首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
针对蜜瓜糖度在线检测的需求,设计了融合漫透射光谱与图像信息的河套蜜瓜糖度在线检测试验系统,该系统包括硬件平台和软件系统两部分。硬件平台主要包括蜜瓜输送装置、光谱采集装置、图像采集装置和控制系统4部分。软件系统基于Microsoft Visual C++6.0语言,结合Omni Driver软件、Fly Capture2及Open CV软件开发。系统可实现蜜瓜光谱与图像信息的自动采集、显示及保存,可实现对漫透射光谱预处理,获取糖度检测所需光谱数据,对图像预处理,提取蜜瓜外观特征图像信息(R、G、B颜色值和蜜瓜体积)。在此基础上,系统可通过融合漫透射光谱与图像信息的蜜瓜糖度检测模型,计算蜜瓜糖度。系统同时可实现检测个数统计,外观特征信息及糖度的实时显示、保存等功能。测试试验表明,该试验系统检测1个样品用时1.2 s,糖度检测均方根误差为1.22,可满足河套蜜瓜糖度在线检测试验需求,为进一步开展河套蜜瓜糖度在线检测研究奠定了基础。  相似文献   

2.
脐橙糖度的高光谱图像无损检测技术   总被引:8,自引:0,他引:8  
提出了利用高光谱图像系统来检测脐橙糖度的方法.由脐橙反射光谱图像获取反映脐橙糖度的光谱特征波长;应用人工神经网络系统建立了脐橙糖度的预测模型.结果表明,脐橙糖度预测模型相关系数R为0.831,采用高光谱图像无损检测脐橙糖度是可行的.  相似文献   

3.
基于近红外光谱的猪肉水分在线检测与分级   总被引:2,自引:0,他引:2  
基于近红外光谱法,优化光纤探头检测距离并通过检测距离调节系统和多点同时检测,设计了猪肉水分在线检测分级系统。首先,为确定光纤探头与生鲜猪肉样品表面间的最佳检测距离,在13个不同检测距离下(5~29 mm)采集了54个样品的光谱,采用多元散射校正方法对原始光谱进行预处理,分别建立了第1波段(349~1 435 nm)、第2波段(1 037~1 761 nm)和双波段结合3种情况的含水率偏最小二乘回归模型,分析了不同检测距离和不同波段的模型,确认19 mm为在线检测分级装备的最佳检测距离。然后,通过检测距离实时调节系统动态固定最佳检测距离,设计了双波段多点同时检测系统,采集45个猪肉样品在静态条件和在线条件下的光谱,通过比较分析,两种情况下预测结果相近,从而证实了所设计的在线系统能够预测猪肉水分,并且双波段融合建模效果优于单波段,预测结果为:校正集相关系数和校正均方根误差分别为0.906和0.598,验证集相关系数和预测均方根误差分别为0.836和0.402。最后,利用独立的21个猪肉样品验证猪肉预测分级模型精度及稳定性,结果判断正确率为90.48%,表明可见近红外光谱法结合多点检测能有效地在线检测猪肉水分并分级。  相似文献   

4.
基于可见/近红外光谱技术设计了手机联用的苹果糖度便携式检测装置,旨在通过优选特征波段确定适合苹果糖度检测的波段范围及光学传感器,并通过与手机的联用完成苹果糖度的高效、便携、低成本的无损检测。选择STS-NIR微型光纤光谱仪(波长范围650~1100nm),利用实验室自行搭建的光谱采集平台对120个苹果进行光谱采集,通过偏最小二乘(PLS)算法对全波长数据进行建模,并采用连续投影法(SPA)、遗传算法(GA)和竞争自适应重加权抽样法(CARS)等变量选择方法对全波长进行特征波段的识别来选择有效波长。变量选择结果显示,所得3组特征波段含有重合项,且均包含与苹果糖度有关的变量。利用偏最小二乘(PLS)算法建立关于苹果糖度基于3组特征波段的预测模型,并对3组结果进行分析,包括对预测相关系数、预测均方根误差比较等,来评估所建模型的准确性。试验结果表明,利用3组特征波段所得建模结果均比较良好,预测相关系数都在0.93以上,其中GA-PLS模型对苹果糖度的预测效果最优,预测相关系数可达0.9447。根据上述所得特征波段的高度重合项,确定了检测苹果糖度的特征波段及其对应的光学传感器,并基于所设计的苹果糖度便携式检测装置对另取的40个苹果进行试验验证,苹果糖度的预测相关系数可达0.8822。结果表明,本文所设计的基于特征波段的手机联用的苹果糖度便携式检测装置,成本低、便于携带、检测准确率高,具有实现苹果糖度的实时无损检测的可行性。  相似文献   

