首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
‘Gold standard’ OIE reference PCR assay was utilized to detect the presence of infectious spleen and kidney necrosis virus (ISKNV) in freshwater ornamental fish from Malaysia. From total of 210 ornamental fish samples representing 14 species, ISKNV was detected in 36 samples representing 5 fish species. All positive cases did not show any clinical signs of ISKNV. Three restriction enzymes analyses showed that the fish were infected by identical strains of the same virus species within Megalocytivirus genus. Major capsid protein (MCP) genes of 10 ISKNV strains were sequenced and compared with 9 other reference nucleotide sequences acquired from GenBank. Sequence analysis of MCP gene showed that all strains detected in this study were closely related to the reference ISKNV with nucleotide sequence identity that was ranging from 99.8% to 100%. In addition, phylogenetic analysis of MCP gene revealed that viruses from genus Megalocytivirus can be divided into three genotypes: genotype 1 include reference ISKNV and all other strains that were detected in this study, genotype 2 include viruses closely related to red sea bream iridovirus (RSIV), and genotype 3 include viruses closely related turbot reddish body iridovirus (TRBIV).  相似文献   

2.
Since 2012, low‐to‐moderate mortality associated with an Erysipelothrix sp. bacterium has been reported in ornamental fish. Histological findings have included facial cellulitis, necrotizing dermatitis and myositis, and disseminated coelomitis with abundant intralesional Gram‐positive bacterial colonies. Sixteen Erysipelothrix sp. isolates identified phenotypically as E. rhusiopathiae were recovered from diseased cyprinid and characid fish. Similar clinical and histological changes were also observed in zebrafish, Danio rerio, challenged by intracoelomic injection. The Erysipelothrix sp. isolates from ornamental fish were compared phenotypically and genetically to E. rhusiopathiae and E. tonsillarum isolates recovered from aquatic and terrestrial animals from multiple facilities. Results demonstrated that isolates from diseased fish were largely clonal and divergent from E. rhusiopathiae and E. tonsillarum isolates from normal fish skin, marine mammals and terrestrial animals. All ornamental fish isolates were PCR positive for spaC, with marked genetic divergence (<92% similarity at gyrB, <60% similarity by rep‐PCR) between the ornamental fish isolates and other Erysipelothrix spp. isolates. This study supports previous work citing the genetic variability of Erysipelothrix spp. spa types and suggests isolates from diseased ornamental fish may represent a genetically distinct species.  相似文献   

3.
An outbreak of a Megalocytivirus infection was found in the golden mandarin fish Siniperca scherzeri during September and October 2016, in Korea. Phylogeny and genetic diversity based on the major capsid protein (MCP) and adenosine triphosphatase (ATPase) genes showed a new strain. Designated as GMIV, this strain derived from the golden mandarin fish was suggested to belong to the red sea bream iridovirus (RSIV)‐subgroup I. Additionally, this train clustered with the ehime‐1 strain from red sea bream Pagrus major in Japan and was distinguished from circulating isolates (RSIV‐type subgroup II and turbot reddish body iridovirus [TRBIV] type) in Korea. The infection level, evaluated by qPCR, ranged from 8.18 × 102 to 7.95 × 106 copies/mg of tissue individually, suggesting that the infected fish were in the disease‐transmitting stage. The diseased fish showed degenerative changes associated with cytomegaly in the spleen as general sign of Megalocytivirus infection. The results confirm that the RSIV‐type Megalocytivirus might have crossed the environmental and species barriers to cause widespread infection in freshwater fish.  相似文献   

4.
The genus Megalocytivirus is known to infect a wide range of cultured marine fish. In this study, we examined the pathogenicity of FLIV (Megalocytivirus from olive flounder, genotype III) and RBIV (Megalocytivirus from rock bream, genotype I) to their homologous and heterologous host species. Olive flounder (7.5 ± 1.3 cm) injected with FLIV [major capsid protein (MCP) gene copies, 6.8 × 103–6.5 × 106/fish] at 24 °C did not die until 90 days post‐infection (dpi). The average virus replication in the spleen peaked (1.27 × 106/fish) at 20 dpi. Rock bream (6.5 ± 1.5 cm) injected with FLIV (8.8 × 105 and 6.5 × 106/fish of MCP copies) showed no mortality until 50 dpi. The rock bream that survived after FLIV infection were rechallenged with RBIV at 50 dpi had 100% mortality, showing that there is no cross‐protection between FLIV and RBIV. Temperature shifting (26 °C and 20 °C at 12 h intervals) did not cause FLIV‐specific mortality into olive flounder, but higher virus copies were observed in the fish exposed to higher stocking density. This study demonstrates that FLIV and RBIV have different antigenic and pathogenic characteristics and that FLIV has low pathogenicity to olive flounder.  相似文献   

