首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The stable oxygen isotope ratio (delta(18)O) of tree-ring cellulose is jointly determined by the delta(18)O of xylem water, the delta(18)O of atmospheric water vapor, the humidity of the atmosphere and perhaps by species-specific differences in leaf structure and function. Atmospheric humidity and the delta(18)O of water vapor vary seasonally and annually, but if the canopy atmosphere is well mixed, atmospheric characteristics should be uniform among co-occurring trees. In contrast, xylem water delta(18)O is determined by the delta(18)O of water being drawn from the soil, which varies with depth. If co-occurring trees draw water from different soil depths, this soil-water delta(18)O signal would be manifest as differences in delta(18)O among the trees. We examined the variation in tree ring delta(18)O, over eight decades during the 20th Century, among three species co-occurring in natural forest stands of the northern Rocky Mountains in the USA. We sampled 10 Douglas-firs (Pseudotsuga menziesii (Mirb.) Franco var. glauca), 10 ponderosa pines (Pinus ponderosa Laws.) and seven western white pines (Pinus monticola Dougl.). As expected, variation in atmospheric conditions was recorded in the delta(18)O of the cellulose produced in a given year, but observed climatic correlations with delta(18)O were weak. Significant correlations with June climate data included: daily maximum temperature (r = 0.29), daily minimum temperature (r = -0.25), mean temperature (r = 0.20), mean daily precipitation (r = -0.54), vapor pressure deficit (r = 0.32) and solar radiation (r = 0.44). Lagged effects were observed in Douglas-fir and western white pine. In these species, the delta(18)O of a given annual ring was correlated with the delta(18)O of the previous ring. Ponderosa pine showed no significant autocorrelation. Although the species means were correlated among years (r = 0.67 to 0.76), ponderosa pine was consistently enriched in delta(18)O relative to the other species; differences were close to 2 per thousand and they are steadily increasing. Relative to the mean for the three species, ponderosa pine is becoming steadily more enriched (-1.0 per thousand). In contrast, Douglas-fir is being steadily depleted and western pine is intermediate, with an enrichment of 0.5 per thousand. Because all trees were exposed to the same atmospheric conditions, the differences in delta(18)O observed between species are likely due either to differences in the depth of water extraction or leaf function. If the former, presumably ponderosa pine has steadily taken up more water from near the soil surface and Douglas-fir has shifted uptake to a greater depth. If the latter, we suggest the pronounced changes in leaf-water delta(18)O are a result of changes in leaf structure and function with tree size and age.  相似文献   

2.
We examined relationships between stable isotopes of carbon (delta(13)C) and oxygen (delta(18)O) in tree rings of Callitris columellaris F. Muell in the semi-arid Pilbara region of north-western Australia. To test the hypothesis that stomatal control of photosynthesis decreases during drier periods, we developed delta(13)C and delta(18)O chronologies spanning 1919-1999, and used a permutation regression approach to relate a 21-year running correlation between delta(13)C and delta(18)O to rainfall and temperature at Marble Bar and our study site. The relationship between delta(13)C and delta(18)O switched from being always negative before 1955 to being consistently positive after 1976, suggesting an increase in stomatal control of photosynthesis in recent decades. Changes in the delta(13)C-delta(18)O relationship reflected changes in rainfall, which has increased in the region by 30% since 1976. The correlation between delta(13)C and delta(18)O was positively related to the 21-year running mean of normalized rainfall anomalies at both the study site (P = 0.045, Adj. r(2) = 0.47) and Marble Bar (P = 0.046, Adj. r(2) = 0.48). In addition, the delta(13)C-delta(18)O correlation was negatively related (P = 0.047, Adj. r(2) = 0.61) to temperatures at Marble Bar. Our interpretation of the role of changes in climate affecting the relationship between tree-ring delta(13)C and delta(18)O is supported by evidence from the isotope composition of foliage samples: foliar delta(13)C and delta(18)O were negatively correlated with log stomatal conductance (delta(13)C, r = -0.41; delta(18)O, r = -0.42), whereas the correlation between foliar delta(13)C and delta(18)O was positive (r = 0.63, P = 0.027) after the summer wet period. Our data indicate that stomatal control of photosynthesis in Callitris adjusts to region-wide changes in climate and that, in a warmer and drier world, trees might adapt by increasing non-stomatal control of photosynthesis.  相似文献   

