首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A 3-year study was conducted to examine leaf gas exchange response of Vitis vinifera L. (cv. Tempranillo) grapevines growing in the central Iberian Peninsula as a function of soil water availability. Net CO2 assimilation rate (A), stomatal conductance (gs) and transpiration (E) of leaves were measured at the east and west side of vines planted in north/south orientated rows. Soil water availability was varied by three different irrigation treatments at 0.45, 0.30 and 0.15 of ETo and a fourth non-irrigated treatment. Approximately 60% of the variation in gs over 3 years was due to changes in soil water content (θv); the correlation between the two was closer when examined on a season by season basis. Net CO2 assimilation rates were significantly correlated with gs. Stomatal conductance decreased by approximately 25–30% when measured 15:00 h (west side of vines) compared to 09:00 h (east side of vines); reductions in A were even greater than those in gs. Leaf E increased approximately by 15–25% from morning to afternoon. The reduction in A and gs from morning to afternoon was observed even in irrigated vines but absolute differences increased with decreasing soil water. This occurred when maximum daily gs was less than 200 mmol m−2 s−1. These responses indicate that in hot areas training systems and row orientation, which minimize exposed leaf, area in the afternoon should be recommended.  相似文献   

2.
Summary

This paper describes the response of gas exchange rates and water use efficiency of rose plants, by means of the characterization in situ and the analysis of the response of photosynthesis, transpiration and water use efficiency of whole plants to CO2 enrichment under the irradiance conditions prevailing in greenhouses of southern France. Net CO2 assimilation (An) and transpiration (E) of whole rose plants (Rosa hybrida, cv. Sonia) were measured during winter and spring periods. The response of An to light and CO2 were fitted to a double hyperbola function (r2 = 0.84). Maximum net assimilation rate (Anmax), light and CO2 utilization efficiencies (α1, αc) as well as light and CO2 compensation points (Γ1 , Γc) were calculated for the whole plant and compared with leaf and canopy data in the literature. The whole-plant characteristics generally had values intermediate between those related to leaf and canopy. Light saturation at sub-ambient air CO2 concentration (Ca) was reached for relatively low PFFD values (300 µmol m?2 s?1), whereas at ambient and enriched Ca light saturation occurs for PPFD ≈ 1000 µmol m?2 s?1. Doubling Ca from 350 to 700 µmol mol?1 increased Anmax and α1 by respectively 40% and 30%, while reducing Γ1 by 27%. A threefold increase of Ca from 350 to 1050 µmol mol?1 induced a reduction of 20% of E. Instantaneous transpirational water use efficiency, WUE (=An/E), is relatively insensitive to PPFD, although a slight decrease with PPFD is observed at high CO2 concentration, but shows marked variations with Ca and leaf to air vapour pressure defiçit (D1). Increase of Ca from 350 to 1000 µmol mol?1 gave about 50% increase in WUE. Increase of D1 from 0 to 2 kPa induced 30% decrease in WUE at ambient Ca and 50% decrease at 1000 µmol mol?1.  相似文献   

3.
The effect of CO, on leaf boron content, Leaf Tip Chlorosis (LTC) and fruit production of eggplant (Solanum melongena L., cv. Cosmos) was investigated in the spring of 1991. Two levels of CO2 (413 and 663 (xmol mol-1) were maintained in duplicate, in four glasshouse compartments (16 m x 16 m). LTC was significantly more severe at high than at low CO2. Leaf boron content was lower in leaves with LTC than in other leaves and was lower in leaves from high CO2 than in those from low CO2. These results, in combination with observed reduction in leaf conductance (part I), support the hypothesis that LTC is caused by reduced boron translocation to young, fast growing leaves, because of reduced transpiration. More specific research on boron is necessary to confirm this hypothesis. Fruit production was significantly higher (24%) at high CO2 than low CO2, despite more severe LTC.  相似文献   

