首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
利用高光谱技术精确估测植物叶片叶绿素含量,对植物生长趋势和营养状况的监测和管理具有重要意义。本文以紫丁香为研究对象,针对高光谱所含波段数量大、波段间相关性强导致数据中冗余信息增多的现象,通过卷积平滑和二阶微分(SG-SD)处理光谱数据,应用随机蛙跳(RF)算法筛选特征波段,最后结合偏最小二乘(PLSR)和投票回归器(VR)建立了植物叶片叶绿素含量反演模型,并与全波段光谱法和5种经典变量提取方法进行了比较。结果显示,相比于原始光谱数据,SG-SD是一种有效的提高建模精度的光谱预处理方法;相比于全波段光谱和经典变量提取方法,RF算法筛选出的敏感波段建模效果最佳;相比于PLSR模型,VR模型的预测精度和预测稳定性能更优。本文对原始光谱数据进行SG-SD预处理后,对经RF算法筛选出的特征波段建立VR模型,变量数由全波段数204个减少为35个,建模集决定系数0.944 2,验证集决定系数0.951 4,最后利用RF-VR模型结合伪彩图技术得到紫丁香叶片叶绿素分布反演图,为紫丁香叶片养分分布提供更直观的信息表达。结果表明,该方法可为紫丁香叶片营养含量诊断和长势监测提供技术支持。  相似文献   

2.
【目的】研究猕猴桃叶片叶绿素含量的高光谱估算方法,为猕猴桃长势的遥感监测提供理论依据。【方法】以陕西杨凌蒋家寨村2018年不同生育期(初花期、幼果期、膨果期、壮果期、果实成熟期)的猕猴桃叶片为研究对象,分别测定其高光谱反射率和叶绿素含量(SPAD值),分析原始光谱和5个常见的植被指数(归一化植被指数、归一化叶绿素指数、改进的叶绿素吸收反射率指数、MERIS地面叶绿素指数、土壤调整指数)与叶绿素含量之间的相关关系,提取各生育期的特征波段,分别建立基于特征波段和植被指数的单波段叶绿素含量一元线性估算模型。利用主成分分析对原始光谱数据进行降维,将得到的主成分得分作为随机森林模型的输入变量,建立基于多波段信息的叶绿素含量多元估算模型,并对模型进行精度验证和分析。【结果】不同生育期猕猴桃叶片光谱反射率变化趋势基本一致,整体趋势为可见光波段反射率低,近红外波段反射率高;在可见光波段,光谱反射率随着叶绿素含量的升高而降低;在近红外波段,光谱反射率则随着叶绿素含量的增加而升高。通过相关性分析可知,初花期、幼果期、膨果期、壮果期、果实成熟期原始光谱的特征波段分别为729,548,707,707和712 nm,估算模型决定系数(R~2)分别为0.18,0.85,0.54,0.85和0.82,其中初花期估算模型未通过显著性检验,其余生育期均通过极显著性检验。在5个常用植被指数中,初花期与叶绿素含量相关性最高的是归一化叶绿素指数(NPCI),但是估算模型决定系数R~2只有0.1,未通过显著性检验;其他生育期与叶绿素含量相关性最高的是MERIS地面叶绿素指数(MTCI),所建立的估算模型拟合效果好,预测精度高。基于主成分分析和随机森林回归建立的不同生育期猕猴桃叶片叶绿素含量估算模型的R~2在0.91~0.98,均通过极显著性检验,其拟合效果和预测精度远高于单波段一元线性回归和基于植被指数的一元线性回归模型,是估算猕猴桃叶片叶绿素含量的最优模型。【结论】基于主成分分析的随机森林模型包含了更完整的波段信息,对不同生育期猕猴桃叶片叶绿素含量具有较好的预测能力。  相似文献   

