首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 185 毫秒
1.
2.
Numerous isolates of Flavobacterium columnare were previously recovered from red tilapia, Oreochromis sp., exhibiting columnaris‐like disease in Thai farms, and the phenotypic and genetic characteristics were described. The objective of this study was to determine the virulence of two morphotypes (rhizoid and non‐rhizoid colonies) of F. columnare and to determine their ability to adhere to and persist in red tilapia fry. The results showed that the typical rhizoid isolate (CUVET1214) was a highly virulent isolate and caused 100% mortality within 24 h following bath challenge of red tilapia with three different doses. The non‐rhizoid isolate (CUVET1201) was avirulent to red tilapia fry. Both morphotypes adhered to and persisted in tilapia similarly at 0.5 and 6 h post‐challenge as determined by whole fish bacterial loads. At 24 and 48 h post‐challenge, fry challenged with the rhizoid morphotype exhibited significantly higher bacterial loads than the non‐rhizoid morphotype. The results suggested that an inability of the non‐rhizoid morphotype to persist in tilapia fry may explain lack of virulence.  相似文献   

3.
Flavobacterium columnare, the aetiological agent of columnaris disease, causes significant losses in fish worldwide. In this study, the prevalence of F. columnare infection was assessed in representative Great Lakes fish species. Over 2000 wild, feral and hatchery‐propagated salmonids, percids, centrarchids, esocids and cyprinids were examined for systemic F. columnare infections. Logistic regression analyses showed that the prevalence of F. columnare infection varied temporally and by the sex of the fish, whereby females had significantly higher prevalence of infection. A total of 305 isolates of F. columnare were recovered. Amplification of the near complete 16S rRNA gene from 34 representative isolates and subsequent restriction fragment length polymorphism analyses demonstrated that all belonged to F. columnare genomovar I. Phylogenetic analysis of near complete 16S rRNA gene sequences also placed the isolates in genomovar I, but revealed some intragenomovar heterogeneity. Together, these results suggest that F. columnare genomovar I is widespread in the Great Lakes Basin, where its presence may lead to mortality.  相似文献   

4.
Columnaris disease can be problematic in tilapia (Oreochromis spp.) production. An understanding of the pathogenesis and virulence of Flavobacterium columnare is needed to develop prevention strategies. The objective of this study was to determine the virulence of genetically defined isolates of F. columnare in sex‐reversed hybrid tilapia, Oreochromis niloticus (L.) × O. aureus (Steindachner). A series of immersion challenge trials were performed using isolates of the five established genomovars of F. columnare: I, II, II‐B, III and I/II. The mean per cent mortality of fish challenged with genomovar I, II and III isolates ranged from 0 to 100, 3.3–78 and 3.3–75%, respectively. The mean per cent mortality of fish challenged with genomovar II‐B ranged from 35 to 96.7%, and the only genomovar I/II isolate tested caused no mortality. Contrary to previous work in other fish species, there did not appear to be an association between F. columnare genomovar and virulence in tilapia. The challenge model used resulted in acute mortality. An alternative challenge model was tested by cohabitating healthy fish with dead fish infected with F. columnare. This method resulted in rapid appearance of clinical signs and mortality, suggesting the potential for F. columnare to increase in virulence upon growth on/in a fish host.  相似文献   

5.
Columnaris disease is responsible for substantial losses throughout the production of many freshwater fish species. One of the ways in which the bacterium Flavobacterium columnare is so effective in initiating disease is through the formation of biofilms on fish skin and gills. To further explore the interaction between host factors and bacterial cells, we assayed the ability of vertebrate mucus to enhance F. columnare biofilm development. Different concentrations of catfish, tilapia and pig mucus (5–60 µg/ml) increased biofilm growth at varying degrees among F. columnare isolates. Our data suggest that vertebrate mucus acts as a signalling molecule for the development of F. columnare biofilms; however, there are clear disparities in how individual isolates respond to different mucus fractions to stimulate biofilms. The expression of iron acquisition genes among two genomovar II isolates showed that ferroxidase, TonB receptor and the siderophore synthetase gene were all significantly upregulated among F. columnare biofilms. Interestingly, the siderophore acetyltransferase gene was only shown to be significantly upregulated in one of the genomovar II isolates. This work provides insight into our understanding of the interaction between F. columnare and vertebrate mucus, which likely contributes to the growth of planktonic cells and the transition into biofilms.  相似文献   