4.
《Scientia Horticulturae》2005,104(1):79-89
The seasonal effect of soil water availability on leaf gas exchange of plantain plants cv. Hartón growing on two different texture soils (loamy and clayey) were evaluated. Soil water deficits corresponded to 48, 24 and 4 days without precipitation. Daily measurements of leaf gas exchange and microclimatic conditions were carried out at 2 h intervals in a humid tropical environment south of Maracaibo Lake, Venezuela. The results show that cv. Hartón is sensitive to conditions of low water deficit on loamy and to a much greater degree on clayey soils. A marked reduction in leaf conductance (gs) was observed under severe as well as moderate deficit (below 50 mmol m−2 s−1) on clayey soils. Under low deficit gs increases to values between 60 and 100 mmol m−2 s−1. The same trend was observed in plants on loamy soils but higher gs for all conditions were obtained compared with plants on clayey soil. Stomatal closure produced a reduction of 85 and 55% of total assimilation (Atot) for severe and moderate deficit in plants on clayey soils, respectively. While plants on loamy soil exhibited a 65 and 35% reduction, respectively. Water use efficiency (WUE) consistently decreased as available soil water decreased on both soil types. Independently of soil water conditions, higher WUE were always obtained for loamy soils. This suggests that cv. Hartón does not have the ability to adjust the CO2 assimilation to transpiration ratio in order to optimize gas exchange. This evidences the importance of maintaining high conditions of available soil water in order to avoid lower assimilation rates that probably influence negatively on yield and fruit quality.  相似文献   

5.
Plants of cucumber (Cucumis sativus L. cv. Euphorbia) were grown in a traditional high-wire cultivation system to investigate the effects of three lighting regimes on photosynthetic characteristics, leaf area and yield. The lighting regimes included overhead lighting (OH), where all the lamps were mounted above the canopy and overhead + intracanopy lighting (OH + IC) which comprised 65% of overhead lamps and 35% of lamps mounted vertically along the plant rows. All overhead lighting was provided for 20 h day−1 and intracanopy lighting was provided for either 20 h or 24 h day−1 lighting period. Intracanopy lighting improved the light distribution in the canopy. Gas exchange measurements showed that intracanopy lighting increased net photosynthesis (PN) and photosynthetic capacity (Pmax). Parameters calculated from CO2 response (A/Ci) curves showed that in vivo estimate of the maximum rate of Rubisco carboxylation (Vcmax) and the maximum rate of electron transport (Jmax) were affected by light regime. Intracanopy light increased yield by 11% compared to traditional overhead light.  相似文献   

6.
The effect of brassinosteroid (BR) on relative water content (RWC), stomatal conductance (gs), net photosynthetic rate (PN), intercellular CO2 concentration (Ci), lipid peroxidation level, activities of antioxidant enzymes and abscisic acid concentration (ABA) in tomato (Lycopersicon esculentum) seedlings under water stress was investigated. Two tomato genotypes, Mill. cv. Ailsa Craig (AC) and its ABA-deficient mutant notabilis (not), were used. Water stress was achieved by withholding water and both the AC and not plants were treated with 1 μM 24-epibrassinolide (EBR) or distilled water as a control. The RWC, gs, Ci and PN were significantly decreased under water stress. However, EBR treatment significantly alleviated water stress and increased the RWC and PN. EBR application also markedly increased the activities of antioxidant enzymes (catalase, ascorbate peroxidase and superoxide dismutase) while it decreased gs, Ci and the contents of H2O2 and malondialdehyde (MDA). Interestingly, ABA concentration in AC and not plants was markedly elevated after EBR treatment although the increasing rate and amplitude of ABA in not plants treated by EBR was significantly lower than those in AC plants. Our study suggested that amelioration of the drought stress of tomato seedlings may be caused by EBR-induced elevation of endogenous ABA concentration and/or the activities of antioxidant enzymes.  相似文献   

