首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A model for the vertical location of whorl and interwhorl branches was constructed for Atlas cedar (Cedrus atlantica Manetti). The vertical location of branches in the crown partly governs their further growth and mortality from which depend (i) the stem growth and form and (ii) the quality of lumber and veneer, including wood knots. The modeling method, based on an architectural approach, reveals branching patterns. Each annual shoot was considered as a sequence of successive positions, unbranched or branched with two types of branch: short or long shoot. Branching sequences were analyzed using hidden semi-Markov chains. A wide range of annual shoot lengths was sampled in order to determine the relationships between sequence length and the characteristics of every zone identified (frequency of every type of axillary production, probability of zone occurrence and probability of transition to the following zone). The model predicts branch vertical position which can be used as inputs for branch diameter and mortality models.  相似文献   

2.
The production and allocation of aboveground biomass and the characteristics of tree architecture were examined in eight-year-old Scots pine (Pinus sylvestris L.). Considerable among-tree variation existed in tree architecture, total aboveground dry mass production, and dry mass partitioning among tree parts. A linear relationship existed between needle and branch mass. Stem mass was directly proportional to tree height, which in turn was directly proportional to the allocation ratio between stem mass and total needle + branch mass production. The architectural characteristics that were related to a high proportional allocation to stem and high stemwood production were a large mean shoot volume, large mean number of branches per whorl, long needle retention and a high crown length/crown width ratio. Individual trees were found that combined high stemwood production with both high harvest index and high stemwood specific gravity.  相似文献   

3.
Models of Douglas-fir branch and whorl characteristics were developed from contrasting spacing experiments in southwest Germany. The dataset was based on 100 young (20–30 years old), unpruned and partially pruned trees from a 100, 200, and 1200 stems ha−1 spacing experiment on Douglas-fir that was replicated 3 times across the region. The material was used to predict (1) the number of branches whorl−1, (2) branch angle, (3) status (living/dead) of the branches within the living crown, (4) maximum branch diameter whorl−1, and (5) relative diameter of branches within a whorl. For each of these models (except branch status), both a linear and nonlinear, generalised hierarchical mixed effects equation was developed. The comparison of the linear and nonlinear approaches showed that both had a relatively similar level of bias, but the nonlinear equations generally performed better (reduction in mean absolute error of 1.1–69.5%). Overall, individual branch and tree properties were sufficient to give logical and precise predictions of the branch characteristics for the models across the range of sampled stand densities. In addition, the models showed a similar behaviour compared to models on Douglas-fir crown structure from the Pacific Northwest, USA. This suggests that the allometric relationship between tree size and branch characteristics for a given species may be relatively consistent across regions, even ones with highly contrasting growing conditions like in this study. The models performed well across a range of stand conditions and now will be further integrated into an individual tree growth and yield simulations system.  相似文献   

4.
This study dealt with the effects of pruning on branch and leaf area (F a) production of ponderosa pines growing in silvopastoral systems in Patagonia. We hypothesized that pruning positively influences the number of branches per whorl and their basal area growth rate, changing F a production. In addition, we studied some water relations in order to explain potential differences in branch growth rates between treatments. Two mathematical models were developed to estimate branch and total F a. The averaged diameter at the third year of pruning was, for high-pruned trees 3.1 and 3.6 cm at the bottom and middle of the crown, against 4 and 4.4 cm for low-pruned trees. Pruning did not produce changes in the number of branches per whorl (approximately 7.6 branches per whorl). Water stress may be responsible of this lower branch growth in pruned trees. Water potential, stomatal conductance and transpiration were lower in high- than in low-pruned trees.  相似文献   

