首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in the morphology and functions of vacuoles provide useful information about the mechanism of cell death. In the present study, we monitored the morphology and contents of vacuoles during the death of ray parenchyma cells in the conifer Cryptomeria japonica. In differentiating xylem, ray parenchyma cells had large central vacuoles. In sapwood, vacuoles in ray parenchyma cells contained proteins, an indication that one of the main functions of these vacuoles might be protein storage. A dramatic decrease in the protein content of some vacuoles was detected in the intermediate wood before the initiation of vacuole rupture. Although vacuole rupture was detected from the intermediate wood to the outermost heartwood, some vacuoles were obviously enlarged in the inner intermediate wood. Condensed nuclei were first observed after the rupture of these large vacuoles in ray parenchyma cells. It seems plausible that the autolysis of the contents of ray parenchyma cells might be caused by the rupture of the enlarged vacuoles in the inner intermediate wood.  相似文献   

2.
The effects of excess nitrogen fertilization on the structure of Scots-pine needles (Pinus sylvestris) were examined in Finnish Lapland. The trees were fertilized with calcium ammonium-nitrate, and the levels of nitrogen applied were 0, 75, 150, 250, 500 and 1000 kg N/ha, respectively. The thickness and width of the needle and thicknesses of the tissues were measured, and the conditions of various celltypes were classified at the light-microscopy level. In addition, the areas of the cell organelles were measured and the conditions of the chlomplasts and other cell compartments observed at the ultrastructural level. Larger needles and a thicker adaxial mesophyll were observed following excess N application (250–1000 kg N/ha). The natural xeromorphic structure of the conifer needles became more mesomorphic, possibly influencing the protection afforded against environmental stresses. A high level of nitrogen fertilization caused changes in the central cylinder, especially in the vascular bundle and the sclerenchyma. The needle nitrogen concentration was high in the highly fertilized trees and the boron concentration was simultaneously extremely low. As a consequence of the changes in the central cylinder, photoassimilate transport from the mesophyll to the phloem may be disturbed at high fertilization levels. The changes at the ultrastructural level, i.e. injuries to the chloroplast thylakoids and the plasma membrane, and the formation of lipid accumulations, were indicators of the adverse effects of excess nitrogen. With an increasing atmospheric-nitrogen load, lower nitrogen fertilization levels in pine forests naturally adapted to low soil N should be considered in forest management.  相似文献   

3.
Niinemets U 《Tree physiology》1997,17(11):723-732
Leaf retention time increases with decreasing irradiance, providing an effective way of amortizing the costs of foliage construction over time. To elucidate the physiological mechanisms underlying this dependence, I studied needle life span, morphology, and concentrations of carbon, nitrogen and nonstructural carbohydrates along a gradient of relative irradiance in understory trees of Picea abies (L.) Karst. Maximum needle life span was greater in shaded trees than in sun-exposed trees. However, irrespective of irradiance, needles with maximum longevity were situated in the middle rather than the bottom of the canopy, suggesting that needle life span is determined by the irradiance to which needles are exposed during their primary growth. Morphology and chemistry of current-year needles were adapted to prevailing light conditions. Current-year needles exposed to high irradiances had greater packing of foliar biomass per unit area than shaded needles, whereas shaded needles maximized foliar area to capture more light. Nitrogen concentrations were higher in shaded needles than in sun-exposed needles. This nitrogen distribution pattern was related to the high nitrogen cost of light interception and was assumed to improve light absorptance per needle mass of shaded needles. In contrast, in both 1- and 2-year-old needles, morphology was independent of prevailing light conditions; however, needle nitrogen concentrations were adjusted toward more effective light interception in 2-year-old foliage but not in 1-year-old foliage, indicating that acclimation of sun-adapted needles to shading takes more than one year. At the same time, needle aging was accompanied by accumulation of nonstructural carbohydrates (NSC), and increasing concentrations of needle carbon, suggesting a shift in the balance between photosynthesis and photosynthate export. The accumulation of NSC and carbon resulted in a dilution of the concentrations of other needle chemicals and explained the decline in needle nitrogen concentrations with increasing age. Thus, although morphological inadequacy to low light availabilities may partly be compensated for by modifications in needle chemistry, age-related changes in needle stoichiometric composition progressively lessen the potential for acclimation to low irradiance. A conceptual model, advanced to explain how environmental factors and age-related changes in the activities of needle xylem and phloem transport affect needle longevity, predicted that adaptation of needle morphology to irradiance during the primary growth period largely determines the fate of needles during subsequent tree growth and development.  相似文献   