6.
The genus Edwardsiella is one of the major causes of fish diseases globally. Herein, we examined 37 isolates from ten different fish species from India, South Korea and Taiwan to gain insight into their phenotypic and genotypic properties, of which 30 were characterized as E. tarda with phenotypic homology estimated at 85.71% based on API‐20E biochemical tests. Genotyping using 16S rRNA put all isolates together with E. anguillarum, E. hoshinae, E. tarda, E. piscicida and E. ictaluri reference strains in a monophyletic group. In contrast, the gyrB phylogenetic tree clearly separated E. ictaluri, E. tarda and E. hoshinae reference strains from our isolates and put our isolates into two groups with group I being homologous with the E. anguillarum reference strain while group II was homologous with the E. piscicida reference strain. Hence, our findings point to E. piscicida and E. anguillarum as species infecting different fish species in Asia. Homology of the ompW protein suggested that strains with broad protective coverage could be identified as vaccine candidates. This study underscores the importance of combining genotyping with phenotyping for valid species classification. In addition, it accentuates the importance of phylogenetic comparison of bacterial antigens for identification of potential vaccine candidates.  相似文献   

7.
Francisella noatunensis subsp. orientalis is a causative agent of systemic granulomatous disease in tilapia. The present study was designed to understand the genetic and phenotypic diversities among Taiwanese Fno isolates obtained from tilapia (n = 17) and green Texas cichlid (Herichthys cyanoguttatus) (n = 1). The enzymatic profiles of the isolates were studied using the API ZYM system. Phylogenetic tree analysis of the 16S rRNA and housekeeping gene and pulsed‐field gel electrophoresis (PFGE) were carried out to determine the genotypic characters of all isolates. The phylogenetic tree showed similarity of 99%–100% nucleotide sequences of 16S rRNA and housekeeping genes compared to the Fno references genes from GenBank database. Comparatively, the results revealed an identical profile of enzymatic and PFGE pattern which was distincted from that of F. philomiragia. To understand the pathogenicity, the isolates were intraperitoneal injected to tilapia the gross lesions were observed concomitant with natural outbreak. Median lethal dose upon Nile tilapia and red tilapia were 9.06 × 103 CFU/fish and 2.08 × 102 CFU/fish, respectively. Thus, our data provide understanding the epidemiology of Taiwanese Fno isolates, and help in development of future control and prevention.  相似文献   

8.
Flavobacterium columnare, the causative agent of columnaris disease, causes substantial mortality worldwide in numerous freshwater finfish species. Due to its global significance and impact on the aquaculture industry continual efforts to better understand basic mechanisms that contribute to disease are urgently needed. The current work sought to evaluate the effect of L‐rhamnose on the growth characteristics of F. columnare. While we initially did not observe any key changes during the total growth of F. columnare isolates tested when treated with L‐rhamnose, it soon became apparent that the difference lies in the ability of this carbohydrate to facilitate the formation of biofilms. The addition of different concentrations of L‐rhamnose consistently promoted the development of biofilms among different F. columnare isolates; however, it does not appear to be sufficient as a sole carbon source for biofilm growth. Our data also suggest that iron acquisition machinery is required for biofilm development. Finally, the addition of different concentrations of L‐rhamnose to F. columnare prior to a laboratory challenge increased mortality rates in channel catfish (Ictalurus punctatus) as compared to controls. These results provide further evidence that biofilm formation is an integral virulence factor in the initiation of disease in fish.  相似文献   

9.
Flavobacterium columnare is a bacterial pathogen for many freshwater fish species. It is responsible for outbreaks in fish farms worldwide, causing high mortality rates. Fish vaccination is a potential approach for prevention and control of disease, with oral vaccines suitable for fish because of their easier application, low cost and minimum stress to fish. Alginate microparticles have been widely used as controlled release systems, including for fish vaccination. The aim of this study was to evaluate the capacity of oral and parenteral vaccines against F. columnare to induce a humoral response, as well as the in vivo efficiency in Nile tilapia fingerlings. The fingerlings were immunized with bacterin by intraperitoneal (i.p.), intramuscular (i.m.), oral and immersion routes, as well as orally with alginate microparticles containing formalin-killed bacteria. A sandwich ELISA was developed to detect specific antibodies against F. columnare. The animals were challenged with pathogenic strain BZ-1 to determine the relative percentage of survival. A significant humoral response was induced by bacterin administered by i.p. and i.m. routes (P < 0.05). However, none of the vaccine preparations were effective in protecting fish against F. columnare infection (P < 0.05). In spite of high antibody levels, there was no relation between immunoglobulin titers and resistance to columnaris for Nile tilapia fingerlings. These data suggest that use of serological analysis as the only method to determine vaccine efficiency against F. columnare infection in Nile tilapia can lead to imprecise results for the usefulness of these products in vivo.  相似文献   