5.
Megalocytiviruses have been associated globally with severe systemic disease and economic loss in farmed food fish and ornamental fish. The viruses have been spread internationally by translocation of live fish. In New Zealand, megalocytiviruses are regarded as exotic. A potential pathway for introduction has been identified, namely imported ornamental fish. In the present study, real‐time PCR assays were developed for detection of megalocytiviruses using a conserved major capsid protein gene. A SYBR green assay was developed to target all known megalocytiviruses. A second real‐time PCR assay using a molecular beacon was developed to specifically target gourami, Trichogaster trichopterus, iridovirus, a species of iridovirus previously linked to ornamental fish imports in Australia. The analytical sensitivity for the SYBR green and molecular beacon assays were 10 and 100 fg, respectively. The analytical specificity of the real‐time PCR assays determined using genomic DNA templates from three target viruses, 12 non‐target viruses and 25 aquatic bacterial species were 100%. The intra‐run and inter‐run coefficients of variation of both assays were <5%. The real‐time PCR assays developed in this study provide rapid, sensitive, and specific detection of megalocytiviruses and gourami iridovirus.  相似文献   

6.
Members of the Iridoviridae family have been considered as aetiological agents of iridovirus diseases, causing fish mortalities and economic losses all over the world. Virus identification based on candidate gene sequencing is faster, more accurate and more reliable than other traditional phenotype methodologies. Iridoviridae viruses are covered by a protein shell (capsid) encoded by the important candidate gene, major capsid protein (MCP). In this study, we investigated the potential of the MCP gene for use in the diagnosis and identification of infections caused Megalocytivirus of the Iridoviridae family. We selected data of 66 Iridoviridae family isolates (53 strains of Megalocytivirus, eight strains of iridoviruses and five strains of Ranavirus) infecting various species of fish distributed all over the world. A total of 53 strains of Megalocytivirus were used for designing the complete primer sets for identifying the most hypervariable region of the MCP gene. Further, our in silico analysis of 102 sequences of related and unrelated viruses reconfirms that primer sets could identify strains more specifically and offers a useful and fast alternative for routine clinical laboratory testing. Our findings suggest that phenotype observation along with diagnosis using universal primer sets can help detect infection or carriers at an early stage.  相似文献   

7.
Infectious spleen and kidney necrosis virus (ISKNV), family Iridoviridae, genus Megalocytivirus, may cause high mortality rates such as those seen in mandarin fish, Siniperca chuatsi. ISKNV has attracted much attention due to the possible environmental threat and economic losses it poses on both cultured and wild populations. We have investigated the pathogenicity of ISKNV‐like agent Megalocytivirus, isolated from infected pearl gourami, in golden mandarin fish, Siniperca scherzeri – a member of the Percichthyidae family – and in another Percichthyidae species, S. chuatsi. Fish were challenged with four different doses of ISKNV‐like agent Megalocytivirus (1, 10, 100 or 1000 μg per fish) over a 30‐day period, and cumulative fish mortalities were calculated for each group. No significant mortality was observed for fish challenged with the lowest dose (1 μg per fish) relative to a control group. However, all other challenged groups showed 100% mortality over a 30‐day period in proportion to the challenge dose. Quantitative real‐time PCR was performed to measure mRNA expression levels for six immune‐related genes in golden mandarin fish following ISKNV‐like agent challenge. mRNA expression levels for IRF1, Mx, viperin and interleukin 8 significantly increased, while mRNA levels for IRF2 and IRF7 remained constant or declined during the challenge period.  相似文献   