4.
Seasonal patterns of carbohydrate concentration in coarse and fine roots, stem or bole, and foliage of ponderosa pine (Pinus ponderosa Laws) were described across five tree-age classes from seedlings to mature trees at an atmospherically clean site. Relative to all other tree-age classes, seedlings exhibited greater tissue carbohydrate concentration in stems and foliage, and greater shifts in the time at which maximum and minimum carbohydrate concentration occurred. To determine the effect of environmental stressors on tissue carbohydrate concentration, two tree-age classes (40-year-old and mature) were compared at three sites along a well-established, long-term O3 and N deposition gradient in the San Bernardino Mountains, California. Maximum carbohydrate concentration of 1-year-old needles declined with increasing pollution exposure in both tree-age classes. Maximum fine root monosaccharide concentration was depressed for both 40-year-old and mature trees at the most polluted site. Maximum coarse and fine root starch concentrations were significantly depressed at the most polluted site in mature trees. Maximum bole carbohydrate concentration of 40-year-old trees was greater for the two most polluted sites relative to the cleanest site: the bole appeared to be a storage organ at sites where high O3 and high N deposition decreased root biomass.  相似文献   

5.
Morphological differences between old-growth trees and saplings of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) may extend to differences in needle anatomy. We used microscopy with image analysis to compare and quantify anatomical parameters in cross sections of previous-year needles of old-growth Douglas-fir trees and saplings at the Wind River Canopy Crane site in Washington and at three sites in the Cascade Mountains of Oregon. We also compared needle anatomy across a chronosequence of 10-, 20-, 40- and 450-year-old Douglas-fir trees from the Wind River site. Anatomy differed significantly between needles of old-growth trees and saplings at all sites, suggesting a developmental change in needle anatomy with increasing tree age. Compared with needles of old-growth trees, needles of saplings were longer and had proportionately smaller vascular cylinders, larger resin canals and few hypodermal cells. Astrosclereids, which sequester lignin in their secondary cell walls and occupy space otherwise filled by photosynthetic cells, were scarce in needles of saplings but abundant in needles of old-growth trees. Needles of old-growth trees had an average of 11% less photosynthetic mesophyll area than needles of saplings. The percentage of non-photosynthetic area in needles increased significantly with increasing tree age from the chronosequence of 10-, 20-, 40- and 450-year-old trees at the Wind River site. This reduction in photosynthetic area may contribute to decreased growth rates in old trees.  相似文献   

6.
The chemical analysis of needles and wood of roots of trees belonging to four stages of disease caused by A. mellea in fertilized (N, P, K, Ca, Mg) and non-fertilized three Scotch Pine plantations were made. The attack caused gradual interruption of absorption and resulted in the exhaustion of some elements (N, P) and concentration of other ones (K, Ca) in needles and in the decrease of P and transitional growth of Mg-level in wood of roots. Considerable growth of concentration of some chemical substances in wood of roots of dead trees was observed. This referred to the fertilized and nonfertilized trees as well. The rate of these changes, however, was different after treatment: fertilization had no effect on the concentration of K in needles of trees in intermediate stages of disease, but it influenced in the lower rate the exhaustion of Mg in wood of roots. The role of K and Mg in defensive reactions is discussed.  相似文献   