10.
Flavobacterium columnare is the causative agent of columnaris disease in diverse fish species worldwide. Although columnaris is an important disease, the antimicrobial susceptibility pattern of F. columnare is not well studied. Thus, the purpose of this study was to test the in vitro antimicrobial susceptibility of 97 F. columnare isolates collected worldwide between 1987 and 2011 from 17 fish species. The broth microdilution technique was utilized for reliable testing of these fastidious organisms. None of the isolates displayed acquired resistance to florfenicol, gentamicin, ormetoprim‐sulfadimethoxine and trimethoprim‐sulfamethoxazole. Acquired resistance to chloramphenicol was detected in 1%, to nitrofuran in 5%, to oxytetracycline in 11% and to enrofloxacin, flumequine and oxolinic acid in 10%, 16% and 16% of the isolates, respectively, as reflected by a bimodal or trimodal distribution of their minimum inhibitory concentrations (MICs). One isolate showed acquired resistance towards several antimicrobial agents including erythromycin. Another isolate revealed acquired resistance towards – amongst others – ampicillin. The isolates displaying acquired resistance originated from ornamental fish species or Vietnamese catfish, except for two isolates coming from wild channel catfish in which acquired resistance was encountered towards oxytetracycline only. Fifty per cent of the resistant isolates from ornamental fish were shown to have acquired resistance against three classes of antimicrobial agents, assigning these isolates as multiple resistant. These data might indicate less prudent use of antimicrobials especially in ornamental fish species.  相似文献   

11.
12.
This study examined the antimicrobial susceptibility and mutation(s) in quinolone resistance‐determining regions (QRDRs) in streptococcal pathogens isolated from farmed Nile tilapia Oreochromis niloticus in Thailand. Surveillance of antimicrobial susceptibility in tilapia streptococcal pathogens reveals that Streptococcus agalactiae (= 97) and Streptococcus iniae (= 3) from diseased tilapia were susceptible to amoxicillin, florfenicol, sulfamethoxazole/trimethoprim and sulfadimethoxine/ormetoprim, however, only 78 isolates were susceptible to enrofloxacin. Twenty‐two enrofloxacin‐resistant S. agalactiae isolates were further examined for mutations in the QRDRs of gyrA, gyrB, parC and parE genes. Twenty isolates had single base pair changed in the gyrA sequence, C‐242‐T. Point mutations in gyrB, GC‐1135, 1136‐AA and T‐1466‐G, were identified in one isolate. All resistant isolates harboured a mutation in the parC gene, C‐236‐A, while no mutations were observed in the parE gene. The study represented mutations of gyrA and parC genes as marked modification of the enrofloxacin‐resistant S. agalactiae from farmed tilapia. This study is a primary report of the QRDRs mutations associated with fluoroquinolone resistance from streptococcal pathogen in the cultured fish. The phenotypic and genotypic characterization of enrofloxacin resistance S. agalactiae evident in this study has led to an improved regulation of antimicrobial use in Thai aquaculture.  相似文献   

13.
Chinese chive Allium tuberosum oil was studied for its diallyl sulfide content and its antimicrobial activity against Flavobacterium columnare in fish both in vitro and. The oil was found to have a very low concentration of diallyl monosulfide relative to the other diallyl sulfides (diallyl disulfide, diallyl trisulfide, and diallyl tetrasulfide) identified. In the in vitro study, the Chinese chive oil had a bacteriocidal effect on all tested strains of F. columnare, with varied minimal inhibitory concentrations. The median lethal dose (LD50) of FC4 for Nile tilapia Oreochromis niloticus was determined to be 3.72 × 103 CFU/fish. In the in vivo trial, no mortality was observed in fish fed fish diets supplemented with 800 mg/kg Chinese chive oil and 100 mg/kg of oxytetracycline hydrochloride 5 days prior to infection with F. columnare strain 4 at a LD50. These results indicate that Chinese chive oil has the potential to replace antibiotics for controlling fish disease caused by F. columnare.  相似文献   