5.
It is recognized that estimation of internode length and maximum branch size is important for the prediction of clearwood in unpruned timber stands, as well as for evaluating the quality and value of logs in general. A review of existing branch models reveals a diversity of approaches as well as a tendency for results to be species specific. Here, a branch model is developed for Pinus radiata in New Zealand, capable of predicting successive internode lengths, the number of branches on each branch cluster, and the size of each branch up to the green crown (GC) at site index age 20. Inputs to the model include tree height and diameter at breast height (dbh) (both at age 20) and basal area per hectare of the top 100 stems. Further optional inputs are an ocular count of the number of branch clusters up to the green crown, and branch factor (BF)—the size of the biggest branch in the first cluster encountered above 6 m. The vertical distributions of internode length and maximum branch diameter are found to reach maxima around 0.3–0.4 of relative height. Internode length and the number of branches per whorl were found to be independent of tree size, site index and stand density. Stems per hectare is not required as an explicit predictor variable but it appears implicitly through tree dbh. Some model output is given and the results are discussed.  相似文献   

6.
Both crown and branch characteristics greatly affect tree growth and timber quality, and their development is closely related to planting density (PD). Here crown and branch attributes of Betula alnoides were investigated in a 14-year-old experimental plantation in southern China with five planting densities ranging from 500 to 3333 stems per hectare (sph). The results showed that high PD significantly reduced crown and branch sizes. The ratios of crown diameter to stem diameter at breast height at the stand level and for dominant and co-dominant trees were almost constant regardless of PD. PD also had no significant influence on the number and angle of branches, and only planting with the highest density significantly increased branch density and mortality. Insertion angle (IA) of dead branches was greater than that of live branches and these differences were significant at the two low planting densities (833 and 500?sph). Linear mixed models revealed that branch diameter (BD) was negatively correlated with its relative height in the crown and IA. The binary-logistic regression model indicated that branch status (live or dead) was codetermined by BD and PD. These findings can help farmers cultivate high-quality wood of B. alnoides and obtain a higher economic return.  相似文献   

7.
Total foliage dry mass and leaf area at the canopy hierarchical level of needle, shoot, branch and crown were measured in 48 trees harvested from a 14-year-old loblolly pine (Pinus taeda L.) plantation, six growing seasons after thinning and fertilization treatments.

In the unthinned treatment, upper crown needles were heavier and had more leaf area than lower crown needles. Branch- and crown-level leaf area of the thinned trees increased 91 and 109%, respectively, and whole-crown foliage biomass doubled. The increased crown leaf area was a result of more live branches and foliated shoots and larger branch sizes in the thinned treatment. Branch leaf area increased with increasing crown depth from the top to the mid-crown and decreased towards the base of the crown. Thinning stimulated foliage growth chiefly in the lower crown. At the same crown depth in the lower crown, branch leaf area was greater in the thinned treatment than in the unthinned treatment. Maximum leaf area per branch was located nearly 3–4 m below the top of the crown in the unthinned treatment and 4–5 m in the thinned treatment. Leaf area of the thinned-treatment trees increased 70% in the upper crown and 130% in the lower crown. Fertilization enhanced needle size and leaf area in the upper crown, but had no effect on leaf area and other variables at the shoot, branch and crown level. We conclude that the thinning-induced increase in light penetration within the canopy leads to increased branch size and crown leaf area. However, the branch and crown attributes have little response to fertilization and its interaction with thinning.  相似文献   