7.
Effects of elevated CO2 concentration ([CO2]) on carbon assimilation and needle biochemistry of fertilized and unfertilized 25-30-year-old Scots pine (Pinus sylvestris L.) trees were studied in a branch bag experiment set up in a naturally regenerated stand. In each tree, one branch was enclosed in a bag supplied with ambient [CO2] (360 micromol mol(-1)), a second branch was enclosed in a bag supplied with elevated [CO2] (680 micromol(-1)) and a control branch was left unbagged. The CO2 treatments were applied from April 15 to September 15, starting in 1993 for unfertilized trees and in 1994 for fertilized trees, which were treated with N in June 1994. Net photosynthesis, amount and activity of Rubisco, N, starch, C:N ratio and SLA of needles were measured during the growing season of 1995. Light-saturated net photosynthetic rates of 1-year-old and current-year shoots measured at ambient [CO2] were not affected by growth [CO2] or N fertilization. Elevated [CO2] reduced the amount and activity of Rubisco, and the relative proportion of Rubisco to soluble proteins and N in needles of unfertilized trees. Elevated [CO2] also reduced the chlorophyll concentration (fresh weight basis) of needles of unfertilized trees. Soluble protein concentration of needles was not affected by growth [CO2]. Elevated [CO2] decreased the Rubisco:chlorophyll ratio in unfertilized and fertilized trees. Starch concentration was significantly increased at elevated [CO2] only in 1-year-old needles of fertilized trees. Elevated [CO2] reduced needle N concentration on a dry weight or structural basis (dry weight minus starch) in unfertilized trees, resulting in an increase in needle C:N ratio. Fertilization had no effect on soluble protein, chlorophyll, Rubisco or N concentration of needles. The decrease in the relative proportions of Rubisco and N concentration in needles of unfertilized trees at elevated [CO2] indicates reallocation of N resources away from Rubisco to nonphotosynthetic processes in other plant parts. Acclimation occurred in a single branch exposed to high [CO2], despite the large sink of the tree. The responses of 1-year-old and current-year needles to elevation of growth [CO2] were similar.  相似文献   

8.
Jiang M  Jagels R 《Tree physiology》1999,19(14):909-916
Five-year-old red spruce saplings (Picea rubens Sarg.) were exposed to either (1) acid fog consisting of a mixture of H(2)SO(4) and HNO(3) adjusted to pH 2.5, (2) distilled-water fog at pH 5.6, or (3) no fog (dry control) for 3.5 hours per day, five times a week during the 1996 and 1997 growing seasons. The effect of fog on cell membrane-associated calcium (mCa) of leaf mesophyll cells was investigated with the fluorescence probe chlortetracycline (CTC). In both years, mean mCa concentrations were significantly less in needles exposed to acid fog than in needles exposed to distilled-water fog or in untreated needles. In 1997, acid-fog treatment resulted in 25 and 12% reductions in mCa in current-year needles, and 18 and 15% reductions in 1-year-old needles, compared with untreated needles and needles exposed to distilled-water fog, respectively, indicating that acid deposition induced calcium leaching from the membranes of photosynthetic mesophyll cells. Exposure to distilled-water fog also led to reductions in mCa in young needles, suggesting that water films on needle surfaces can induce losses by diffusion between the needle interior and surface. Consistent with the chamber studies, field data obtained from red spruce trees at two sites in Maine showed that low mCa concentrations in needles were associated with exposure to acid fog.  相似文献   