7.
Summary

Photosynthesis of tomato plants (Lycopersicon esculentum (L.) Mill. cv. F144) was studied under conditions of CO2 supplementation and salinity. The purpose of the study was to elucidate the mechanisms underlying the effects of salinity on the acclimation of tomato plants to CO2 supplementation. Plants were grown under either low (355.mmol mol–1) or elevated (1200.6.50 mmol mol–1) CO2 and were irrigated with low concentrations of mixed salts. The highest salinity level (E.C. 7 dS m–1) was that used to produce quality tomatoes in the Negev highlands, in Israel. During early development (three weeks after planting), the net photosynthetic rate of the leaves was much higher under elevated CO2, and other than a slight decrease in quantum yield efficiency as measured by fluorescence (DF/F 9 m ), no signs of acclimation to high levels of CO2 were apparent. Clear acclimation to high CO2 concentration was evide t ten weeks after planting when the net photosynthetic rate, photosynthetic capacity, and carboxylation efficiency of leaves of non-salinized plants were strongly suppressed under elevated CO2. This was accompanied by reductions in carboxylation efficiency, Rubisco activity and PSII quantum yield, and an increased accumulation of leaf soluble sugars. The reduction in photosynthetic capacity in the high CO2 plants was less in plants grown at the highest salinity level. This was correlated with an increase in the PSII quantum yield parameters (Fv/Fm) and DF/F 9 m ) but not with Rubisco activity which was affected by the CO2 treatments only. These results explain the effects of high CO2 on yields in tomatoes grown at high levels of salt (Li et al., 1999).  相似文献   

8.
Scaevola aemula is a popular ornamental crop cultivated as a bedding plant or for hanging baskets. We characterized gas exchange properties of S. aemula ‘New Wonder’ in response to photosynthetically active radiation (PAR), carbon dioxide concentration, and leaf temperature. Net CO2 assimilation rate (A) was responsive to CO2, exhibiting a saturation when intercellular CO2 concentration (Ci) was greater than 600 μmol mol−1. Net CO2 assimilation rate and dark respiration rate (Rd) were 23.1 and 2.3 μmol m−2 s−1, respectively, at 25 °C and PAR = 1500 μmol m−2 s−1. Net CO2 assimilation rates were similar at leaf temperatures between 20 and 30 °C but significantly reduced at 15 °C. These gas exchange results were used to test the extendibility of a coupled gas exchange model previously developed for cut-roses. Utilizing the gas exchange data measured at 25 °C leaf temperature, several model parameters were independently determined for S. aemula. Model predictions were then compared with observations at different leaf temperatures. The model predicted the rates of net CO2 assimilation and transpiration of S. aemula reasonably well. Without additional calibration, the model was capable of predicting the temperature dependence of net CO2 assimilation and transpiration rates. Applying the model to predict the effects of supplemental lighting and CO2 enrichment on canopy photosynthesis and transpiration rates, we show that this model could be a useful tool for examining environmental control options for S. aemula production in the greenhouse.  相似文献   

9.
《Scientia Horticulturae》2005,105(2):163-175
The main objective of this study was to analyse the transpiration time course of soilless culture cucumber plants (Cucumis sativus L.) during two cycles, at low (up to 9 MJ m−2 d−1) and high (up to 20 MJ m−2 d−1) radiation levels, and their relationship with greenhouse climate parameters (incident radiation and vapour pressure deficit, VPD) and canopy development. The coefficients of the simplified Penman–Monteith formula were calibrated in order to calculate the transpiration rate of the crop, to help improve irrigation management in substrate cultivation. The transpiration rate per ground surface area was measured by weighing plants with an electronic balance.At high radiation levels, the diurnal canopy transpiration rate was four times higher than at low radiation levels and the night transpiration rate reached values between 120 and 200 g m−2 d−1 in both cases. The leaf transpiration rate decreased during crop ontogeny and was higher in the afternoon than in the morning for the same value of radiation, whereas a linear relationship with the VPD was found even for values greater than 3 kPa. The results showed that the fitted simplified Penman–Monteith formula accounted for more than 90% of the measured hourly canopy transpiration rate, signifying that this formula could be used to predict water requirements of crops under Mediterranean conditions and improve irrigation control in a substrate culture. However, the model coefficients will have to be adjusted for specific climate and crop conditions.  相似文献   