8.
The effects of pre-commercial thinning on tree and branch characteristicswere analysed at two experimental sites in northern Sweden,where pre-thinning of Scots pine stands to 600, 1000 and 1800stems per hectares at heights of 1.5, 3, 5 and 7 m had beencombined in a factorial design. A total of 90 trees were cutand branches were measured in whorls sampled at 1-m intervals,starting with the whorl closest to 0.5 m above ground. Effectsof the treatments on tree and branch characteristics were analysedby a fixed-effect analysis of variance model, which was appliedseparately for each experimental site and whorl height. Diameterat breast height (d.b.h.) and living crown to height ratio decreased,while the height/d.b.h. ratio (stem form) increased with increasingstand density, and generally with increased height at thinning.No treatment effect was found on the number of branches perwhorl or branch angle, but branch diameter (BD) was significantlyinfluenced by both stand density after thinning and height atthinning. BD decreased with increases in stand density and decreasedwith increases in height at pre-commercial thinning. Relativebranch size (RBS), defined as the ratio between the sum of thediameters of branches in a whorl and stem perimeter under barkat the location of that whorl, was significantly influencedonly by stand height at the time of treatment. RBS decreasedby 4–6 per cent in whorls located below the current baseof the living crown with each step increase in stand heightat pre-commercial thinning. The results indicate that the numberof stems after pre-commercial thinning has a greater impacton tree size and shape than timing of pre-commercial thinning.Stand density after thinning also has a greater impact on branchsize, in the sense that it will affect branch size further upthe tree than the timing of pre-commercial thinning. However,by delaying the time for pre-commercial thinning it is possibleto reduce the RBS in the lower part of the stem. This mightbe an important measure to improve timber quality later in therotation period, which cannot be done solely by regulating standdensity.  相似文献   

9.
Sample tree material was reanalyzed in order to study the relationships between horizontal crown projected area and components of above-ground biomass in Norway spruce (Picea abies (L.) Karst.) trees growing in even-aged stands. The needle mass of dominant trees increased linearly with the increase in crown projected area, but in co-dominant and dominanted trees the increase in needle mass levelled off toward larger crown projected areas. The branch mass of dominant and co-dominant trees accumulated faster than linearly with increasing crown projected area, whereas in dominated trees an approximately linear relationship existed between these two variables. The increase in needle and branch mass per unit increase in crown projected area was highest in dominant trees and decreased to co-dominant and dominated trees, i.e. with tree position in the canopy. The stem mass accumulated obviously faster than linearly and similarly in all tree classes with the increase in crown projected area. The narrow crown shape indicated a high density of all components of above-ground biomass per unit of crown projected area.  相似文献   

10.
Quantitative models of crown structure have been developed for several conifer species, but these studies have rarely simultaneously fit the models across multiple species. This study used extensive crown structure data for the five primary conifer species in Maine to test for species differences in maximum branch diameter profile, branch density, and relative branch diameter distribution. The species included balsam fir [Abies balsamea (L.) Mill], northern white-cedar [Thuja occidentalis (L.)], eastern hemlock [Tsuga canadensis (L.) Carr.], eastern white pine [Pinus strobus (L.)], and red spruce [Picea rubens (Sarg.)]. After accounting for key covariates, significant species differences were found in all crown structural attributes examined in this study. Profiles for the mean tree indicated that northern white-cedar had the smallest maximum branch diameters throughout the crown and white pine had the largest, except near the base of the crown where the species switched in rank. The density of live branches in a crown had the widest range of variation of the examined crown structural attributes. Red spruce had a significantly higher density of primary branches than the other conifers, particularly in the upper crown. The relative branch diameter distribution indicated that balsam fir had a distribution more skewed towards larger relative branch sizes, while eastern hemlock and red spruce had distributions shifted towards smaller relative branches. This study highlights the range of variability in key crown structural attributes due to inherent species differences, but indicates that models fit across multiple species can perform quite well as the amount of explained variation was relatively high.  相似文献   

11.
Individual and family heritabilities, as well as phenotypic and genetic correlations were estimated 2 and 3 years after plantation, in progeny tests carried out in plantations of open-pollinated Pinus radiata D.Don progeny located at three different sites in Galicia (NW Spain). The following factors were considered: survival, growth (free growth, height, diameter, volume, height/diameter ratio), form (number of branches, number of whorls, number of branches per whorl, number of branches per tree height meter, number of ramicorn branches, diameter of the thickest branch, internode length, branch angle, stem straightness, stem sinuosity, number of forks) and resistance (frost and insect resistance). Each plantation contained 50 female parents that had been selected as plus trees in genetically unimproved plantations in Galicia, as well as 6 female parents selected from the radiata pine breeding programme in the Basque Country (northern Spain) and two commercial lots of seed from Galicia, as controls. Individual heritabilities varied from low to high levels for each trait studied. Family heritabilities followed similar trends for individual heritabilities, but were of much greater magnitude. The results suggested that all traits except the number of branches per whorl and insect resistance could be expected to respond to selection based on individual performance. The less heritable traits could be improved by progeny testing. Height and diameter were strongly and positively correlated, and both traits were also correlated with the number of branches, the number of whorls and the branch diameter. The results are compared with previously published data and discussed in relation to the implications for breeding activities.  相似文献   