3.
The carbon and oxygen isotopic composition of tree-ring cellulose was examined in ponderosa pine (Pinus ponderosa Dougl.) trees in the western USA to study seasonal patterns of precipitation inputs. Two sites (California and Oregon) had minimal summer rainfall inputs, whereas a third site (Arizona) received as much as 70% of its annual precipitation during the summer months (North American monsoon). For the Arizona site, both the delta(18)O and delta(13)C values of latewood cellulose increased as the fraction of annual precipitation occurring in the summer (July through September) increased. There were no trends in latewood cellulose delta(18)O with the absolute amount of summer rain at any site. The delta(13)C composition of latewood cellulose declined with increasing total water year precipitation for all sites. Years with below-average total precipitation tended to have a higher proportion of their annual water inputs during the summer months. Relative humidity was negatively correlated with latewood cellulose delta(13)C at all sites. Trees at the Arizona site produced latewood cellulose that was significantly more enriched in (18)O compared with trees at the Oregon or California site, implying a greater reliance on an (18)O-enriched water source. Thus, tree-ring records of cellulose delta(18)O and delta(13)C may provide useful proxy information about seasonal precipitation inputs and the variability and intensity of the North American monsoon.  相似文献   

4.
An experimental introduction of pear thrips (Taeniothrips inconsequens Uzel), a major defoliator in sugar maple (Acer saccharum Marsh.) forests in northeastern North America, was conducted in a field plantation to determine if compensatory gas exchange occurs in response to feeding damage by this piercing-sucking insect. Sugar maple trees were enclosed in netting (167 micro m mesh) and pear thrips adults were introduced before leaf expansion in the spring. Pear thrips reduced whole-tree leaf area by approximately 23% and reduced leaf size (both mass and area) by 20% in the upper crown. Measurements of net CO(2) assimilation rate (A(net)) and stomatal conductance (g(s)) were made on tagged foliage that was later analyzed for stable carbon isotope composition (delta(13)C) to provide estimates of short- and long-term leaf water use efficiency (WUE). Pear thrips feeding reduced A(net) for fully expanded leaves by approximately 20%, although leaf chlorophyll content and leaf mass per unit area were apparently not affected. Comparison of A(net), g(s), instantaneous WUE and leaf delta(13)C between damaged and control trees as well as visibly undamaged versus moderately damaged foliage on pear thrips-infested trees indicated that there were no effects of pear thrips feeding damage on WUE or leaf delta(13)C. Long-term WUE among sugar maple trees in the field plantation, indicated by leaf delta(13)C analysis, was related to shorter-term estimates of leaf gas exchange behavior such as g(s) and calculated leaf intercellular CO(2) concentration (C(i)). We conclude that pear thrips feeding has no effect on leaf WUE, but at the defoliation levels in our experiment, it may reduce leaf A(net), as a result of direct tissue damage or through reduced g(s). Therefore, even small reductions in leaf A(net) by pear thrips feeding damage may have an important effect on the seasonal carbon balance of sugar maple when integrated over the entire growing season.  相似文献   

5.
The carbon isotopic composition (delta(13)C) of wood and leaf cellulose of beech trees (Fagus sylvatica L.) was studied at 80 sites in northeastern France. We sampled sites with contrasting water balance, depending on soil type and precipitation. We tested the hypothesis that inter-site variations in plant delta(13)C reflect the spatial distribution of soil water availability, and we assessed whether delta(13)C could be used as a bioindicator of soil water availability. Patterns of variation in delta(13)C were compared with estimates of monthly water balance and with other soil characteristics. Between-site variability in delta(13)C was high (2.9 per thousand range in wood cellulose, 2.1 per thousand in leaf cellulose), but variation in water availability appeared to be only a minor factor contributing to this variation in delta(13)C. Unexpectedly, spatial variations in wood and leaf cellulose delta(13)C were significantly and positively related to soil fertility expressed by soil pH (r = 0.42 and 0.43, respectively) and cation content. On average, trees growing on acidic soils displayed 0.5 per thousand lower delta(13)C in both wood and leaf material than trees growing on neutral or calcareous soils. Our initial hypothesis of a strong negative relationship between delta(13)C and site water availability was not confirmed. In the study zone, neither wood nor leaf delta(13)C appeared to be a reliable bioindicator of spatial variations in water availability. Possible causes for the lack of a relationship are discussed. Our findings confirm, under natural conditions, the strong effect of soil fertility on water-use efficiency previously observed in experiments. This effect needs to be considered in isotopic studies involving different sites.  相似文献   