3.
水稻叶片高光谱数据降维与叶绿素含量反演方法研究   总被引:3,自引:0,他引:3  
高光谱遥感技术为水稻叶片叶绿素含量的高通量、无损、准确监测提供了有效途径,然而高光谱数据的降维或特征光谱参数的选择是叶绿素含量有效反演的关键环节。利用2017年辽宁省盘锦市大洼水稻氮高效品种筛选试验基地的水稻叶片叶绿素含量与叶片高光谱数据,探讨了高光谱数据的降维方法与叶绿素含量的反演建模。首先应用最优子集选择算法(best subset selection)对工程常用的水稻叶绿素反演特征光谱指数进行优选,筛选出最优组合,作为叶绿素多元回归模型的输入特征;同时应用没有在光谱领域得到有效应用的基函数展开算法,利用Gram-Schmidt正交变换寻找叶片高光谱数据的基函数空间,再将高光谱数据投影到基函数空间从而实现降维,最后利用降维后的数据进行多元回归建模,反演叶绿素。结果表明:最优子集选择算法优选出的mNDVI(445,705,750)、NDVI(705,750)、PSRI(500,680,750)、RD(505,705)、RI1dB(720,735)、MCARI(550,670,700)、PPR(450,550)共7个特征指数组合,回归模型反演精度最高,决定性系数R2为0.844,均方根误差RMSE为0.926;基于基函数展开算法对400~1000nm波段范围601维高光谱数据降至13维,叶绿素反演回归模型的决定性系数R2达到0.861,均方根误差RMSE为0.906。说明基于基函数展开的高光谱降维与叶绿素含量估测方法效果较好,可为水稻叶绿素含量估测与长势诊断提供技术支持。  相似文献   

4.
【目的】探讨龙眼Dimocarpus longan Lour.叶片发育过程中叶绿素含量二维分布变化规律,实现无损检测病虫害对叶片叶绿素含量分布的影响,为评估嫩叶抗寒能力、龙眼结果期的施肥量和老熟叶的修剪提供参考。【方法】利用高光谱成像仪采集龙眼叶片在369~988 nm区间的高光谱图像,自动提取感兴趣区域,利用分光光度法测定叶片叶绿素含量。基于皮尔森相关系数(r)分析了龙眼叶片生长过程中各波段光谱响应与叶绿素含量之间相关性,建立偏最小二乘回归模型。分析了特征波段图像纹理特征与叶绿素含量相关性,将光谱特征和纹理特征结合导入深度学习中的稀疏自编码(SAE)模型预测龙眼叶片叶绿素含量,结合"图谱信息"的SAE模型预测龙眼叶片叶绿素含量的分布情况。【结果】龙眼叶片3个生长发育期相关系数的曲线均在700 nm附近出现波峰,嫩叶、成熟叶和老熟叶3个阶段相关性最高的波长分别为692、698和705 nm;全发育期的最敏感波段相关性远高于3个生长发育期,r达到0.890 3。回归模型中,吸收带最小反射率位置和吸收带反射率总和建立的最小二乘回归模型预测效果最好(R_c~2=0.856 8,RMSEc=0.219 5;R_v~2=0.771 2,RMSEv=0.286 2),其校正集和验证集的决定系数均高于单一参数建立的预测模型。在所有预测模型中,结合"图谱信息"的SAE模型预测效果最好(R_c~2=0.979 6,RMSEc=0.171 2;R_v~2=0.911 2,RMSEv=0.211 5),且预测性能受叶片成熟度影响相对较小,3个生长阶段R_v~2的标准偏差仅为最小二乘回归模型标准偏差的29.9%。【结论】提出了一种自动提取感兴趣区域的方法,成功率为100%。基于光谱特征的回归模型对不同生长阶段的叶片预测效果变化较大,而基于"图谱信息"融合的SAE模型预测性能受叶片成熟度影响相对较小且预测精度较高,SAE模型适用于不同成熟度的龙眼叶片叶绿素含量分布预测。  相似文献   

5.
玉米叶绿素含量高光谱反演的线性模型研究   总被引:3,自引:0,他引:3  
叶绿素含量是衡量植被生长状况的一个重要指标,高光谱数据具有较高的光谱分辨率,利用其光谱信息建立叶绿素含量的关系模型,已成为监测植被长势的一种有效手段。传统叶绿素含量线性回归模型的输入因子是植被特征提取参数,由于高光谱数据波段间的冗余度较高,导致一般的线性模型的反演精度较低。主成分分析可以减少数据的维数,简化网络结构,得出能反映原始信息的综合变量。本文以盆栽玉米为研究对象,利用植被特征和主成分分析方法提取光谱反演参数,根据所提取的参数建立玉米叶片叶绿素含量的一元线性和多元线性回归模型。结果表明,利用绿峰峰值和近红外反射率均值两参数可在一元线性模型中较好地反演玉米叶片叶绿素含量;而利用分波段提取的主成分能够在多元线性回归模型中更好地反演叶绿素含量,反演精度较高。  相似文献   