12.
长白落叶松人工林树冠形状的模拟   总被引:17,自引:3,他引:17  
李凤日 《林业科学》2004,40(5):16-24
以长白山地区 2 6a生长白落叶松人工林为研究对象 ,采用枝解析的方法 ,测定了 2 5株林木 (直径 10 5~2 4 9cm)的树冠变量 ,并建立了预测树冠外侧形状的冠形模型。基于枝条着枝深度 (DINC)和林木变量所建立的树冠形状模型包括 :基径、枝长、着枝角度和弦长等预估模型。对于大小相同树木的主要枝条来讲 ,这些树冠变量是随着DINC的增加而增大 ;而林木的胸径 (DBH)和树高 (HT)变量很好地反映了不同大小树木的冠形变化。冠形预测模型预测效果良好 ,充分体现了树冠结构的变化趋势 :树冠形状在树冠的中上部呈抛物线体 ,而在树冠的下部则为近圆柱体。文中所建模型 ,可以合理地描述长白落叶松人工林的树冠形状及其变化规律。  相似文献   

13.
Ritchie GA  Keeley JW 《Tree physiology》1994,14(11):1245-1259
Two experiments were conducted to characterize changes associated with ontogenetic aging in coastal Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and to identify possible maturation "markers" for this species. In the first experiment (Experiment 1), scions of ages 1, 4 and 9 years were collected from four seed zones in field progeny tests and grafted onto 1-year-old rootstocks. In Experiment 2, scions from five full-sib families of ages 1 and 10 years were collected from one progeny test and similarly grafted. Grafts for both experiments were planted in the field in a completely randomized design. The grafts were measured after two and six growing seasons. In Experiment 1, graft diameter, number of terminal bud flushes per year, number of branches, and branch length decreased with age. Plagiotropic angle and needle weight increased. All variables except needle length had a significant age x seed zone interaction. After 6 years, internodal stem diameters, numbers of nodal and internodal branches, and length and diameter of internodal branches decreased with age, and there were age x seed zone interactions with most variables. In Experiment 2, graft height and diameter, number of flushes, number and size of lateral branches, needle length and weight decreased with age. After 6 years, height and diameter, size and number of nodal and internodal branches, and leaf chlorophyll concentration (measured in April) decreased, but there were relatively few age x family interactions. An analysis based on traits that were significantly affected by age, but that did not interact with seed zone or family, indicated that main stem diameter, nodal branch length and nodal branch diameter were the most consistent and reliable maturation markers.  相似文献   

14.
The aim of this study was to develop models on occluded branch characteristics for Fagus sylvatica (beech) based on 41 sample trees. A total of 717 beech branches were sampled; this information was then used to predict (1) the time for a complete occlusion, (2) the total radius of the occluded branch inside the trunk, (3) the branch insertion angle at the year of its death and during branch development, and (4) the dead branch portion of the occluded branch (loose knot). Generalized hierarchical mixed models with nonlinear forms were used in this analysis. The models explained between 6.3 and 52.2% of the total variance (including random effects 23.8–77.1%). The diameter of the occluded branch and the stem radial increment played dominant roles as predictors. Larger branches showed a significantly longer occlusion time, a larger occluded branch radius, a steeper insertion angle, and a higher loose knot portion. Simulations showed a biologically reasonable overall behavior of the models. The residual variation was tolerable for integrating the models into a growth simulation system.  相似文献   