10.
Two experiments were conducted under greenhouse conditions to evaluate the effects of sink removal (flower shoot harvest and debudding) on the gas-exchange capacity (i) of leaves left on the parent shoot after flower shoot harvest and (ii) of flower shoot leaves after flower-bud removal. In the first experiment, gas-exchange measurements were performed on three 5-foliate leaves (leaf 1: uppermost parent shoot leaf, and two leaves inserted just below: leaves 2–3). It was found that, after bud sprouting, the leaf nearest to the young growing shoot (leaf 1) experienced a significant reduction in leaf maximum net CO2 assimilation rate, Alm, stomatal conductance, gs, and transpiration rate, El, over time in comparison to the corresponding values observed for leaves 2–3. Leaf water use efficiency, WUE, significantly changed over time, while the ratio of leaf internal to ambient CO2 concentration, Ci/Ca, was rather conservative throughout the entire shoot growing period. In the second experiment, leaf gas-exchange measurements were performed for adult flower shoots that were either debudded or left intact. Both types of shoots exhibited a similar along-shoot distribution pattern of physiological fluxes, gs, and WUE. Bud removal did not significantly affect the magnitude of gas-exchange, with the exception of El. One week after bud removal, only slight differences were observed for Alm, gs and El between the two types of shoots. These results suggest (i) that the contribution of the uppermost parent shoot leaf to the assimilates demand of newly growing shoot significantly affects its photosynthetic capacity; and (ii) that flower-bud removal does not change the overall photosynthetic capacity of the flower shoot leaves, which divert the surplus of produced assimilates towards alternative sink organs and plant reserve pools.  相似文献   

11.
The plant growth regulator CycocelTM [(2-chloroethyl)trimethylammonium chloride] can be used to produce drought tolerance in grapevine (Vitis vinifera L.) due to a reduction in the ratio between vegetative growth and fruit production. To evaluate the physiological responses of two grapevine cultivars to drought and CycocelTM treatment, a factorial experiment was conducted in a greenhouse. The factors included irrigation frequency (at 5-, 10-, or 15-day intervals corresponding to no, mild, or severe drought stress), CycocelTM concentration (0, 500, or 1000 mg l1), and cultivar (‘Rasheh’ or ‘Bidane-Sefid’). Stomatal conductance (gs) the net rate of CO2 assimilation (Anet), the rate of transpiration (Tr), and chlorophyll a and b concentrations decreased in plants exposed to mild or severe water-deficit stress, whereas carotenoid, proline, and total soluble sugar concentrations increased compared to plants with no drought stress. The relative water content (RWC) of leaves declined only under severe drought stress. A reduction in intercellular CO2 concentrations (Ci) occurred under mild drought stress; however, under severe drought stress, Ci values increased. Under mild drought stress, the reduction in the net rate of photosynthesis was related to stomatal closure, whereas under severe drought stress, non-stomatal factors were dominant. Water-use efficiency (WUE) improved under mild drought stress relative to non-stressed plants, but under severe drought, it declined. Foliar applications of CycocelTM resulted in increased Anet, gs, Tr, and WUE values, as well as proline and soluble sugar concentrations. ‘Rasheh’ was more tolerant to drought stress than was ‘Bidane-Sefid’. Foliar applications of CycocelTM, particularly at 1000 mg l1, mitigated the negative effects of drought stress by increasing Anet, WUE, RWC, compatible solute concentrations, such as proline, soluble sugar, and chlorophyll a and b concentrations.  相似文献   

12.
A forced ventilation system that directs airflow upward or downward within a canopy was developed for plant culture in order to enhance photosynthesis and growth of the plant canopy. Tomato seedling canopies including the seedlings, growing medium, and a plastic tray were used for the experiments. In the upward and downward ventilation systems, air flows upward and downward, respectively, within the plant canopy; this is achieved by blowing and drawing air from holes (Ø 6 mm) made in plastic pipes positioned on the surface of the growing medium. A horizontal airflow system was used as a conventional system to compare the performance of the experimental ventilation systems. Using the upward and downward ventilation systems, the effects of air directions and air velocities on the CO2 exchange rate of the tomato seedling canopy and the growth of the seedlings were compared with those observed using the conventional horizontal airflow system. The forced ventilation within the plant canopy enhanced the CO2 exchange rate of the canopy and the dry masses of the seedlings by 1.4–1.5 and 1.2–1.3 times, respectively, as compared to the conventional horizontal airflow. When the leaf area index (LAI) increased from 1.2 to 2.4, there was only a 5% decrease in the CO2 exchange rate per unit leaf area in the downward ventilation system, whereas there was a 20% decrease in the CO2 exchange rate per leaf area in the horizontal airflow system. The coefficient of variation for the dry mass of the seedlings was higher in the downward system than in the other systems. These results demonstrate that forced ventilation within the canopy is an effective technique to enhance the gas exchange of the plant canopy and the consequent plant growth.  相似文献   