9.
We examined the pattern of seasonal variation in total foliar calcium (Ca) pools and plasma membrane-associated Ca (mCa) in mesophyll cells of current-year and 1-year-old needles of red spruce (Picea rubens Sarg.) and the relationship between mCa and total foliar Ca on an individual plant and seasonal basis. Foliar samples were collected from seedlings and analyzed on 16 dated at 2- to 3-week intervals between June 1994 and March 1995. Concentrations of mCa in current-year needles were more seasonally dynamic and responsive to temporal environmental changes than either mCa concentrations of 1-year-old needles, which were largely stable, or total foliar Ca concentrations in both tissues. In current-year needles, mCa was barely evident in early summer, increased steadily through summer, and then increased dramatically in early fall and surpassed the concentration in 1-year-old needles. Coincident with the first severe frost, mCa concentrations in current-year needles declined significantly and subsequently maintained concentrations comparable to those of 1-year-old needles. Following an extended January thaw, which included 5 days of minimum temperatures > 5 degrees C, mCa concentrations of current-year needles temporarily, but significantly, declined. However, there was no change in mCa concentrations of 1-year-old needles or total Ca concentrations of either tissue. Total Ca concentrations were stable through midsummer in both tissues, doubled in late summer, and then were stable in both tissues throughout fall and winter. Total Ca concentrations were consistently higher in 1-year-old than in current-year needles. Correlations between concentrations of mCa and total foliar Ca were consistently low and mostly nonsignificant. Thus, the dominant, but insoluble, extracellular Ca pool reflected in commonly measured total foliar Ca concentrations is not a meaningful surrogate for the physiologically important and labile pool associated with the plasma membrane-cell wall compartment of red spruce mesophyll cells. It is likely that shifts in the critical mCa compartment would not be detected by analysis of total foliar Ca pools. Seasonal changes in mCa concentration seemed to parallel seasonal changes in membrane structure, and possibly the important role of extracellular Ca in transducing messages associated with environmental signals.  相似文献   

10.
Uptake and efflux of (36)Cl(-), (45)Ca(2+) and (42)K(+) were measured in water-infiltrated detached needles from Sitka spruce (Picea sitchensis (Bong.) Carr.) trees incubated in 1 mol m(-3) KCl or CaCl(2) or 2 mol m(-3) NaCl solutions or in artificial rain water containing mmol m(-3) amounts of these ions. Surface efflux was measured separately from leakage from the cut ends of the needles. Needles loaded with (36)Cl(-) and killed in liquid N(2) before elution displayed a rapid and extensive loss of radioisotope, indicating that mesophyll cell membranes were the limiting factor for (36)Cl(-) exchange. Data for live needles revealed a novel phase of (36)Cl(-) efflux, with an exchange halftime of about 20 min, which was faster than that for either the vacuole or the cytoplasm, but much slower than that for the free space. The novel phase was interpreted as representing diffusion of Cl(-) through the predominantly negatively charged cuticle. Killing needles loaded with (45)Ca(2+) or (42)K(+) also increased efflux relative to that from live needles, but only to a limited degree, indicating that the main factor limiting cation efflux was the cuticle. During the first hours of (45)Ca(2+) uptake, the isotherms displayed a shoulder, indicating that there was a significant Donnan free space phase in the cuticle for Ca(2+). A shoulder was absent from (42)K(+) uptake isotherms because of the preferential adsorption of divalent cations on the exchange sites.  相似文献   

11.
Abstract

Wood ash treatment can probably increase forest productivity on low fertility sites. However, the resulting effect on the carbohydrate concentration as the main carbon and energy reserve in trees is little studied. In 2000, a square of 0.1 ha sandy soil below a 19-year-old Scots pine (Pinus sylvestris) plantation was treated with raw fly ash (0.5 kg.m-2); untreated square was used as control. One year after the treatment, carbohydrates (glucose, fructose, sucrose, maltodextrins, starch and excess bound fructose) were analyzed enzymatically from current-year and one-year-old needles. The ratio K/N in needles suggested an improved balance between these elements in treated trees, in which the K concentration was higher. The largest relative differences (50% of control) were observed in glucose and fructose in summer. The squares did not differ in the concentration of the accumulated carbohydrate reserves in needles during low temperature stress in winter and before the growth of new shoots in spring. During the vegetation period decreased levels of soluble carbohydrates and starch were observed (max 70% of the control value around 100 mg total carbohydrates g-1 dry mass). Because the experiment was designed without true replicates, reasons for the observed differences require further study.  相似文献   