15.
Light-related plasticity in a variety of crown morphology and within-tree characteristics was examined in sun and shade saplings of Abies amabilis Dougl. ex J. Forbes growing in two late-successional forests with different snow regimes in the Cascade Mountains of Washington, USA. Compared with sun saplings, shade saplings typically had broad flat crowns as a result of acclimation at several scales (needle, shoot, branch, crown and whole sapling). Shoots of shade saplings had a smaller needle mass per unit of stem length than shoots of sun saplings, a feature that enhances light-interception efficiency by reducing among-needle shading. The low annual rate of needle production by shade saplings was associated with a longer needle lifespan and slower needle turnover. Reduced needle production within a shoot was reflected at the branch level, with lateral branches of shade saplings having a smaller needle mass than branches of the same length of sun saplings. Reduced allocation to needles permits greater investment in branches and stems, which is necessary to support the horizontally expanding branch system characteristic of shade saplings. Mean branch age of shade saplings was significantly higher than that of sun saplings. Shade saplings had lower needle mass per unit of trunk biomass or total biomass, reflecting greater investment in the trunk as a support organ. Increased investment in support organs in shade was more evident in the snowier habitat. The observed morphological acclimation makes A. amabilis highly shade and snow-tolerant and thus able to dominate in many late-successional forests in snowy coastal mountain regions.  相似文献   

16.
Modeling jack pine branch characteristics in Eastern Canada   总被引:2,自引:0,他引:2  
A total of 83 trees were sampled in three regions of Eastern Canada in order to model branch characteristics (number of branches per annual shoot, branch insertion angle and diameter) using linear mixed-effects models. Differences in branch characteristics according to branch type (pseudo-whorl at annual shoot apical end (PWA) versus pseudo-whorl between shoot apical ends (PWB)) were also studied. The number of both PWA and PWB branches are proportional to annual shoot length, whereas the number of PWB branches also decreases with tree age. Insertion angle was mainly driven by annual shoot number from apex (branch age). The diameter models showed the most complexity with branch vertical position and tree size (DBH and total height) among the statistically significant variables. Region and plot random effects were minimal compared with tree and annual shoot levels. Tree-level random effects were significant for every model and might be a symptom of genetic control over the number of branches and, to a small extent, branch diameter. Interaction between insertion angle and diameter is relatively strong because all the models using them as independent variables (except for the model of insertion angle for PWB branches) showed better fit statistics. These results lead us to believe that tree-, annual shoot- and branch-level variables should be further explored in order to better understand branch dynamics.  相似文献   

17.
Forest floor characteristics influence nutrient cycling and energy flow properties of forest ecosystems, and determine quality of habitat for many forest plants and animals. Differential crown recession and crown development among stands of differing density suggest that an opportunity may exist to control the input of fine woody litter into the system by manipulating stand density. The objective was to measure the rate of branch mortality among stands of differing density and to estimate the range in total per hectare necromass inputs. Although litter traps are reliable for estimating per hectare rates of litterfall, branch mortality dating on sectioned stems uniquely allows assessment of several other litterfall components: (1) individual tree contributions to total litterfall; (2) the amount of branch material released by mortality, regardless of whether the branches are shed to the forest floor; (3) the distribution of basal diameters characterizing the litterfall from a given tree and stand. Twenty-four trees were felled and sectioned on permanent plots that were part of a silvicultural study of stand density regimes in Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco.). Whorl branches were dissected out of bole sections to determine the dates of mortality, and a branch biomass equation was applied to estimate potential rate of litterfall. Periodic annual rates were expressed in four ways: (1) number of branches per tree; (2) mass of branches per tree; (3) mass of branches per unit of crown projection area; (4) mass of branches per hectare. For the growth periods investigated, larger trees and trees growing on denser plots tended to release a greater necromass through branch mortality. Average branch basal diameter generally decreased with increasing stand density. Annual branch mortality ranged from 33 to 430 g m−2 crown projection area for individual trees, and from 236 to 1035 kg ha−1 for individual plots. These rates approached the low end of the range of previously published fine litterfall rates for Douglas-fir. Rates on these plots were relatively low owing to the temporary delay in crown recession imposed by artificial thinning. A conceptual model of branch litter dynamics is presented to depict consistencies with crown development among stands managed under different density regimes.  相似文献   