13.
The problem was studied whether tomatoes, grown in a hot and arid climate, benefit from grafting on egg-plant, which is highly efficient in water uptake. Growth and development of tomato (T), tomato grafted on its own rootstock (TT) and tomato grafted on egg-plant rootstock (TE) were compared at air temperatures of 28°C during the day and 18°C during the night (2818) and at 28°C constantly (2828), at soil temperatures of 14, 21 and 28°C with the following soil moisture regimes: wet (W1), medium (W2) and dry (W3).At 2818 and 2828 water consumption was about equal, but the transpiration ratio at 2828 was twice as high as that at 2818. The latter conditions gave a much stronger plant with more fruits. At a soil temperature of 14°C water use was strongly reduced. The transpiration ratio increased with the soil temperature. Differences in plant type were small. At the highest soil temperature of 28°C fruit growth was strongly reduced. At lower soil moisture levels less water was used and the transpiration was lower. Plant type was correlated herewith.Vegetative growth of TT was weaker than of T, but generative growth was stimulated. The strong E rootstock stimulated vegetative growth at high air and soil temperature, but fruit growth was very poor under these conditions; at a low soil temperature of 14°C vegetative growth was also reduced.The hope that the E rootstock would be beneficial for fruit growth at high temperatures was not fulfilled.An additional experiment in a growth-room at 23°C showed that under conditions of moisture stress there was no difference in water potential between leaves of TT and TE.  相似文献   

14.
The effects of exogenous application of abscisic acid (ABA) on anti-oxidant enzyme activities and photosynthetic capacity in ‘Sultana’ grapevine (Vitis vinifera L.) were investigated under cold stress. When vines had an average of 15 leaves, 0 (control), 50, 100, or 200 µM ABA was sprayed to run-off on all leaves of each plant. Twenty-four hours after foliar spraying with ABA, half (n = 5) of the water-only control vines and half (n = 5) of each group of ABA-treated plants were subjected to 4°C for 12 h, followed by a recovery period of 3 d under greenhouse conditions (25°/18°C day/night). The remaining plants in each treatment group were kept at 24°C. Cold stress increased H2O2 and malondialdehyde (MDA) concentrations in vine leaves, whereas all foliar ABA treatments significantly reduced their levels. Chilled plants showed marked increases in their total soluble protein contents in response to each ABA treatment. ABA significantly increased the activities of superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase in cold-stressed grapevine leaves. In contrast, cold stress markedly decreased the rates of leaf photosynthesis (A) and evaporation (E), stomatal conductance (gs), and chlorophyll concentrations in leaves, but increased intercellular CO2 concentrations (Ci) in leaves. Treatment with all concentrations of ABA resulted in lower leaf A, E, and gs values, but higher Ci values at 24°C. However, following cold stress, ABA-treated vines showed higher leaf A, E, and gs values, but lower Ci values compared to control vines without ABA treatment. The application of 50–200 µM ABA allowed chilled vines to recover more quickly when re-exposed to normal temperatures, enabling the vines to resume their photosynthetic capacity more efficiently following cold stress. These results showed that, by stimulating anti-oxidant enzyme systems and alleviating cold-induced stomatal limitations, ABA reduced the inhibitory effect of cold stress on the rate of CO2 fixation in ‘Sultana’ grapevine plants.  相似文献   