5.
水果糖度近红外光谱在线检测装置   总被引:3,自引:0,他引:3  
采用短波近红外光谱仪,进行机械传送、光谱采集处理、自动控制等系统的设计和集成,研制水果糖度近红外光谱在线检测装置。在550~850nm范围,采用偏最小二乘法,建立了苹果糖度近红外光谱在线检测数学模型。经比较,标准正交校正和一阶导数处理后的光谱建立的数学模型预测效果最优,模型的相关系数为0.78,模型预测均方根误差为0.67°Brix。实验表明:水果糖度近红外光谱在线检测装置可准确地检测苹果糖度含量。  相似文献   

6.
为了提高红枣相关产业的经济效益,增强其市场竞争力。针对红枣品种无损鉴别的社会需求,文章采用高光谱图像技术获取多个品种红枣高光谱图像,获取光谱数据并提取特征光谱波段,构建红枣品种的检测模型。实验结果表明,高光谱图像技术结合竞争自适应重加权抽样和支持向量机模型(CARS-SVM)可实现对红枣品种的无损、快速、准确鉴别,分类的准确率达到了91.2%。  相似文献   

7.
针对甘薯早期冷害不易检测,导致甘薯品质下降,易感染其他病害等问题,建立了基于光谱技术的甘薯冷害无损检测方法。基于类可分性准则的关键特征排序法选择有效特征光谱波长,利用支持向量机算法对数据集进行训练评价,检测特征光谱波长的准确性以及甘薯早期冷害发生情况。通过对5个甘薯品种共400个样品进行实验,以训练数据与测试数据5∶5比例检测甘薯冷害准确率高达99.52%,以7∶3比例测试结果高达99.63%。实验结果证明特征光谱波段选择正确,表明光谱技术可以有效识别甘薯冷害,此研究为甘薯贮存分类等后续工作提供了技术方法支持。  相似文献   

8.
近红外透射光谱无损检测赣南脐橙糖度的研究   总被引:1,自引:0,他引:1  
探讨了近红外透射光谱无损检测赣南脐橙内部糖度指标的可行性,并建立近红外透射光谱与赣南脐橙内部糖度指标之间的关系.以80个赣南脐橙为研究对象,利用透射光谱测定法获取完整赣南脐橙的近红外光谱(200~1100nm),选取不同的光谱波段范围对水果样本的透射光谱进行有效信息的提取,并结合多元线性回归(MLR)、主成分回归(PCR)和偏最小二乘法(PLS)3种不同的数学校正方法对赣南脐橙的糖度(SC)进行定量分析.实验结果为:在550~900nm波段范围内,PLS校正模型的预测精度最好,其相关系数为0.9032,预测样本均方根误差为0.2421.实验结果表明,近红外透射光谱可以作为一种准确、可靠、无损的检测方法,用于检测赣南脐橙内部的糖度指标.  相似文献   

9.
设计了一套田间多光谱虚拟仪器视觉系统.系统使用高分辨率的多光谱(近红外、红光和绿光)相机MS3100,拍摄作物生长期的多光谱图像,采用Labview及其视觉模块编写图像的采集、处理和分析程序,实时测取作物各个光谱波段的反射率.田间试验表明,该系统可以准确地对图像中的作物进行识别,求取作物的光谱反射特征,在2.4m×1.8m的视窗内,每组图像的采集和处理时间平均为311ms,满足田间精准变量投入的在线工作要求.  相似文献   

10.
基于高光谱的抽穗期寒地水稻叶片氮素预测模型   总被引:3,自引:0,他引:3  
为快速、无损地监测水稻叶片氮素营养状况,开展了基于高光谱成像技术的抽穗期寒地水稻叶片氮素预测模型的研究。以不同施氮水平的寒地水稻叶片为研究对象,采用连续投影算法(successive projections algorithm,SPA)和分段主成分分析(segmented principal components analysis,SPCA)方法选择水稻叶片的高光谱特征波段,SPCA方法降维后结合相关分析(correlation analysis,CA)构建特征光谱参量,并建立基于全波段高光谱数据、SPA特征波段及SPCA特征光谱参量的多种回归分析模型且对模型进行检验和筛选。研究结果表明:在校正集决定系数RC2上,基于多元逐步回归分析(multiple stepwise regression analysis,MSRA)的全波段模型较好,RC2=0.9 6 4,校正集均方根误差RMSEC=0.083;RP2为0.961,RMSEP为0.050。该研究结果为快速检测水稻叶片氮素含量及水稻生长期间精确施肥管理提供了技术支撑和理论依据。  相似文献   

11.
针对温室番茄智能化管理需要,研究茎秆、叶片和绿果等3类相近色目标的多波段图像融合方法,以凸显目标与背景亮度差异,提高目标视觉识别效率。根据其各自在300~1000 nm范围的反射光谱特征差异,建立了针对其光谱数据分类的Lasso正则化逻辑回归模型。基于模型的稀疏解特征,确定具有较大权值系数的450、600和900 nm等3个波段作为最优成像波段,在此基础上构建了温室番茄植株多波段图像在线采集系统。结合最优成像波段下相近色目标图像特征分析,提出了基于NSGA-II的多波段图像加权融合方法,以增强特定目标与近色背景物体的图像亮度差异。最后通过现场试验对多波段图像融合效果进行评估。结果表明,分别以茎秆、叶片和绿果器官作为识别目标,通过多波段图像融合处理后,目标与背景之间的图像灰度差异绝对差值相应达到单波段图像的2.02、8.63和7.89倍,即被识别目标与其他近色背景的亮度差异显著增强,且背景物的亮度波动得到抑制。本研究结果可以为农业环境近色目标视觉识别相关研究提供参考。  相似文献   