6.
Warren CR  Adams MA 《Tree physiology》2000,20(10):637-643
The stable carbon isotope composition (delta(13)C) of foliage integrates signals resulting from environmental and hydraulic constraints on water movement and photosynthesis. We used branch length as a simple predictor of hydraulic constraints to water fluxes and determined the response of delta(13)C to varying water availability. Foliage up to 6 years old was taken from Pinus pinaster Ait. trees growing at four sites differing in precipitation (P; 414-984 mm year(-1)) and potential evaporation (ET; 1091-1750 mm year(-1)). Branch length was the principal determinant of temporal trends in delta(13)C. The strong relationship between delta(13)C and branch length was a function of hydraulic conductance, which was negatively correlated with branch length (r(2) = 0.84). Variation in P and ET among sites was reflected in delta(13)C, which was negatively correlated with P/ET (r(2) = 0.66). However, this analysis was confounded by differences in branch length. If the effects of branch length on delta(13)C were first removed, then the 'residual' delta(13)C was more closely related to P/ET (r(2) = 0.99), highlighting the importance of accounting for variation in hydraulic constraints to water flux between sites and years. For plant species that exhibit considerable phenotypic plasticity in response to changes in environment (e.g., variation in leaf area, branch length and number, or stem form), the environmental effects on delta(13)C in foliage can only be reliably assessed if deconvoluted from hydraulic constraints.  相似文献   

7.
The objectives of this study were: (1) to examine how foliar carbon isotope discrimination (Delta) and oxygen isotope composition (delta(18)O) are related to tree growth, ash mineral nutrient concentration and foliar nutrient concentration in 7-year-old clones of the F(1) hybrid between slash pine (Pinus elliottii Engelm.) and Caribbean pine (P. caribaea var. hondurensis Barr. et Golf.) in subtropical Australia; and (2) to evaluate the potential of using foliar Delta, ash mineral nutrient concentration and delta(18)O measurements for selecting F(1) hybrid pine clones with high water-use efficiency (WUE) and growth potential. There were significant differences in tree growth, foliar Delta, delta(18)O and ash mineral nutrient concentration among the eight clones tested. Significant negative linear relationships existed between tree growth and Delta, extrapolating to zero growth at Delta = 24-30 per thousand. There were strong genetic correlations (r = -0.83 to -0.96) between Delta and tree growth, particularly tree height. Significant non-genetic correlations (r = -0.62 to -0.80) existed between Delta and foliar K concentration. Foliar delta(18)O, ash mineral nutrient concentration and foliar nutrient concentration were unrelated to tree growth. In the F(1) hybrid pine clones, variation in tree WUE, as reflected by Delta, was largely attributed to a genetic effect on leaf photosynthetic capacity rather than on stomatal conductance, as reflected by foliar delta(18)O.  相似文献   

8.
We measured oxygen isotope ratios (delta18O) of xylem sap, phloem sap, leaves, wood and bark of Eucalyptus globulus Labill. growing in southwestern Australia. Carbon isotope ratios (delta13C) were measured in the dry matter of phloem sap, leaves and wood. Results were used to test several aspects of a mechanistic model of 18O enrichment and provided insights into post-photosynthetic variations in dry matter delta13C. Xylem water delta18O varied little within the tree crown, whereas variation at the landscape-level was more pronounced, with plantations near the coast being enriched by up to 3 per thousand compared with plantations less than 100 km inland. Phloem water was significantly enriched in 18O compared with xylem water in two of three sampling campaigns; mean enrichments were 0.5 and 0.8 per thousand. Phloem sap sugars exported from E. globulus leaves closely reflected observed leaf water enrichment when diurnal variation in photosynthesis was taken into account. Photosynthetic rates were higher in the morning than in the afternoon, whereas leaf water 18O enrichment increased to maximum values in the afternoon. A non-steady-state model of leaf water 18O enrichment accurately predicted observed values through a full diel cycle. Mean estimates of the proportion of organic oxygen effectively exchanging with xylem water during cellulose synthesis were close to 0.40 for both leaves and wood. Carbon isotope ratios of nascent xylem tissues did not differ from those of phloem sap sugars collected concurrently, whereas nascent leaf tissues were depleted in 13C by 2 per thousand compared with phloem sap sugars, suggesting that, in E. globulus, 13C enrichment of sink tissues compared with source leaves does not result from an enriching process within the sink tissue.  相似文献   