15.
SUMMARY

Greenhouse tomato plants (Lycopersicon esculentum Mill. cv. Capello) were grown in a peal-moss based substrate and supplied with nutrient solutions of high (4.5 mS cm-1) or low (2.3 mS cm-1) electrical conductivity (EC) and under high (95 ± 5%) or low (55 ± 8% of capillary capacity) soil water content, to elucidate how EC and soil water status affect plant photosynthesis and related physiological processes. Two weeks after beginning the treatments, photosynthesis (Pn) was measured during changes of photo-synthetic photon flux (PPF) from 0 to 1200 u.mol m-2 s-1 using a gas exchange method. The rectangular hyperbolic model (Pn = Pmax KI (1-KI)-2 -r) provided a good fit for the photosynthetic light-response curve. High EC treatment changed the curve by increasing the initial slope (quantum yield) and decreasing photosynthetic capacity at high PPF. However, soil water deficit not only decreased the photosynthetic capacity, but also decreased quantum use efficiency. Depression of Pn was attributed to decreased stomatal (gs) and mesophyll (gm) conductances, but gs was depressed more than gm. The ratio of gm/(gm + gs), an indicator of water use efficiency and a measure of relative control of Pn by carboxylation and C02 supply, was higher for high-EC treated plants. Chlorophyll content was increased by high EC treatment, and was consistent with quantum yield. Leaf water potential was decreased by high EC and/or low soil water content and the decreases in leaf water potential ultimately accounted for the Pn depressions. The effects of high EC and soil water deficit were additive on photosynthesis and most related physiological processes.  相似文献   

16.
In the daytime, a CO2 depletion of 10–15% and air circulation of less than 0.5 m s−1 often occur in a naturally ventilated greenhouse during a sunny day with high wind speed (3–5 m s−1). We, therefore, investigated the effects of moderate increase of the CO2 concentration above the atmospheric level (500–600 μmol mol−1) and air circulation up to 1.0 m s−1 in a growth chamber on the net photosynthetic and transpiration rates of tomato seedlings as the first step. The average net photosynthetic rates were 2.1, 1.8, and 1.6 times higher in the growth chambers with increased CO2 concentration (500–600 μmol mol−1) and air circulation (1.0 m s−1), increased CO2 concentration, and increased air circulation, respectively, compared with those in the control (no increase in CO2 concentration (200–300 μmol mol−1) or air circulation (0.3 m s−1). The transpiration rate increased with increased air circulation, while it decreased with increased CO2 concentration regardless of air circulation. From the results, we consider that increasing the CO2 concentration and/or air circulation in ventilated greenhouses up to the outside concentration (350–450 μmol mol−1) and 1.0 m s−1, respectively, can significantly increase the net photosynthetic rate of greenhouse plants.  相似文献   

17.
To study the effects of day and night temperature difference (DIF) on tomato growth, a controlled experiment using Solanum lycopersicum L., cv. Jinguan 5 was conducted. The daily mean temperature (Tm) was maintained at 18°C and 25°C, and the DIF was set at 0°C, 6°C, and 12°C. The results indicated that chlorophyll a (Chl a) and chlorophyll b (Chl b) gradually increased as DIF rose. At 18°C Tm, the carotenoid content reached a maximum at 12°C DIF. The Chl a/Chl b, net photosynthetic rate (PN), photosynthetic rate at irradiation saturation (Pmax), stomatal conductance (gs), intercellular CO2 concentration (Ci), stomatal limitation value, the maximum assimilation rate (Amax), apparent quantum efficiency (Aq), carboxylation efficiency (Ce), superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), gibberellin A3 (GA3), and indole-3-acetic acid (IAA) were highest, while malondialdehyde (MDA) was lowest at 6°C DIF. At 25°C Tm, PN, Pmax, Amax, Aq, Ce, gs, Ci, CAT, POD, GA3, IAA, and zeatin reached the maximum under 6°C DIF, while SOD and MDA reached the maximum under 12°C DIF. Furthermore, the morphological index peaked at 6°C DIF under 18°C and 25°C Tm. The results suggested that 6°C DIF improved the growth and development of tomato during the flowering stage. ABBREVIATIONS: Aq – apparent quantum efficiency; Amax – the maximum assimilation rate; CAT – Catalase; Chl a(b) – chlorophyll a(b); Ca – ambient CO2 concentration; Ce – carboxylation efficiency; Ci – intercellular CO2 concentration; DIF – difference between day temperature (TD) and night temperature(TN); FM – fresh mass; gs – stomatal conductance; GA3 – gibberellin A3; IAA – indole-3-acetic acid; Ls – stomatal limitation value; MDA – malondialdehyde; Pmax – photosynthetic rate at irradiation saturation; PN – net photosynthetic rate; POD – peroxidase; ROS – reactive oxygen species; SOD – superoxidedismutase; Tm – daily mean temperature; ZT – zeatin.  相似文献   