6.
为实现陕西关中地区夏玉米叶片含水率遥感估算,本研究通过夏玉米叶片高光谱反射率和含水率的测定,利用原始光谱及转换光谱,构建任意两波段的光谱指数,分析光谱指数与叶片含水率之间的关系,构建玉米叶片含水率估算的单因素回归模型和基于支持向量回归算法(SVR)、反向传播神经网络回归算法(BPNN)和麻雀搜索随机森林回归算法(SSA-RFR)的多因素模型,并根据模型精度筛选玉米叶片含水率估算的优化模型。结果表明,随叶片含水率的增加,短波红外波段的光谱反射率降低,最优光谱指数的构成波段主要位于短波红外波段,其中基于一阶导数光谱的比值光谱指数(R1 563/R1 406)和归一化光谱指数[(R1 563-R1 406)/(R1 563+R1 406)]与叶片含水率相关性最佳,其相关系数绝对值均达0.83;多因素回归模型的模拟效果优于单因素回归模型,基于麻雀搜索随机森林回归模型的精度最高,验证集决定系数(R2)为0.78,均方根误差(RMSE)和相对误差...  相似文献   

7.
叶绿素是植物体进行光合作用吸收光能物质的主要色素,直接影响植被的光合作用。高光谱遥感为快速、大面积监测植被的叶绿素变化提供了可能。实测了不同品种、肥水条件下,花生冠层的高光谱反射率与叶绿素含量数据,对二者进行了相关分析;首先采用相关系数较大的波段作为变量进行叶绿素含量的估算,其次采用特定叶绿素敏感波段建立叶绿素估算模型。经对比发现,以原始高光谱反射率所构建的估算模型精度不高;一阶导数与叶绿素含量之间的关系采取同样的方法,表明线性模型可较好地预测叶绿素含量;最后在高光谱特征变量中,λr、λg、λo为自变量所构建的模型均通过极显著检验,以λr所构建的指数模型具有最大的决定系数(r2=0.543 5)和F值(F=33.333);通过精度检验,综合分析认为,以662 nm处的一阶微分反射率所构建的线性模型和以红边位置所构建的指数模型均可作为叶绿素含量估算较为合适的高光谱模型。  相似文献   

8.
叶绿素含量是表征粳稻生长状态的重要指标,高光谱遥感技术能够无损、快速的获取粳稻叶片叶绿素含量。本研究利用2015—2017年沈阳农业大学辽中水稻实验站粳稻叶片高光谱数据,并利用主成分分析法(PCA)、典型相关分析法(CCA)、核典型关联分析法(KCCA)3种方法对粳稻叶片高光谱信息降维,选出较优光谱参数作为叶绿素含量反演模型的输入变量。采用支持向量机回归(SVR)、神经网络(NN)、随机森林(RF)、偏最小二乘法(PLSR)四种机器学习算法建立粳稻叶片叶绿素含量反演模型。结果表明,KCCA降维方法对粳稻叶片高光谱降维效果要优于PCA和CCA两种方法。采用KCCA-SVR方法建立的粳稻叶片叶绿素含量反演模型的模型决定系数R2=0.801,RMSE=1.610,建立的粳稻叶绿素含量反演模型精度最高。该模型良好的预测能力为粳稻叶片叶绿素含量反演研究和养分诊断提供了数据支撑和模型参考。  相似文献   

9.
基于高光谱的苹果叶片叶绿素含量估算   总被引:1,自引:0,他引:1  
以2012、2013年山东省肥城市潮泉镇下寨村的苹果叶片为研究对象,分析叶片叶绿素含量与原始光谱反射率、连续统去除光谱之间的相关性,探索苹果叶片叶绿素含量的估算模型。结果显示:苹果叶片叶绿素含量与原始光谱相关性最好的波段在553、711和1 301 nm处,其中,以711 nm处的光谱所建立的模型最佳(R2=0.88);与连续统去除光谱相关性最好的波段在553、738和801 nm处,其中,以738 nm处的光谱所建立的模型最佳(R2=0.94)。根据相关性所选的敏感波段,利用随机森林(random forest,RF)建立基于以上6个波段的叶绿素含量预测模型(R2=0.94)。对所建立的711 nm、738 nm、RF算法估算模型进行检验,结果表明,利用RF建立的苹果叶片叶绿素含量模型最佳(R2=0.54)。  相似文献   