12.
Three-year-old Scots pine (Pinus sylvestris L.) seedlings were exposed to either ambient or elevated (1.5-1.6 x ambient) ozone concentration ([O3]) for three growing seasons in an open-field fumigation facility where they were irrigated during the growing season with a nutrient solution providing nitrogen (N) at 70 (LN treatment), 100 (control) or 150% (HN treatment) of the optimum supply rate. Treatment effects were most evident during the third year of exposure, when the ambient [O3] + HN treatment enhanced whole-plant biomass, root/shoot dry weight ratio, needle pigment concentrations and the number of chloroplast plastoglobuli in the mesophyll cells in current-year (C) needles, whereas it reduced starch accumulation in C needles and abscission of 2-year-old (C+2) needles. In the control fertilization, 3 years of exposure to elevated [O3] decreased stem-base diameter and increased K concentration and electron density of chloroplast stroma in C needles. Plants in the HN treatment exposed for 3 years to elevated [O3] had significantly lower heights, current-year main shoot length and root/shoot dry mass ratio than control plants, and increased abscission of C+2 needles. In contrast, O3-induced changes in the ultrastructure of mesophyll cells were most evident in seedlings grown for 3 years in the LN treatment. We conclude that, in Scots pine, a relatively O3-tolerant species, chronic O3 exposure leads to cumulative growth reduction, increased needle abscission and changes in carbon allocation that are strongly influenced by plant N availability.  相似文献   

13.
Abstract

Nutrient content [nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg)] in needles, branches and stems before (P0, not thinned) and after thinning (P20 and P30, 20% and 30% of basal area removed, respectively) was studied in 37- and 32-year-old Pinus sylvestris L. forests in the western Pyrenees: Garde and Aspurz. Thinning significantly decreased all nutrient pools in P20 and P30 relative to P0 on both sites, but no significant differences were found between P20 and P30 owing to low statistical power. Thinning increased the differences between the two forests for total above-ground content of P and Mg, and for the content of N, P and K in the 1999 needles cohort. The former result was due in part to the higher concentration of P (needles and branches) and Mg (needles) in Garde. Therefore, the importance of needles relative to the other nutrient pools increased for N and P after thinning. This may have resulted from the fact that the removal of dead trees with low needle biomass was greater in Garde than in Aspurz. Based on the percentage of basal area removed, nutrient removal in Garde for P30 was higher than expected, apparently owing to an increase in branch removal relative to P20. These results indicate that effects of thinning on nutrient pools were influenced by differences in stand structure and nutrient tissue concentrations between sites.  相似文献   

14.
The research site, Wingst Compartment 123B, is a 68-year-old Norway spruce (Picea abies (Karst.)) stand located in the coastal area of northern Germany. This area receives high atmospheric inputs of ammonium and also has relatively high ozone concentrations (0.061 mg m−3).Ten trees were categorized as healthy to slightly damaged (3–29% needle loss) or severely damaged (49–71% needle loss). Apparent net photosynthetic rates were measured on detached branches at light saturation (1000 μE m−2 s−1). Needles were analyzed for chlorophyll, N, C, Ca, Mg, K, Zn, Mn and Fe.When compared to the healthy-to-slightly-damaged trees, the severely damaged trees tended to have higher rates of net apparent photosynthesis in the 1 and 2-year-old needles and similar rates in the current-year needles. All three needle ages from the severely damaged trees had higher average stomatal conductances to water vapor (gs. Although the damaged trees had significantly less total chlorophyll in all needle ages sampled, there was no statistically significant difference in the chlorophyll a:b ratio between the healthy and severely damaged trees.Nitrogen contents of the current-year needles were slightly lower in the severely damaged trees. Carbon and calcium levels did not significantly differ between the damage classes, although the average Ca content of all younger needles was generally under the recommended sufficiency levels. The current-year needles of the severely damaged trees had significantly less magnesium (0.42–0.46 mg Mg g−1) than those of the healthy trees, and all trees had Mg values in the deficiency range (< 0.7 mg g−1). The severely damaged trees also had lower average potassium levels in the older needles.The annual volume increment per unit crown surface area declined with increasing crown damage. Trees with a 50% needle loss showed a 62% loss of volume increment.Soil investigations revealed conditions of high soil acidity and poor nutrient capacity. The low pH values (pH < 3.8) in 64% of all samples indicated a high risk of acid toxicity for plant roots in the investigated area.The significance of these results relative to the current ideas concerning forest decline is discussed.  相似文献   