9.
Prasolova NV  Xu ZH 《Tree physiology》2003,23(10):675-684
Genetic variation in branchlet nutrient (N, P, K, Na, Ca, Mg, Mn and Fe) concentrations and mineral concentration (sum of branchlet P, K, Na, Ca, Mg, Mn and Fe concentrations) of 8-9-year-old hoop pine (Araucaria cunninghamii Ait. ex D. Don) half-sib families was assessed for four canopy positions at a wet site (23 families) and two canopy positions at an N- and water-limiting dry site (22 families) in relation to tree growth and associated branchlet carbon (delta13C) and oxygen (delta18O) isotope composition in southeast Queensland, Australia. Branchlet nutrient and mineral concentrations varied significantly among families and with canopy position and site. Depending on the canopy position sampled, the hoop pine family effect accounted for 0 to 13.8% of the total variation in branchlet N concentration, and for 0 to 30.3% of the total variation in branchlet mineral concentration at the wet site. The corresponding values for the family effect at the dry site were 0-13.3% for branchlet N concentration and 0-25.7% for branchlet mineral concentration. There were significant variations in branchlet P, K, Ca and Mg concentrations at both sites, and these variations differed with canopy position. Relationships between family means of branchlet N concentration and tree growth or delta13C or delta18O varied with canopy position at both sites. At the wet site, there were significant positive correlations between branchlet mineral concentration in the upper-outer or upper-inner canopy and tree height (r = 0.26 and 0.37, P < 0.01) and between branchlet mineral concentration and delta13C (r = 0.24, P < 0.01) in the upper-inner canopy, and a significant negative correlation between branchlet mineral concentration and delta13C (r = -0.21, P < 0.05) in the upper-outer canopy. At the dry site, branchlet mineral concentrations in the upper-inner and upper-outer canopy were significantly correlated with branchlet delta13C (r = -0.28 and -0.51, P < 0.01), and branchlet N concentration in the upper-inner canopy was significantly correlated with tree growth (r = 0.29, P < 0.01). A significant correlation between branchlet delta18O (an index of stomatal conductance) and branchlet mineral concentration at the dry site (r = 0.39, P = 0.020) indicated that stomatal conductance might be a factor regulating the variation in branchlet mineral concentration of the hoop pine families. Both branchlet N concentration and mineral concentration at particular canopy positions assist in selecting hoop pine families with improved tree growth and N- and water-use efficiency in environments where both N deficiency and a limited water supply are major factors affecting plantation productivity.  相似文献   

10.
Huang Z  Xu Z  Blumfield TJ  Bubb K 《Tree physiology》2008,28(10):1535-1543
Weed control may improve the growth of forest plantations by influencing soil water and nutrient availability, but our knowledge of leaf-level physiological responses to weed control at different within-canopy positions is limited for tropical and subtropical plantations. Foliar carbon (delta(13)C) and oxygen (delta(18)O) isotope compositions, gas exchange, and nitrogen (N(mass)) and phosphorus (P(mass)) concentrations at four canopy positions were assessed in a young spotted gum (Corymbia citriodora subsp. Variegata (F. Muell.) A.R. Bean & M.W. McDonald) plantation subjected to either weed control or no weed control treatment, to test if leaves at different positions within the tree canopy had the same physiological responses to the weed control treatment. Weed control increased foliar delta(13)C but lowered delta(18)O in the upper-outer and upper-inner canopy, indicating that weed control resulted in a higher foliar photosynthetic capacity at upper-canopy positions, a conclusion confirmed by gas exchange measurements. The increased photosynthetic capacity resulting from weed control can be explained by an increase in foliar N(mass). In the lower-outer canopy, weed control reduced foliar delta(13)C while lowering delta(18)O even more than in the upper-canopy, suggesting strong enhancement of the partial pressure of CO(2) in the leaf intercellular spaces and of foliar stomatal conductance in lower-canopy foliage. This conclusion was supported by gas exchange measurements. Foliar photosynthesis in the lower-inner canopy showed no significant response to weed control. The finding that leaves at different canopy positions differ in their physiological responses to weed control highlights the need to consider the canopy position effect when examining competition for soil nutrient and water resources between weeds and trees.  相似文献   