10.
[目的]本文旨在快速测定植物体内叶绿素含量,以提高无损测定叶绿素的准确性。[方法]以绿萝叶片为研究对象,提出一种串联融合高光谱特征与纹理特征的叶绿素SPAD值的无损检测方法。采集320片绿萝叶片样本在400~900 nm波段的光谱信息,使用Savitzky-Golay卷积平滑对原始高光谱图像进行预处理,利用连续投影算法(successive projections algorithm, SPA)选取出10个特征波段,对绿萝叶片高光谱图像中的RGB图像采用灰度共生矩阵算法(gray-level co-occurrence matrix, GLCM)提取其纹理特征,采用串联方法融合高光谱特征与纹理特征得到融合特征,分别建立单一特征和融合特征的误差反向传输人工神经网络(back propagation artificial neural network, BPANN)和支持向量机回归(support vector machine regression, SVR)模型。[结果]单一使用特征光谱数据或图像纹理数据作为特征值建立的预测模型,综合性能不稳定;基于串联融合特征的预测模型准确率有明显提升。基于串联融合特征的SVR模型具有最佳的预测结果,校正集决定系数R~2为0.961 2,预测集决定系数R~2为0.957 1。[结论]高光谱特征与纹理特征的融合特征可以提高叶绿素回归预测模型的准确性,为叶绿素含量无损检测提供了重要参考。  相似文献   

11.
精确、快速估算冬小麦叶片氮含量,对冬小麦长势监测及田间管理指导具有重要的研究意义。为精确反演冬小麦叶片氮含量(leaf nitrogen content,LNC),本文利用遥感方法 ,依托不同氮处理水平对冬小麦的影响试验,基于获取的高光谱遥感数据和LNC地面实测数据,对比分析光谱指数与随机森林算法(random forest,RF)反演冬小麦叶片氮含量的精度和稳健性。结果表明,以敏感波段496 nm和604 nm为自变量,利用随机森林算法构建的LNC回归模型精度较光谱指数法有了大幅提高,模型的建模精度为R2=0.922,均方根误差为0.290;验证精度为R2=0.873,均方根误差为0.397,并且相对分析误差值为2.220,表明将敏感波段与随机森林算法组合构建的反演模型能较好地反演冬小麦叶片氮含量。  相似文献   

12.
基于连续统去除和偏最小二乘回归的油菜SPAD高光谱估算   总被引:1,自引:0,他引:1  
【目的】探讨油菜叶绿素含量的高光谱估算方法,为实现油菜叶片叶绿素含量的高效、无损、大面积监测提供理论依据。【方法】以陕西省关中地区油菜叶片为研究对象,分别测定苗期、蕾薹期、开花期及角果期的叶片高光谱数据和SPAD值,提取各生育期连续统去除光谱和7类光谱吸收特征参数,分析原始光谱、连续统去除光谱、光谱吸收特征参数与SPAD值之间的相关关系,构建基于原始光谱特征波段、连续统去除光谱特征波段、光谱吸收特征参数的SPAD估算模型,并对模型精度进行验证。【结果】在可见光范围,光谱反射率由蕾薹期、开花期、苗期到角果期依次递增,最大吸收深度和吸收谷面积逐渐增大。利用连续统去除光谱特征波段与吸收特征参数,分别建立的油菜各生育期叶片SPAD估算模型均优于原始光谱。运用连续统去除光谱特征波段结合最优吸收特征参数构建的偏最小二乘回归估算模型,是进行油菜叶片SPAD估算的最优模型。【结论】连续统去除法对不同生育期油菜叶片叶绿素相对含量具有较好的预测能力,是估算油菜叶片SPAD值的一种实时高效方法。  相似文献   