15.
Polyamine concentrations in consecutive radiata pine (Pinus radiata D. Don) grafts of 30-year-old trees on 1-year-old seedling rootstocks were analyzed by high performance liquid chromatography coupled with fluorescence detection to determine whether reinvigoration is associated with the recovery of polyamine concentrations typical of those in juvenile tissues. Reinvigoration of radiata pine was correlated with the attainment of some, but not all, polyamines characteristic of juvenile trees. In response to reinvigoration, free putrescine, the ratio of free polyamines to low molecular weight polyamine conjugates, and the relative content of putrescine versus spermidine plus spermine increased to values approaching those characteristic of juvenile tissue. In contrast, there was no noticeable change in the concentrations of low molecular weight polyamine conjugates during reinvigoration even though these conjugates increased greatly during tree maturation. We conclude that certain polyamines defined as reinvigoration markers can be used in forestry upgrading programs to assess the morphogenic ability of reinvigorated trees.  相似文献   

16.
Vascular tissues of needles and twigs of Norway spruce with low foliar magnesium concentrations were examined by light microscopy. Observations were made on samples from (1) apparently healthy trees, (2) trees exhibiting progressive symptoms of decline, including the yellowing and fall of needles and the death of twigs and branches in the subapical canopy, and (3) trees recovering from symptoms of decline after fertilization with magnesium sulfate. Abnormalities in cambium and phloem anatomy, which were apparent in 2-year-old needles of declining trees, were seen only in needles at least 4 years old in healthy trees, suggesting that needles of declining trees are susceptible to precocious aging. Abnormalities in xylem anatomy were observed in needles 3 years or more in age in declining trees, but were never seen in needles of healthy trees. Over time, anatomical abnormalities in declining trees were seen in progressively younger twigs, which may explain the acropetal development of decline symptoms. After fertilization with magnesium sulfate, normal phloem and xylem were observed in the newly formed tissues.  相似文献   

17.
Seasonal changes in amino acids, protein and total nitrogen in needles of 30-year-old, fertilized Scots pine (Pinus sylvestris L.) trees growing in Northern Sweden were investigated over two years in field experiments. The studied plots had been fertilized annually for 17 years with (i) a high level of N, (ii) a medium level of N, or (iii) a medium level of N, P and K. Trees growing on unfertilized plots served as controls. In control trees, glutamine, glutamic acid, gamma-aminobutyric acid, aspartic acid and proline represented 50-70% of the total free amino acids determined. Arginine was present only in low concentrations in control trees throughout the year, but it was usually the most abundant amino acid in fertilized trees. Glutamine concentrations were high during the spring and summer in both years of study, whereas proline concentrations were high in the spring but otherwise low throughout the year. In the first year of study, glutamic acid concentrations were high during the spring and summer, whereas gamma-aminobutyric acid was present in high concentrations during the winter months. This pattern was less pronounced in the second year of investigation. The concentrations of most amino acids, except glutamic acid, increased in response to fertilization. Nitrogen fertilization increased the foliar concentration of arginine from < 1 micromol g(dw) (-1) in control trees to a maximum of 110 micromol g(dw) (-1). Trees fertilized with nitrogen, phosphorus and potassium had significantly lower arginine concentrations than trees fertilized with the same amount of nitrogen only. Protein concentrations were similar in all fertilized trees but higher than those in control trees. For all treatments, protein concentrations were high in winter and at a minimum in early spring. In summer, the protein concentration remained almost constant except for a temporary decrease which coincided with the expansion of new shoots. Apart from arginine, the amino acid composition of proteins was similar in all treatments.  相似文献   