11.
We report field observations of oxygen isotope ((18)O) discrimination during nocturnal foliage respiration ((18)Delta(R)) in branch chambers in two forest ecosystems: a Sitka spruce (Picea sitchensis (Bong.) Carr.) plantation in Scotland; and a beech (Fagus sylvatica L.) forest in Germany. We used observations and modeling to examine the impact of nocturnal stomatal conductance on the (18)O/(16)O (delta(18)O) signatures of foliage gas exchange at night. We found that nocturnal stomatal conductance can influence the delta(18)O signature by affecting: (1) the bidirectional diffusion of CO(2) into and out of the leaf (with isotopic equilibration); and (2) the (18)O enrichment of the foliage water with which the CO(2) equilibrates. Both effects were manifest in high apparent (18)Delta(R) values and enriched delta(18)O signatures of foliage water at night. The effects were more pronounced for Sitka spruce because of its higher nocturnal stomatal conductance and higher specific leaf water content compared to beech. We found that taking the effects of nocturnal stomatal conductance into account may change the sign of the delta(18)O signature of nocturnal foliage respiration, generally thought to decrease the delta(18)O of atmospheric CO(2). We conclude that nocturnal stomatal exchange can have a profound effect on isotopic exchange depending on species and environmental conditions. These effects can be important when using delta(18)O signatures of canopy CO(2) to distinguish foliage and soil respiration, and when modeling the delta(18)O signature of CO(2) exchanged between ecosystems and the atmosphere.  相似文献   

12.
Cottonwoods (Populus spp.) are dioecious phreatophytes of hydrological and ecological importance in riparian woodlands throughout the Northern Hemisphere. In streamside zones of southern Alberta, groundwater and soil water typically decline between May and September. To understand how narrowleaf cottonwoods (Populus angustifolia James) are adapted to this seasonal decrease in water availability, we measured photosynthetic gas exchange, leaf reflectance, chlorophyll fluorescence and stable carbon isotope composition (delta(13)C) in trees growing in the Oldman River valley of southern Alberta during the 2006 growth season. Accompanying the seasonal recession in river flow, groundwater table depth (Z(gw)) declined by 1.6 m, but neither mean daily light-saturated net photosynthetic rate (A(max)) nor stomatal conductance (g(s)) was correlated with this change. Both A(max) and g(s) followed a parabolic seasonal pattern, with July 24 maxima of 15.8 micromol m(-2) s(-1) and 559 mmol m(-2) s(-1), respectively. The early summer rise in A(max) was related to an increase in the chlorophyll pool during leaf development. Peak A(max) coincided with the maximum quantum efficiency of Photosystem II (F(v)/F(m)), chlorophyll index (CI) and scaled photochemical reflectance index (sPRI), but occurred one month after maximum volumetric soil water (theta(v)) and minimum Z(gw). In late summer, A(max) decreased by 30-40% from maximum values, in weak correlation with theta(v) (r(2) = 0.50). Groundwater availability limited late-season water stress, so that there was little variation in mean daily transpiration (E). Decreasing leaf nitrogen (% dry mass), CI, F(v)/F(m) and normalized difference vegetation index (NDVI) were also consistent with leaf aging effects. There was a strong correlation between A(max) and g(s) (r(2) = 0.89), so that photosynthetic water-use efficiency (WUE; A(max)/E) decreased logarithmically with increasing vapor pressure deficit in both males (r(2) = 0.75) and females (r(2) = 0.95). The male:female ratio was unequal (2:1, chi(2) = 16.5, P < 0.001) at the study site, but we found no significant between-sex differences in photosynthetic gas exchange, leaf reflectance or chlorophyll fluorescence that might explain the unequal ratio. Females tended to display lower NDVI than males (P = 0.07), but mean WUE did not differ significantly between males and females (2.1 +/- 0.2 versus 2.5 +/- 0.2 mmol mol(-1)), and delta(13)C remained in the -28.8 to -29.3 per thousand range throughout the growth season, in both sexes. These results demonstrate changes in photosynthetic and water-use characteristics that collectively enable vigorous growth throughout the season, despite seasonal changes in water supply and demand.  相似文献   