13.
基于高光谱遥感的棉花叶片叶绿素含量估算   总被引:2,自引:0,他引:2  
为提高高光谱植被指数对棉花叶绿素含量的估算精度,以陕西省关中地区棉花花铃期叶片高光谱反射率为数据源,分析了13种植被指数与棉花叶片叶绿素相对含量(SPAD)的相关关系;同时采用降精细采样法,详细分析400~2 000nm波段范围内原始光谱反射率的任意两两波段组合而成的优化光谱指数RSI与SPAD值的定量关系,构建线性及非线性回归监测模型,并对模型进行验证。结果表明:1)所提取的13种植被指数中NIR/NIR与SPAD值的相关系数最大(r=0.914),并且基于NIR/NIR(R780/R740)构建的回归方程模型优于其他植被指数,其构建的二次曲线方程回归模型建模与验模R2分别为0.900和0.785,RMSE为4.762,RE为7.86%,为基于提取的12种植被指数构建SPAD值估算模型中最佳模型;2)优化后的比值光谱指数RSI(Ration spectral index)的敏感波段为500和563nm,RSI(500,563)与SPAD值的相关系数r=0.999,与棉花叶片SPAD含量在0.01水平下呈显著相关,其构建的二次曲线方程模型效果最优,建模和验模R2分别为0.912和1.000,RMSE为2.848,RE为4.38%。与提取的13种植被指数相比,基于RSI指数二次曲线回归模型为估算叶绿素含量的最佳模型,并且模型预测值和实测值之间的符合度较高R2=0.843,表明基于波段优化算法的优化光谱指数RSI能更好的预测棉花叶片叶绿素含量。  相似文献   

14.
准确估算叶绿素含量对于植物生长监测、产量预测、生境的适宜性评价具有重要作用。为寻求叶片叶绿素含量的高精度估算模型,以石楠为对象,实测叶片叶绿素含量和反射光谱反射率,对原始光谱进行变换并计算植被指数,通过相关性分析挑选特征波段,运用多元逐步线性回归和偏最小二乘回归建立叶绿素预测模型。结果表明:1)FDR的逐步线性回归模型和偏最小二乘模型优于R、1/R、LR、SDR;2)DNDVI(R645,R1 370)的指数函数模型为估算叶绿素含量的最佳单变量模型;3)DRI(R747,R1 464)与RI(R733,R944)的逐步线性回归模型精度最高,验证结果的决定系数R2为0.955,均方根误差RMSE为3.145。因此,该模型可以实现叶片叶绿素含量的准确估算,从而为实现高光谱技术监测植被叶绿素含量变化提供依据。  相似文献   

15.
为了快速、准确地估算叶绿素含量,使用2012年和2013年在山东省肥城市潮泉镇获取的整个生育期苹果叶片叶绿素含量和配套的光谱数据,利用PROSPECT模型和EFAST方法探讨了对叶绿素含量敏感的波段,然后采用经验统计方法实现了单波段高光谱对苹果叶片叶绿素含量的监测。结果表明:以571 nm和697 nm波段光谱参数为自变量所建立的估测模型拟合精度较高,其决定系数(R2)分别为0.71和0.69,均方根误差(RMSE)分别为1.14、1.17 mg/dm~2,相对误差(RE)分别为-1.07%和-1.01%。以PROSPECT模型和EFAST方法整合筛选的敏感波段建立的估算模型监测叶绿素含量效果较好,为利用高光谱技术监测苹果长势提供了理论依据。  相似文献   

16.
为了无损、简单、快速、准确估测辣椒叶片叶绿素含量和组成,提升作物的精细管理水平.本文基于辣椒叶片对光的吸收特性,利用光谱透过率通过计算得到叶片的吸光度,使用四阶导数法在640~690 nm波段找到与叶片中叶绿素a和叶绿素b的吸收波峰:649、668、681nm.参照化学法检测植物叶绿素含量和组成的吸光度法,使用多元线性回归分别建立叶绿素a和叶绿素b含量的检测模型并对比.其中以649、668、681nm处吸光度建立的模型检测叶绿素a含量的结果最好,测试结果的相对误差(RE)为8.86%,决定系数(R2)为0.879;以649、681 nm处吸光度建立的模型检测叶绿素b含量的结果最好,测试结果的相对误差(RE)为9.84%,决定系数(R2)为0.878.  相似文献   