8.
为建立大黄鱼肿大细胞病毒的培养方法,明确其分类地位,用肿大细胞病毒检测呈阳性的大黄鱼幼鱼病料 (FD201807和SA201808)肾组织匀浆液感染鳜仔鱼细胞系 (mandarin fish fry cell line-1,MFF-1)并连续传代,从病料组织匀浆液和细胞冻融液中提取病毒DNA,克隆病毒主要衣壳蛋白基因 (mcp),测序后与NCBI GenBank中的虹彩病毒科肿大细胞病毒属病毒mcp以及2018—2020年所检出的15株大黄鱼肿大细胞病毒mcp进行比对分析。结果显示,病毒传至第4代才可引起MFF-1细胞病变,细胞病变的主要特征为细胞脱壁、变圆、折光度增强;感染时间越长脱壁细胞越多,同时培养液中的颗粒增加;透射电镜下可见感染细胞的细胞质散在大小为130~150 nm的六边形病毒粒子和空壳。感染细胞的病变周期随传代代次的增加而缩短,第15代次的FD201807株感染细胞80%细胞病变的时间为3 d,第15代次的SA201808株感染细胞80%细胞病变的时间为7~8 d。mcp序列比对和聚类分析发现,SA201808株与FD201807株的mcp序列存在21个碱基差异,二者的mcp序列分别与大黄鱼虹彩病毒(large yellow croaker iridovirus, LYCIV) LYCIV-Zhoushan (GenBank: MW139932.1)和花鲈虹彩病毒 (Lateolabrax maculatus iridovirus, LMIV) (GenBank: MH577517.1)相近。15株从大黄鱼病料检出的肿大细胞病毒中,12株的mcp序列与SA201808株聚类;3株与FD201807聚类。本研究利用MFF-1细胞系分离培养了大黄鱼肿大细胞病毒,揭示了大黄鱼肿大细胞病毒存在差异,为更好地了解大黄鱼肿大细胞病毒提供了数据参考。  相似文献   

9.
Grouper Epinephelus spp. is one of the most important mariculture fish species in China and South-East Asian countries. The emerging viral diseases, evoked by iridovirus which belongs to genus Megalocytivirus and Ranavirus, have been well characterized in recent years. To date, few data on lymphocystis disease in grouper which caused by lymphocystis disease virus (LCDV) were described. Here, a novel LCDV isolate was identified and characterized. Based on the sequence of LCDV major capsid protein (MCP) and DNA polymerase gene, we found that the causative agents from different species of diseased groupers were the same one and herein were uniformly defined as grouper LCDV (GLCDV). Furthermore, H&E staining revealed that the nodules on the skin were composed of giant cells that contained inclusion bodies in the cytoplasm. Numerous virus particles with >210 nm in diameter and with hexagonal profiles were observed in the cytoplasm. In addition, phylogenetic analysis based on four iridovirus core genes, MCP, DNA polymerase, myristoylated membrane protein (MMP) and ribonucleotide reductase (RNR), consistently showed that GLCDV was mostly related to LCDV-C, followed by LCDV-1. Taken together, our data firstly provided the molecular evidence that GLCDV was a novel emerging iridovirus pathogen in grouper culture.  相似文献   

10.
11.
Turbot aquaculture is a very important industry in China. However, it is hampered because of viral reddish body syndrome (VRBS) and high mortality caused by piscine turbot reddish body iridovirus (TRBIV). TRBIV virus is an icosahedron‐like and cytoplasmic DNA virus, belonging to Iridoviridae, Megalocytivirus. In previous studies, we have identified two antigen mimotopes using bioinformatics and constructed prokaryotic expression vectors. In this study, a fragment of major capsid protein (MCP) gene with the two antigenic epitopes was cloned into eukaryotic expression vector pVAX1, to generate a recombinant plasmid pVAX1‐TRBIV‐MCP. The plasmid DNA was transferred into turbot cell line TK using liposome, and transient expression was detected using RT‐PCR. After injection into turbot (Scophthalmus maximus), the expression of the antigen gene was analysed using RT‐PCR and was shown to express in all tested tissues in vaccinated fish 2 and 7 days post‐vaccination. The cumulative mortalities in the vaccinated and unvaccinated control fish were 30% and 88% respectively. Immune responses and upregulation of the expression of chemokine receptor, tumour necrosis factor, interferon and interferon‐induced antiviral molecules were observed in the vaccinated fish 60 h post‐vaccination. These results demonstrate that the vaccinated turbots had higher survival rate and produced specific serum antibodies following the TRBIV challenge. More studies are needed to develop and apply the promising DNA vaccine for virus control in turbot.  相似文献   

12.
Zebrafish has become a popular research model in the last years, and several diseases affecting zebrafish research facilities have been reported. However, only one case of naturally occurring viral infections was described for this species. In 2015, infectious spleen and kidney necrosis virus (ISKNV) was detected in zebrafish from a research facility in Spain. Affected fish showed lethargy, loss of appetite, abnormal swimming, distention of the coelomic cavity and, in the most severe cases, respiratory distress, pale gills and petechial haemorrhages at the base of fins. Cytomegaly was the most relevant histopathological finding in organs and tissues, sometimes associated to degenerative and necrotic changes. ISKNV belongs to the relatively newly defined genus Megalocytivirus, family Iridoviridae, comprising large, icosahedral cytoplasmic DNA viruses. This is the first case of naturally occurring Megalocytivirus infection in zebrafish research facilities, associated with morbidity. The virus has been identified based on both pathologic and genetic evidence, to better understand the pathogenesis of the infection in zebrafish and the phylogenetic relationship with other iridoviruses. Given the ability of megalocytiviruses to cross‐species boundaries, it seems necessary to implement stringent biosecurity practices as these infections may invalidate experimental data and have major impact on laboratory and cultured fish.  相似文献   