13.
Huang Z  Xu Z  Blumfield TJ  Bubb K 《Tree physiology》2008,28(7):997-1005
Foliar gas exchange and carbon (delta(13)C) and oxygen (delta(18)O) isotope ratios were measured in a young blackbutt (Eucalyptus pilularis Sm.) plantation subjected to four weed control treatments defined by the width of the weed-free strip maintained for the first 12 months after planting. Treatments were: 2-m-wide weed-free strip (50% of plot area, 2.0MWC), 1.5-m-wide weed-free strip (37.5% of plot area, 1.5MWC), 1-m-wide weed-free strip (25% of plot area, 1.0MWC) and no weed control (NWC). Our objectives were to determine (1) if decreasing the width of the weed control strip (decreasing herbicide use) affected growth and leaf photosynthesis of the plantation, and (2) the effects of the weed control regimes on variations in relative stomatal and biochemical limitations to photosynthesis. Trees in the 1.0MWC treatment had lower foliar light-saturated photosynthetic rate (A(sat)) than trees in the 2.0MWC treatment. An increase in metabolic limitation was responsible for the decrease in A(sat) in the 1.0MWC trees, which was also partly confirmed by the isotopic data. Compared with trees in the 1.0MWC, 1.5MWC and 2.0MWC treatments, A(sat) of NWC trees was significantly lower, a difference that was attributable mainly to stomatal limitation and to a lesser extent to biochemical limitation. The results support the conclusion that different weed control regimes cause differences in relative stomatal and biochemical limitations to plantation photosynthesis. This report contributes to a growing body of literature on competition for soil resources between trees and weeds. Our results highlight the usefulness of the stable isotopic method in supporting analysis of the response of net photosynthesis to varying intercellular CO(2) concentration for determining the relative stomatal and non-stomatal limitations to photosynthesis under experimental conditions in the field.  相似文献   

14.
Temperature-independent fluctuations in stem CO(2) efflux were measured in Pinus taeda L. seedlings. Stem CO(2) efflux was measured during high and low transpiration rates, high and low net photosynthesis rates, and normal and interrupted substrate supply conditions. Stem CO(2) efflux rates were an average of 6.7% lower during periods of high transpiration compared to periods of low transpiration. This difference in stem CO(2) efflux rates was not due to water stress. The most likely cause was movement of respiratory CO(2) in the transpiration stream. Interruption of substrate supply to the stem by phloem girdling reduced stem CO(2) efflux rates. Increasing net photosynthesis rates from low to high had no effect on stem CO(2) efflux, but decreasing net photosynthesis from high to low caused relatively small reductions in stem CO(2) efflux. These results indicate that diurnal changes in net photosynthesis rate may play a small role in temperature-independent afternoon depressions of stem CO(2) efflux. The transport of respiratory CO(2) by the transpiration stream compromises measurements of woody tissue respiration obtained by commonly accepted gas exchange techniques. This phenomenon could also affect measurement of leaf net photosynthesis and branch woody tissue respiration.  相似文献   

15.
Container-grown walnut seedlings (Juglans regia L.) were subjected to competition with rye grass (Lolium perenne L.) and to a 2-week soil drying cycle. One and 2 weeks after the beginning of the drought treatment, H2 18O (delta approximately equals +100%) was added to the bottom layer of soil in the plant containers to create a vertical H2 18O gradient. Rye grass competition reduced aboveground and belowground biomass of the walnut seedlings by 60%, whereas drought had no effect. The presence of rye grass reduced the dry weight of walnut roots in the upper soil layer and caused a 50% reduction in lateral root length. Rye grass competition combined with the drought treatment reduced walnut leaf CO2 assimilation rate (A) and leaf conductance (gw) by 20 and 39%, respectively. Transpiration rates in rye grass, both at the leaf level and at the plant or tiller level, were higher than in walnut seedlings. Leaf intrinsic water-use efficiency (A/gw) of walnut seedlings increased in response to drought and no differences were observed between the single-species and mixed-species treatments, as confirmed by leaf carbon isotope discrimination measurements. Measurement of delta18O in soil and in plant xylem sap indicated that the presence of rye grass did not affect the vertical profile of soil water uptake by walnut seedlings. Walnut seedlings and rye grass withdrew water from the top and middle soil layers in well-watered conditions, whereas during the drought treatment, walnut seedlings obtained water from all soil layers, but rye grass took up water from the bottom soil layer only.  相似文献   

