when the evaporation exceeded 4 mm (9.8 MJ m?2). Soil heat flux density measurements can contribute significantly to the overall error.  相似文献   

18.
《Applied soil ecology》2001,16(3):243-249
Very little is known about the effect of overgrazing on carbon loss from soil in semi-arid savannas and woodlands of South America. Soil carbon parameters were measured in a 10,000 ha restoration project in the western Chaco of Argentina (24°43′S and 63°17′W). Three situations were compared: highly restored (HRS), moderately restored (MRS) and highly degraded (HDS). Soil and litter samples were recovered in the dry and wet seasons. SOC and CO2–C values decreased from the HRS (7.0 kg m−2 and 130 g m−2) to the HDS (1.5 kg m−2 and 46 g m−2) whereas the C mineralization rate increased toward the less restored sites (0.96–2.29). Surface-litter C was similar in both sites under restoration (260 and 229 g m−2), being non-existent at the HDS. Leaves from woody species dominated surface-litter in the HRS, whereas grass material was predominant in the MRS. During the wet season, the SOC decreased, whereas both CO2–C and C mineralization rate increased. The magnitude of the between-season differences was highest at the HDS (62% in SOC, 55% in CO2, and 80% in C mineralization rate). We estimated that C loss since introduction of cattle into the forest was 58 Mg ha−1, reaching a total of 2×1015 g at for the entire Chaco. These values are higher than those caused by the conversion of savannas and other ecosystems into agriculture or cultivated pastures. The amount of C fixed in the highly restored site (275 g ha−1 per year) indicates that the Chaco soils have a significant potential as atmospheric carbon sinks.  相似文献   

19.
《Soil & Tillage Research》2007,92(1-2):39-47
Manure is a source of plant nutrients and can make a valuable contribution to soil organic matter (SOM). Two experimental sites were studied on a Halpic Phaeozem soil near Bad Lauchstadt in Germany. The first experiment, called the static experiment, commenced in 1902. The impact of fresh farmyard manure (FYM) (0, 20 and 30 t ha−1 2 year−1) combined with P, K and N fertiliser application on total organic C (CT), labile C (CL), non-labile C (CNL), total N (NT), mean weight diameter (MWD) and unsaturated hydraulic conductivity (Kunsat) was investigated. The second experiment commenced in 1984 and investigated the effect of extreme rates of fresh FYM applications (0, 50, 100 and 200 t ha−1 year−1) and cropping, or a continuous tilled fallow on the same soil properties. At both sites a nearby grassland site served as a reference. On the static experiment, FYM application increased all C fractions, particularly CL, where application of 30 t ha−1 2 year−1 increased CL by 70% compared with no FYM application. Fertiliser additions to the static experiment had a positive influence on C fractions while NT increased from both FYM and fertiliser application. MWD increased as a result of FYM application, but did not reach that of the grassland site. Both fertiliser and FYM application increased Kunsat (10 mm tension) on the static experiment. In the second experiment application of 200 t ha−1 year−1 of FYM increased concentrations of CL by 173% and of CNL by 80%, compared with no FYM application to make them equivalent to, or greater than the grassland site. A continuously tilled fallow resulted in significant decreases in all C fractions, NT and MWD compared with the cropped site, while Kunsat (10 mm tension) was increased on the 0 and 50 t ha−1 year−1 treatments as a result of a recent tillage. There was no difference in Kunsat between the cropped and the continuous tilled fallow at FYM applications of 100 and 200 t ha−1 year−1. There were similar significant positive correlations of all C fractions and NT with MWD on both experimental sites but the relationships were much stronger on the extreme FYM experiment. Weaker relationships of C fractions and NT with Kunsat (10 mm tension) occurred for the static experimental site but these were not significant for the extreme FYM experimental site. The strongest relationship between C fractions and Kunsat was with CL. This research has shown that applications of FYM can increase SOM and improve soil physical fertility. However, the potential risk of very high rates of FYM on the environment need to be taken into consideration, especially since the application of organic materials to soils is likely to increase in the future.  相似文献   

20.
It is well known that earthworm populations tend to increase under no-tillage (NT) practices, but abundances tend to be highly variable. In the present study, data from the literature together with those on earthworm populations sampled in six watersheds in SW Paraná State, Brazil, were used to build a classification of the biological soil quality of NT systems based on earthworm density and species richness. Earthworms were collected in 34 farms with NT aging from 3 to 27 yr, in February 2010, using an adaptation of the TSBF (Tropical Soil Biology and Fertility) Program method (hand sorting of five 20 cm × 20 cm holes to 20 cm depth). Six forest sites were also sampled in order to compare abundances and species richness with the NT systems. Species richness in the 34 NT sites and in the 6 forests ranged from 1 to 6 species. Most earthworms encountered were exotics belonging to the genus Dichogaster (D. saliens, D. gracilis, D. bolaui and D. affinis) and native Ocnerodrilidae (mainly Belladrilus sp.), all of small individual size. In a few sites, individuals of the Glossoscolecidae (P. corethrurus, Glossoscolex sp., Fimoscolex sp.) and Megascolecidae (Amynthas gracilis) families were also encountered, in low densities. Urobenus brasiliensis (Glossoscolecidae) were found only in the forest fragments. In the NT farms, earthworm abundance ranged from 5 to 605 ind m−2 and in the forest sites, from 10 to 285 ind m−2. The ranking of the NT soil biological quality, based on earthworm abundance and species richness was: poor, with <25 individuals per m−2 and 1 sp.; moderate, with ≥25–100 individuals per m−2 and 2–3 sp.; good, with >100–200 individuals per m−2 and 4–5 sp.; excellent, with >200 individuals per m−2 and >6 sp. About 60% of the 34 farms fell into the poor to moderate categories based on this classification, so further improvements to the NT farm's management system are needed to enhance earthworm populations. Nevertheless, further validation of this ranking system is necessary to allow for its wider-spread use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号