18.
Root restriction often depresses photosynthetic capacity and the mechanism for this reduction, however, remains unclear. To identify the mechanism by which root restriction affects the photosynthetic characteristics, tomato (Lycopersicon esculentum Mill.) seedlings were subjected to root restriction stress with or without supplemental aeration to the nutrient solution. With the development of the root restriction stress, CO2 assimilation rate was decreased only in confined plants without supplemental aeration. There were also significant decreases in leaf water potential, stomatal conductance (gs), intercellular CO2 concentration (Ci), and increases in the stomatal limitation (l) and the xylem sap ABA concentration. Meanwhile, the maximum carboxylation rate of Rubisco (Vcmax) and the capacity for ribulose-1,5-bisphosphate regeneration (Jmax) also decreased, followed by substantial reductions in the quantum yield of PSII electron transport (ΦPSII). Additionally, root restriction resulted in accumulation of carbohydrates in various plant tissues irrespective of aeration conditions. It is likely that root restriction-induced depression of photosynthesis was mimicked by water stress.  相似文献   

19.
在日光温室条件下,研究了普通土壤栽培增施CO2及有机土栽培对黄瓜产量和营养品质的影响,并对比了两种栽培方式下CO2的变化。结果表明:有机土栽培与增施CO2的普通土壤栽培均在上午提高了温室内CO2浓度,使温室中CO2浓度在上午光合作用最强的时期显著高于普通土壤栽培,最终表现为黄瓜生长优于普通土壤栽培。生理分析表明:普通土壤栽培增施CO2和有机土栽培均可增加黄瓜叶片叶绿素含量,并显著提高了植株的根系活力和净光合速率。增施CO2对盛果期黄瓜果实中可溶性固形物和VC含量有显著提高作用,分别提高10.21%和7.23%;而有机土栽培下黄瓜总糖和粗蛋白含量显著高于其他处理。黄瓜盛果期增施CO2增产效果明显,单株产量较对照显著提高,与有机土栽培产量相当。增施CO2对黄瓜产量的影响主要在采收中后期;而有机土栽培对黄瓜产量的影响主要是在采收的前中期。有机土栽培不仅改善了根区环境,还对温室CO2浓度有很好改善作用,可以不用增施CO2而实现优质高产。  相似文献   

20.
Our study focuses on the physiological response and yield-quality performance of split-root potted Sangiovese grapevines under a partial root-zone drying (PRD) regime from pre-veraison to harvest by withholding water from one of the two pots and comparing the results to a well-watered control (WW). While predawn water potential (ψpd) tended to equilibrate in PRD with the soil moisture level of the wet pot, both stem (ψst) and mid-day leaf-water potential (ψl) were markedly lower in PRD as compared to WW vines, indicating that Sangiovese shows anisohydric response. On the other hand, the seasonal reduction of leaf assimilation rate (A) in PRD over the 6-week stress period versus WW was 16% as compared to a 41 and 25% for leaf stomatal conductance (gs) and transpiration (E), respectively. As a consequence, intrinsic WUE (A/gs) was markedly increased in the half-stressed vines, suggesting a response more typical of an isohydric strategy. Shoot growth was promptly checked in PRD vines, which had no limitation in yield and better grape composition as per soluble solids and total anthocyanins. These responses occurred in spite of sub-optimal leaf photosynthesis rates and lowered leaf-to-fruit ratio and qualify Sangiovese as a good candidate for adapting to regulated deficit irrigation strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号