14.
Streptococcus spp. are major pathogenic bacteria associated with massive mortality in tilapia. This study investigated the phenotypic and genotypic characterization of Streptococcus agalactiae (GBS) and Streptococcus iniae (S. iniae) isolated from tilapia in river-based floating cage and earthen pond farms in northern Thailand. Isolates were identified by biochemical and molecular analyses. Capsular typing, enterobacterial repetitive intergenic consensus polymerase chain reaction and multilocus sequence typing were performed to investigate the genetic relatedness. Six and one isolates were confirmed as GBS and S. iniae, respectively. All Streptococcus spp. isolates were obtained from 4 river-based cage farms (4/33), while samples collected from earthen pond farms (N = 28) were negative for streptococcosis. All GBS with serotype Ⅲ and sequence type (ST) 283 was observed. The β-haemolytic GBS isolates were resistant to five antimicrobials, while the S. iniae was susceptible to all antimicrobials. This study indicates both GBS and S. iniae are the major bacterial pathogens responsible for streptococcosis infection in farmed tilapia of northern Thailand with GBS as dominant species. This survey highlights that the river-based cage farms seriously impact on the healthy development of the tilapia industry.  相似文献   

15.
Recent research has identified four distinct genetic groups among isolates of Flavobacterium columnare through multilocus phylogenetic analyses; however, there are no quick methods to determine the genotype of an isolate. The objective of this research was to develop a multiplex PCR to rapidly genotype F. columnare to genetic group. Comparative bacterial genomics was used to identify regions in the genomes unique to each genetic group, and primers were designed to specifically amplify different sized amplicons for each genetic group. The optimized assay was demonstrated to be specific for each genetic group and F. columnare, and no specific amplicons were generated using gDNA from a panel of other Flavobacterium spp. and bacterial fish pathogens. The analytical sensitivity of the assay ranged from 209 to 883 genome equivalents depending on the genetic group. The multiplex PCR was evaluated by genotyping a panel of 22 unknown F. columnare isolates and performing DNA sequencing of the dnaK gene in parallel. The results demonstrated 100% accordance between multiplex PCR results and assignment to genetic group via phylogenetic analysis. The multiplex PCR provides a useful tool for assigning an unknown isolate to genetic group and may be used to determine which genetic groups of F. columnare are circulating and most predominant in different aquaculture industries.  相似文献   

16.
Different Shewanella species are isolated both from healthy and from diseased fish. To date, contemporary methods do not provide sufficient insight to determine species and detail differentiation between tested strains. Bacteria isolated from cultured (n = 33), wild (n = 12) and ornamental (n = 6) fish, as well as several reference strains, were tested by 16S rRNA gene sequencing, ERIC‐PCR and pulsed‐field gel electrophoresis (PFGE) assays. Our study indicates that isolates collected from freshwater fish were genetically diverse. Based on 16S rRNA gene sequences, bacteria were clustered into groups S. putrefaciens, S. xiamenensis and S. oneidensis. Some isolates were classified only to genus Shewanella; thus, 16S rRNA gene analyses were not enough to determine the species. ERIC‐PCR revealed 49 different genotype profiles indicating that the method might be useful for differentiation of Shewanella isolates irrespectively to species identification, contrary to PFGE which is not suitable for Shewanella typing.  相似文献   

17.
Streptococcus agalactiae is an important pathogen in fish, causing great losses of intensive tilapia farming. To develop a potential live attenuated vaccine, a re‐attenuated S. agalactiae (named TFJ‐ery) was developed from a natural low‐virulence S. agalactiae strain TFJ0901 through selection of resistance to erythromycin. The biological characteristics, virulence, stability and the immunization protective efficacy to tilapia of TFJ‐ery were determined. The results indicated that TFJ‐ery grew at a slower rate than TFJ0901. The capsule thickness of TFJ‐ery was significantly less (p < 0.05) than TFJ0901. When Nile tilapia were intraperitoneally (IP) injected with TFJ‐ery, the mortality of fish was decreased than that injected with TFJ0901. The RPS of fish immunized with TFJ‐ery at a dose of 5.0 × 107 CFU was 95.00%, 93.02% and 100.00% at 4, 8 and 16 weeks post‐vaccination, respectively. ELISA results showed that the vaccinated fish produced significantly higher (p < 0.05) antibody titres compared to those of control at 2 or 4 weeks post‐vaccination. Taken together, our results suggest that erythromycin could be used to attenuate S. agalactiae, and TFJ‐ery is a potent attenuated vaccine candidate to protect tilapia against S. agalactiae infections.  相似文献   