13.
Francisella orientalis is a highly virulent, emerging bacterium that causes mass mortalities in tilapia. This pathogen also affects numerous other warm-water fish species, including three-line grunt, hybrid striped bass and various ornamental fish. This study sheds light on two new species of fish that are susceptible to F. orientalis. Asian seabass and largemouth bass showed variable levels of susceptibility in a bacterial challenge experiment. After intraperitoneally injected with a dose of 106 CFU/fish, a total of 64.28% and 21.42% mortalities were obtained in Asian seabass and largemouth bass, respectively. Meanwhile, Nile tilapia showed acute mortality of 100%. All fish showed typical lesions of francisellosis, including multifocal granulomas in the spleen and head kidney. Immunohistochemical analysis revealed strong positive signals inside the granulomas of all fish. The bacterial recovery in solid media from infected fish was highest in Nile tilapia (85.71%), followed by Asian seabass (35.71%) and largemouth bass (21.42%). PCR results tested 100% positive for Nile tilapia, and 78.57% and 21.42% for Asian seabass and largemouth bass, respectively. In conclusion, Asian seabass and largemouth bass are susceptible to this pathogen, which warrants new management strategies when employing predation polyculture systems of these species with tilapia.  相似文献   

14.
  • 1. The contamination of fish consignments (for stocking or aquaculture) is a major pathway by which non‐native organisms, including fish, are introduced to new areas. One of the best examples of this is the topmouth gudgeon Pseudorasbora parva, which was accidentally imported into Romania and then throughout Europe in consignments of Asian carp species.
  • 2. The introduction and spread of topmouth gudgeon in the UK has been linked to imports and movements of the ornamental variety (golden orfe) of ide Leuciscus idus. To examine this hypothesis, relationships between authorized movements of both native and non‐native fish species (in particular ide) and the occurrence in England of topmouth gudgeon were tested at the 10×10 km scale.
  • 3. Topmouth gudgeon occurrence in the wild was significantly correlated with the trajectories of movements of ornamental fish species (ide/orfe, sunbleak Leucaspius delineatus) as well as a few non‐ornamental fish species (European catfish Silurus glanis, Atlantic salmon Salmo salar and grass carp Ctenopharyngodon idella).
  • 4. These results highlight the mechanism by which non‐native fish species disperse from the point of first introduction, and especially that movements of fish within the country represent an important mechanism for accidental introductions of non‐native species. © Crown copyright 2010. Reproduced with the permission of Her Majesty's Stationery Office. Published by John Wiley & Sons, Ltd.
  相似文献   

15.
Between 2007 and 2012, a variety of disease outbreaks most often characterized by skin disorders were observed among different species of freshwater fish in Poland. In most cases, the clinical signs included focally necrotized gills, necrotic skin lesions or ulcers. Internally, haemorrhages, oedematous kidney and abnormal spleen enlargement were generally noted. The disorders were accompanied by increased mortality. Most of the problems concerned cultured common carp Cyprinus carpio L. and rainbow trout Oncorhynchus mykiss (Walbaum). Fish have been examined from a number of these farms, and additionally, the wild and ornamental fish with similar clinical signs of diseases were also tested. Bacteria were isolated consistently from lesions and internal organs. They had characteristic orange-pigmented colonies which grew in pure culture or constituted 55–95% of total bacterial flora. One hundred and eighteen isolates were collected and biochemically identified as Shewanella putrefaciens group, and this was confirmed by sequencing. Challenge tests confirmed the pathogenicity of these bacteria. This is the first report characterizing and describing S. putrefaciens as a pathogen of different species of freshwater fish in Europe.  相似文献   

16.
Infectious diseases are a major welfare issue, economically costly and, from a conservation perspective, threaten susceptible fish populations. Parasite control in aquaculture is over reliant on a limited range of treatments which tend to be low in efficacy, toxic to hosts and have negative consequences on human health and the environment. Here, we tested 22 botanical treatments alongside five controls against Gyrodactylus turnbulli (Harris 1986), in vitro and in vivo, infecting guppies (Poecilia reticulata Peters 1859). Survival of detached parasites was significantly reduced by all treatments with cajuput oil, bay rum oil, bladderwrack, octanoic acid, pine tree oil and barberry killing worms instantly. In vivo, cajuput oil applied with emulsifier was as effective as a licensed livestock dewormer, Levamisole, which is not routinely prescribed for use in fish; hence, cajuput can be considered for further research to replace Levamisole in UK research laboratories as well as in ornamental aquaculture.  相似文献   