18.
Chrysomyxa rhododendri (DC.) De Bary is a needle rust with a host shift between Rhododendron sp. and Norway spruce (Picea abies (L.) Karst.), penetrating only the new developing flushes of the conifer. Because little is known about its effects on trees, we investigated several parameters related to photosynthesis in artificially infected 3-year-old Norway spruce seedlings. The potential efficiency of photosystem II (PSII; derived from chlorophyll fluorescence measurements) was reduced in infected current-year needles as soon as disease symptoms were visible, about three weeks after inoculation. Two weeks later, photosynthetic O(2) evolution (P(max)) of infected needles was less than 20% of control needles, whereas respiratory O(2) uptake (R(D)) was about three times higher than that of control needles. Nonstructural carbohydrate concentrations were about 60% of control values in all parts of the shoots of infected trees. Photosynthetic inhibition was associated with marked decreases in chlorophyll concentration and chlorophyll a/b ratio but only a small reduction in carotenoid concentration. In infected trees, P(max) of noninfected 1-year-old and 2-year-old needles was 50 and 80% higher than in the corresponding age class of needles of control trees. Estimation of potential daily net dry mass production, based on P(max), R(D), specific leaf area, carbon content and needle biomass, indicated that seedlings infected once were able to produce 60%, and those infected twice only 25%, of the dry mass of controls. We conclude that afforestation and regeneration of Norway spruce is seriously impaired in regions where seedlings are frequently attacked by Chrysomyxa.  相似文献   

19.
There is abundant evidence that evergreen conifers living at high elevations or at high latitudes have longer-lived needles than trees of the same species living elsewhere. This pattern is likely caused by the influence of low temperature in combination with related factors such as a short growing season and low nutrient availability. Because it is not known to what degree such patterns result from phenotypic versus genotypic variation, we evaluated needle longevity for common-garden-grown lowland populations of European Scots pine (Pinus sylvestris L.) of wide latitudinal origin and Norway spruce (Picea abies L.) of wide elevational origin. Nine-year-old trees of 16 Scots pine populations ranging in origin from 47 degrees to 60 degrees N were studied in Kórnik, Poland (52 degrees N) and 18-year-old trees of 18 Norway spruce populations ranging in origin from 670 to 1235 m elevation in southwestern Poland were studied near Morawina, Poland (51 degrees N, 180 m elevation). There was no tendency in either species for populations from northern or high elevation origins to retain needles longer than other populations. All of the Scots pine populations had between 2.5 to 3.0 needle age cohorts and all of the Norway spruce populations had between 6.4 and 7.2 needle age cohorts. Thus, extended needle retention in Scots pine and Norway spruce populations in low-temperature habitats at high elevations and high latitudes appears to be largely an environmentally regulated phenotypic acclimation.  相似文献   

20.
It is a well-described phenomenon that plant leaves respond to changes in light intensity and duration by adjusting leaf hydraulic efficiency, and there is current consensus that up- or down-regulation of water channels (aquaporins) in the plasma membrane of the bundle sheath and mesophyll cells play a central role in the underlying mechanisms. Recently, experimental evidence has been provided also for light-mediated changes of stem hydraulic conductance (K(stem)) in field-grown laurel plants. This effect was attributed to differences in potassium ion concentration of xylem sap as a function of light conditions. In the present article, we report evidence obtained in silver birch (Betula pendula Roth), supporting the concept of light-mediated modulation of K(stem). Both canopy position (long-term effect) and current photosynthetic photon flux density (PPFD; short-term effect) had a significant impact (P < 0.001) on K(stem) measured in shoots taken from the lower (shade shoots) and upper (sun shoots) third of the crowns of ~25-year-old trees growing in a natural forest stand. The shade shoots responded more sensitively to light manipulation: K(stem) increased by 51% in shade shoots and 26% in sun shoots when PPFD increased from 70 to 330 μmol m?2 s?1. In 4-year-old trees growing in a dense experimental plantation, K(stem), specific conductivity of branch-wood (k(bw)) and potassium ion concentration ([K(+)]) in xylem sap varied in accordance with canopy position (P < 0.001). Both K(stem) and k(bw) increased considerably with light availability, increasing within the tree crowns from bottom to top; there was a strong relationship between mean values of K(stem) and [K(+)] in hydraulically sampled branches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号