18.
Streptococcosis causes economic losses due to mass mortality at all culturing stages in Nile tilapia, Oreochromis niloticus, and red tilapia, Oreochromis sp., farming throughout Thailand. Diseased tilapia collected from outbreak areas during 2003–2012 were examined using histopathological, biochemical, and molecular tools. Infected fish showed clinical signs of septicemia, and bacteria were found in visceral organs. All gram‐positive cocci isolates were negative to catalase and oxidase, and exhibited β‐hemolysis; however, they possessed various biochemical profiles. PCR amplification of the 16S rRNA gene was used for 165 samples, and resulted in identification of 143 (86.67%) with Streptococcus agalactiae and 14 (8.48%) with Streptococcus iniae, and 8 (4.85%) with mixed infection. High similarity (≥98%) of 16S rRNA gene sequences to the reference strain S. agalactiae (accession no. EF092913) and S. iniae ATCC29178 type strain was observed in the typing of S. agalactiae and S. iniae from Thai farmed tilapia. This investigation documented that at least two species of streptococcal bacteria, S. agalactiae and S. iniae, were involved in tilapia streptococcal infection in Thailand. The molecular recognition of the etiologic agents showed that S. agalactiae was the dominant species that cause disease in all culture areas, whereas S. iniae were discovered only in cases from the northeastern and central regions.  相似文献   

19.
Columnaris disease, caused by the bacterium Flavobacterium columnare, is currently the most frequently reported bacterial disease affecting farm‐raised channel catfish in the USA. Common treatments against the disease include the use of medicated feed that has led to emergent antibiotic resistant strains of F. columnare. Nigella sativa (Black cumin) is a medicinal herb commonly used by many cultures as a natural remedy for numerous disorders. Recently, we have discovered the antibacterial activity of N. sativa and its oil extract against F. columnare. In this study, we showed N. sativa oil (NSO) strongly inhibited the growth of all of the strains of F. columnare tested and yielded significantly larger zones of inhibition than those produced by oxytetracyclin. We tested the protective effect against columnaris disease in vivo by incorporating NSO (5%) or N. sativa seeds (NSS) (5%) into fish feeds. Fishes (Ictalurus punctatus and Danio rerio) fed amended diets displayed significantly lower mortality than those fed control diets. Per cent mortalities in control groups ranged from 77% to 44% and from 70% to 18% in zebrafish and channel catfish, respectively. A dose study using different NSS concentrations showed that 5% NSS offered the most protection against columnaris disease in channel catfish.  相似文献   

20.
The gliding aquatic bacterium Flavobacterium columnare causes columnaris disease, a common problem for wild and farmed freshwater fish worldwide. Recently, a broth microdilution method was standardized to test the susceptibility of F. columnare against antimicrobials commonly used in aquaculture. We used this new method to measure the minimal inhibitory concentrations (MICs) of ten antimicrobials against 120 F. columnare isolates. The resulting MIC frequency distributions for each antimicrobial (1 MIC/isolate) were used to estimate epidemiological cut‐off values (ECVs) which separate isolates with typical wild‐type (WT) susceptibility from isolates with decreased non‐wild‐type (NWT) susceptibility. We identified 22 NWT isolates with elevated MICs relative to the ECV that covered 99.9% of the MIC distribution against one or more of the antimicrobials: ampicillin, enrofloxacin, erythromycin, florfenicol, flumequine, oxolinic acid or oxytetracycline. Ten of the NWT isolates had decreased susceptibility to a single antimicrobial class, six isolates to two antimicrobial classes and six isolates to three or more antimicrobial classes. The MIC frequency distributions and provisional cut‐off values provide data needed to set epidemiological cut‐off values to monitor for the development of antimicrobial resistance among F. columnare.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号