16.
As forests age, their structure and productivity change, yet in some cases, annual rates of water loss remain unchanged. To identify mechanisms that might explain such observations, and to determine if widely different age classes of forests differ functionally, we examined young (Y, approximately 25 years), mature (M, approximately 90 years) and old (O, approximately 250 years) ponderosa pine (Pinus ponderosa Dougl. ex P. Laws.) stands growing in a drought-prone region of central Oregon. Although the stands differed in tree leaf area index (LAIT) (Y = 0.9, M = 2.8, O = 2.1), cumulative tree transpiration measured by sap flow did not differ substantially during the growing season (100-112 mm). Yet when water was readily available, transpiration per unit leaf area of the youngest trees was about three times that of M trees and five times that of O trees. These patterns resulted from a nearly sixfold difference in leaf specific conductance (KL) between the youngest and oldest trees. At the time of maximum transpiration in the Y stand in May-June, gross carbon uptake (gross ecosystem production, GEP) was similar for Y and O stands despite an almost twofold difference in stand leaf area index (LAIS). However, the higher rate of water use by Y trees was not sustainable in the drought-prone environment, and between spring and late summer, KL of Y trees declined fivefold compared with a nearly twofold decline for M trees and a < 30% reduction in O trees. Because the Y stand contained a significant shrub understory and more exposed soil, there was no appreciable difference in mean daily latent energy fluxes between the Y stand and the older stands as measured by the eddy-covariance technique. These patterns resulted in 60 to 85% higher seasonal GEP and 55 to 65% higher water-use efficiency at the M and O stands compared with the Y stand.  相似文献   

17.
Variable retention harvesting (VRH) has been proposed as a silvicultural practice to maintain biodiversity and ecosystem integrity. No previous study has examined tree carbon isotope discrimination to provide insights into water stress that could lead to dieback and mortality of trees following VRH. We measured and compared the carbon isotope ratios (delta(13)C) in stem wood of trembling aspen (Populus tremuloides Michx.) before and after VRH. Eight trees were sampled from isolated residual, edge and control (interior of unharvested stand) positions from each of seven plots in three regions (Calling Lake and Drayton Valley, Alberta and Lac Duparquet, Québec). After VRH, the general trend in mean delta(13)C was residual > edge > control trees. Although this trend is indicative of water stress in residual trees, it also suggests that edge trees received some sheltering effect, reducing their stress compared with that of residuals. A strong inverse relationship was found between the delta(13)C values and the mean annual precipitation in each region. The trend in mean delta(13)C signature was Calling Lake > Drayton Valley > Lac Duparquet trees. These results suggest that residual or edge trees in drier regions are more likely to suffer water stress following VRH. We also observed a trend of greater delta(13)C in stout trees compared with slender trees, both before and after VRH. The evidence of greater water stress in stout trees likely occurred because of a positive relationship between stem diameter and crown volume per basal area. Our results provide evidence that water stress could be the driving mechanism leading to dieback and mortality of residual trees shortly after VRH. Additionally, the results from edge trees indicate that leaving hardwood residuals in larger patches or more sheltered landscape positions could reduce the water stress to which these trees are subjected, thereby reducing dieback and mortality.  相似文献   