17.
Two series of feeding experiments were conducted to study the feasibility of using decapsulated Artemia cysts for direct feeding to ornamental fish. The first series evaluated the dietary values of the dried and the brine decapsulated Artemia cysts against two conventional live feeds, Artemia nauplii and Moina for adults and fry of the guppy, Poecilia reticulata Peters. In the second series, brine cysts were used for feeding to fry of four other important ornamental fish species, viz. platy, Xiphophorus maculatus (Günther), swordtail, X. helleri (Heckel), molly, P. sphenops Cuvier & Valenciennes and black neon tetra, Hyphessobrycon herbertaxelrodi Géry, and the results were compared with those fed Moina. Evaluation of the performance of the fish fed the various diets was based on stress resistance, growth and survival of the fish. Our findings indicated that decapsulated cysts could be used as a substitute for Artemia nauplii or Moina in freshwater ornamental fish culture. Apart from being a hygienic off‐the‐shelf feed, the direct use of the cysts also signifies a new area of application for low‐hatch cysts in the ornamental fish industry, with concomitant saving in feed costs.  相似文献   

18.
Lactococcus garvieae is recognized as an emerging pathogen in fish. Several PCR‐based methods have been developed for the detection and identification of L. garvieae; however, the sensitivity of these methods is still in question regarding the discrimination of this organism from other closely related species. Two primers, ITSLg30F and ITSLg319R, were designed from the sequence in the 16S–23S internal transcribed spacer (ITS) region and used for the specific detection of L. garvieae. L. garvieae strains including fish isolates were positive by this method. In contrast, previously developed PCR methods showed false‐positive results with non‐L. garvieae species. Our results indicate that a PCR method using the newly designed ITS primer set provides a sensitive and efficient tool for the detection of L. garvieae in fish and aquaculture environments.  相似文献   

19.
The Japanese ornamental (koi) carp is a popular decorative fish all over the world. In koi, clones have not yet been obtained, although production of fish with identical colour patterns could be of commercial interest. Mitotic gynogenetic progenies are essential for subsequent production of clones in fish. However, resulting late‐shocked progenies may be contaminated with meiotic gynogens from spontaneous suppression of the second meiotic division in eggs. In this study, microsatellite DNA markers were used to confirm mitotic gynogenetic origin of obtained late‐shocked progenies. Recombination rate (y) and mapping distance relative to centromere (M‐C) of 10 microsatellite loci were determined based on percentage of heterozygotes in meiotic gynogenetic progenies. The range of y varied from 0.01 to 0.96 and the M‐C map ranged from 0.5 to 48 cM. The mean value of y over the 10 loci was 0.481. Six loci, which had y 0.47 and higher, were used as markers in two late‐shocked gynogenetic progenies. Complete homozygosity was revealed at all six microsatellite loci indicating mitotic gynogenetic origin of analysed progenies.  相似文献   

20.
Flavobacterium columnare is the causative agent of columnaris disease in diverse fish species worldwide. Although columnaris is an important disease, the antimicrobial susceptibility pattern of F. columnare is not well studied. Thus, the purpose of this study was to test the in vitro antimicrobial susceptibility of 97 F. columnare isolates collected worldwide between 1987 and 2011 from 17 fish species. The broth microdilution technique was utilized for reliable testing of these fastidious organisms. None of the isolates displayed acquired resistance to florfenicol, gentamicin, ormetoprim‐sulfadimethoxine and trimethoprim‐sulfamethoxazole. Acquired resistance to chloramphenicol was detected in 1%, to nitrofuran in 5%, to oxytetracycline in 11% and to enrofloxacin, flumequine and oxolinic acid in 10%, 16% and 16% of the isolates, respectively, as reflected by a bimodal or trimodal distribution of their minimum inhibitory concentrations (MICs). One isolate showed acquired resistance towards several antimicrobial agents including erythromycin. Another isolate revealed acquired resistance towards – amongst others – ampicillin. The isolates displaying acquired resistance originated from ornamental fish species or Vietnamese catfish, except for two isolates coming from wild channel catfish in which acquired resistance was encountered towards oxytetracycline only. Fifty per cent of the resistant isolates from ornamental fish were shown to have acquired resistance against three classes of antimicrobial agents, assigning these isolates as multiple resistant. These data might indicate less prudent use of antimicrobials especially in ornamental fish species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号