18.
文章以广东省湛江特呈岛高潮带、中潮带、低潮带白骨壤纯林为研究对象,调查了其树高、地径、冠长、冠幅以及分枝角度等,揭示了其生长及树冠特征.结果表明:不同潮带间白骨壤冠幅及树冠面积差异不显著(P>0.05),而树高、地径、冠长及树冠体积均存在显著差异(P<0.05),中潮带、高潮带与低潮带的树冠体积分别达31.522,15...  相似文献   

19.
Static models of individual tree crown attributes such as height to crown base and maximum branch diameter profile have been developed for several commercially important species. Dynamic models of individual branch growth and mortality have received less attention, but have generally been developed retrospectively by dissecting felled trees; however, this approach is limited by the lack of historic stand data and the difficulty in determining the exact timing of branch death. This study monitored the development of individual branches on 103 stems located on a variety of silvicultural trials in the Pacific Northwest, USA. The results indicated that branch growth and mortality were significantly influenced by precommercial thinning (PCT), commercial thinning, fertilization, vegetation management, and a foliar disease known as Swiss needle cast [caused by Phaeocryptopus gaeumannii (T. Rohde) Petr.]. Models developed across these datasets accounted for treatment effects through variables such as tree basal area growth and the size of the crown. Insertion of the branch growth and mortality equations into an individual-tree modeling framework, significantly improved short-term predictions of crown recession on an independent series of silvicultural trials, which increased mean accuracy of diameter growth prediction (reduction in mean bias). However, the static height to crown base equation resulted in a lower mean square error for the tree diameter and height growth predictions. Overall, individual branches were found to be highly responsive to changes in stand conditions imposed by silvicultural treatments, and therefore represent an important mechanism explaining tree and stand growth responses.  相似文献   

20.
Forty-two genotypes were evaluated for juvenile wood yield and its components at three locations in Bihar, India. A significant difference was observed among the genotypes for all the characters under study. The highest value of genotypic and phenotypic coefficients of variation was observed in juvenile wood volume followed by diameter at breast height (DBH). Characters like plant height, clear bole height, crown diameter number of branches, angle of branch, diameter of branch, and length of branch showed moderate values for genotypic and phenotypic coefficients of variation. Very high heritability was estimated for clear bole height, crown diameter, angle of branch, and length of branch. Diameter and plant height showed moderate to high heritability. Relatively genetic advance expressed in percentage of mean or genetic gain was observed the highest in volume (30.86%), DBH (18.96), clear bole height (17.19%), angle of branch (17.39), length of branch (19.53), and in plant height (11.87%). Juvenile wood volume per plant showed significant and positive correlation with height (0.619), diameter (DBH, 0.770), clear hole height (0.305), number of branch (0.372); and positive association with crown diameter (0.145), angle of branch (0.055), diameter of branch (0.251), length of branch (0.200), and survival (0.166); and significant negative correlation with taper (?0.499) at the phenotypic level. In phenotypic path analysis diameter (DBH, 0.702), plant height (0.169), crown diameter (0.121), taper (0.027), and survival (0.050) showed positive direct effect on juvenile wood volume. The direct impact of the same through clear bole height (?0.366), number of branch (?0.130), angle of branch (?0.228), and length of branch (?1.567) was negative. Hence it is suggested that due importance should be given to diameter (DBH), plant height, crown diameter, diameter of branch, taper, and survival for selection of superior plant with high juvenile wood yield potential in poplar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号