18.
We examined fine-root (< 2.0 mm diameter) respiration throughout one growing season in four northern hardwood stands dominated by sugar maple (Acer saccharum Marsh.), located along soil temperature and nitrogen (N) availability gradients. In each stand, we fertilized three 50 x 50 m plots with 30 kg NO(3) (-)-N ha(-1) year(-1) and an additional three plots received no N and served as controls. We predicted that root respiration rates would increase with increasing soil temperature and N availability. We reasoned that respiration would be greater for trees using NO(3) (-) as an N source than for trees using NH(4) (+) as an N source because of the greater carbon (C) costs associated with NO(3) (-) versus NH(4) (+) uptake and assimilation. Within stands, seasonal patterns of fine-root respiration rates followed temporal changes in soil temperature, ranging from a low of 2.1 micro mol O(2) kg(-1) s(-1) at 6 degrees C to a high of 7.0 micro mol O(2) kg(-1) s(-1) at 18 degrees C. Differences in respiration rates among stands at a given soil temperature were related to variability in total net N mineralized (48-90 micro g N g(-1)) throughout the growing season and associated changes in mean root tissue N concentration (1.18-1.36 mol N kg(-1)). The hypothesized increases in respiration in response to NO(3) (-) fertilization were not observed. The best-fit model describing patterns within and among stands had root respiration rates increasing exponentially with soil temperature and increasing linearly with increasing tissue N concentration: R = 1.347Ne(0.072T) (r(2) = 0.63, P < 0.01), where R is root respiration rate ( micro mol O(2) kg(-1) s(-1)), N is root tissue N concentration (mol N kg(-1)), and T is soil temperature ( degrees C). We conclude that, in northern hardwood forests dominated by sugar maple, root respiration is responsive to changes in both soil temperature and N availability, and that both factors should be considered in models of forest C dynamics.  相似文献   

19.
Fast-growing exotic trees are widely planted in the tropics to counteract deforestation; however, their patterns of water use could be detrimental to overall ecosystem productivity through their impact on ecosystem water budget. In a comparative field study on seasonal soil-plant water dynamics of two exotic species (Cupressus lusitanica Mill. and Eucalyptus globulus Labill.) and the indigenous Podocarpus falcatus (Thunb.) Mirb. in south Ethiopia, we combined a 2.5-year record for climate and soil water availability, natural-abundance oxygen isotope ratios (delta(18)O) of soil and xylem water, destructive root sampling and transpiration measurements. Soil was generally driest under C. lusitanica with its dense canopy and shallow root system, particularly following a relatively low-rainfall wet season, with the wettest soil under E. globulus. Wet season transpiration of C. lusitanica was twice that of the other species. In the dry season, P. falcatus and C. lusitanica reduced transpiration by a factor of six and two, respectively, whereas E. globulus showed a fivefold increase. In all species, there was a shift in water uptake to deeper soil layers as the dry season progressed, accompanied by relocation of live fine root biomass (LFR) of C. lusitanica and P. falcatus to deeper layers. Under P. falcatus, variability in soil matric potential, narrow delta(18)O depth gradients and high LFR indicated fast water redistribution. Subsoil water uptake was important only for E. globulus, which had low topsoil LFR and tap roots exploiting deep water. Although P. falcatus appeared better adapted to varying soil water availability than the exotic species, both conifers decreased growth substantially during dry weather. Growth of E. globulus was largely independent of topsoil water content, giving it the potential to cause substantial dry-season groundwater depletion.  相似文献   

20.
Quercus douglasii Hook. & Arn. (blue oak) is a deciduous white oak that is currently failing to regenerate throughout much of its range in California, USA. Patterns of water use were observed in adult trees, saplings and seedlings to determine if ontogenetic changes in water use occur, which might be important in the establishment of this long-lived perennial species in a Mediterranean-type system. Seasonal and diurnal stomatal conductance (g(s)), late-season predawn xylem water potentials (Psi(pre)), carbon isotopic ratio (delta(13)C) and soil water status were compared among the three size classes at three sites differing in mean precipitation and soil water characteristics. Comparisons were also made between microsites with and without regeneration (defined by the presence or absence of saplings). Overall patterns of water use were consistent among the three sites, except that, at the site with the highest rainfall, Q. douglasii plants had higher g(s) and more positive Psi(pre) values. Although no differences in water use patterns were found between regeneration and non-regeneration microsites, the observed ontogenetic differences in water use may have important implications for Q. douglasii establishment. Compared with adult trees and saplings, seedlings had higher gas exchange rates during periods of high soil water content (early in the season and in the morning). Seedling g(s) was correlated with percent extractable soil water (ESW) throughout the season; adult tree and sapling g(s) was correlated with ESW between June and September. Despite experiencing greater water stress (indicated by more negative Psi(pre) values) than older trees, seedlings had more negative delta(13)C values, implying lower water-use efficiencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号