17.
[目的]利用高光谱技术估测植物叶片叶绿素含量时,如何在高维的光谱数据中选择有效的高光谱参数作为估测模型的输入矢量是估测叶绿素含量精度的关键.[方法]以南方丘陵地区油茶为试验材料,收集了182份油茶叶片光谱反射率及叶绿素含量样本,综合分析了敏感波段、光谱指数、高光谱特征参数和全波段(400~1350 nm)4个不同高光谱...  相似文献   

18.
通过比较5种不同光谱预处理方法(MSC、SNV、VN、一阶导数、二阶导数)提取胡杨叶片近红外光谱信息,分别采用遗传算法(GA)和连续投影算法(SPA)筛选特征波段,建立并比较偏最小二乘回归(PLS)模型对水分含量的预测效果,研究了胡杨叶片水分含量与叶片光谱信息的关系。结果表明,基于5种预处理方法使用SPA-PLS回归模型预测的相关系数R分别为0.764 4、0.869 79、0.806 01、0.779 93、0.816 8;预测均方根误差(RMSEP)分别为0.017 87、0.014 491、0.018 547、0.020 228、0.018 089;所选取的特征波段个数分别为11、20、24、18、18,较GA-PLS选取的特征波段数少,且预测效果普遍优于GA-PLS,其中基于SNV的预测结果最好。研究表明,基于近红外光谱数据,SPA算法相比于GA算法具有更好的选择特征波长能力,并且SPA-PLS算法的回归预测结果普遍优于GA-PLS,采用SNV-SPA-PLS方法可实现胡杨叶片水分含量的快速检测。  相似文献   

19.
以不同截形叶螨(Tetranychus truncatus Ehara)危害等级下枣叶片高光谱和叶绿素含量数据为基础,分析不同截形叶螨危害等级(0级、1级、2级、3级、4级)下枣叶片高光谱特征,构建基于一阶微分光谱的不同截形叶螨危害等级枣叶片叶绿素含量高光谱线性回归估测模型。结果表明:截形叶螨危害造成叶片中叶绿素含量减少,导致光谱反射率降低,表现为随危害等级的增加叶绿素含量呈逐级减少趋势。在不同截形叶螨危害等级枣叶片叶绿素估测模型中,危害等级为0级时,模型拟合度最好,达到0.810,表明利用高光谱数据构建不同危害等级枣叶片叶绿素含量估算模型具有一定的潜力,对危害植被叶片的虫害诊断意义重大。  相似文献   

20.
棉花冠层叶片叶绿素含量与高光谱参数的相关性   总被引:1,自引:0,他引:1  
【目的】研究棉花冠层叶片叶绿素含量与高光谱参数的相关性,建立叶绿素含量估算模型。【方法】2014年,以鲁棉研28号为研究对象,测定不同施氮水平和生育期棉花冠层叶片叶绿素含量及350~2 500nm光谱反射率,以棉花冠层高光谱反射率与冠层叶片叶绿素含量为数据源,在分析叶绿素含量与原始高光谱反射率(R)、一阶导数光谱反射率(DR)、光谱提取变量和植被指数相关性的基础上,采用一元线性与多元逐步回归的方法构建了叶绿素含量估算模型,并对从中筛选的6种棉花冠层叶片叶绿素含量估算模型进行精度对比。【结果】1)棉花冠层叶片叶绿素含量在反射光谱766nm处相关系数达到最大值,相关系数r=0.836;对于一阶导数光谱,叶绿素含量的敏感波段发生在753nm处,r=0.878;2)以9种光谱提取变量与8种植被指数为自变量,建立叶绿素含量的估算模型,筛选出的特征变量为红边面积(SDr)、绿峰与红谷的归一化值((Rg-Rr)/(Rg+Rr))、绿峰幅值(Rg),仅采用8种常用植被指数建立估算模型,筛选出的变量为比值植被指数(RVI);3)所建立的6种模型中以基于一阶导数光谱反射率建立的多元逐步回归估算模型精度最高,均方根误差(RMSE)为1.075,相对误差(RE)为2.22%,相关系数(r)为0.952。【结论】采用原始光谱、一阶导数光谱、光谱提取变量及植被指数均可对棉花叶绿素含量进行监测,其中基于一阶导数光谱的多元逐步回归模型对叶绿素含量的估算效果最优。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号