12.
牛肉含水率无损快速检测系统研究   总被引:3,自引:0,他引:3  
针对影响牛肉品质的主要指标,开发了基于可见/近红外光谱技术的牛肉含水率品质快速检测系统。阐述了该系统的工作原理、工作过程、硬件组成及软件系统功能。系统的核心是波段分别为400~960 nm和900~2 600 nm的光谱仪,结合控制器、光纤等辅助装置构成了检测系统的硬件部分。基于VC++语言开发了Windows环境下的光谱信息采集和处理的快速无损检测软件。该系统可以实现对牛肉光谱数据的采集、处理、样品品质的快速预测和结果显示。该系统在实验室采集了57个牛肉背最长肌的光谱,分别对可见、近红外和全波段的光谱数据建模,分析显示全波段预测模型能够更好地预测牛肉的含水率,其校正相关系数RC和预测相关系数RP分别为0.96和0.88。然后将预测模型固化于在线检测硬件系统中,在牛肉分割线上采集84个样品进行实验验证,检测正确率为92.8%。含水率结果表明,该快速检测装置检测含水率的精度较高,可靠性较好,可用于牛肉屠宰分割线对含水率品质参数的快速无损检测。  相似文献   

13.
河套灌区土壤水溶性盐基离子高光谱综合反演模型   总被引:4,自引:0,他引:4  
为了提高野外高光谱反演土壤水溶性盐基离子的精度,以河套灌区永济灌域盐渍化土壤为研究对象,构建了基于光谱变换、特征波段、特征光谱指数筛选以及支持向量机(SVM)的机器学习相结合的高光谱综合反演模型。结果表明,经预处理的原始光谱反射率与土壤离子相关性总体较低,最大相关系数仅为0.18,原始光谱反射率与土壤离子的相关系数由大到小依次为Ca~(2+)、SO_4~(2-)、Mg~(2+)、全盐量、Na~++K~+、Cl~-。全盐量、Na~++K~+、Cl~-、SO_4~(2-)、Ca~(2+)、Mg~(2+)的光谱最优变换形式分别为(1/R)″、(1/R)″、(lnR)'、(lnR)″、R'、(lnR)″,敏感波段(P0.01)数分别为41、7、9、65、76、28个,利用逐步回归法在敏感波段中筛选出特征波段,基于特征波段建立的回归模型中各离子的决定系数R~2平均值为0.35,均方根误差RMSE平均值为0.87 g/kg,其中SO_4~(2-)拟合精度最高,R~2为0.52,Ca~(2+)拟合精度最低,R~2仅为0.20。将特征波段代入光谱指数中,结合逐步回归法确定了Mg~(2+)特征光谱指数为3个,全盐量特征光谱指数为2个,Na~++K~+、SO_4~(2-)、Ca~(2+)特征光谱指数分别为1个,与仅考虑特征波段的回归模型相比,特征波段+特征光谱指数结合后各离子回归模型的R~2平均提高了58.67%,RMSE降低了24.60%,其中SO_4~(2-)拟合精度最高,R~2为0.74,RMSE为0.47 g/kg。考虑了特征波段+特征光谱指数的SVM模型相比仅考虑特征波段的SVM模型,其预测能力有了明显提高,各离子相对分析误差(RPD)平均提高了110.27%,训练集R~2平均提高了37.54%,RMSE平均降低了40.12%,验证集R~2平均提高了56.04%,RMSE平均降低了39.39%。SO_4~(2-)的RPD达到3.000,模拟效果最优,具备很好的预测能力;全盐量模型具有很好的定量预测能力,Mg~(2+)模型可用于评估或相关性方面的预测,Na~++K~+、Ca~(2+)的模型具有区别高低值的能力。  相似文献   

14.
【目的】为了解决传统水果糖度检测装置体积庞大、造价昂贵、不易推广、检测过程中需要破坏样品等问题。【方法】课题组设计了一款基于安卓手机进行苹果无损糖度检测并结合柔性分拣技术进行苹果多级分拣的系统,分析了该系统的创新点及软硬件设计,并选取80个无外部机械损伤和缺陷的红富士苹果进行了系统调试与试验,通过手机对每个苹果拍摄4次照片,在手机App中将光谱信息转化为数字信号,再进行模型分析和处理,最终将测量糖度数值显示在手机App上。【结果】经过多次测量,该系统检测误差为0.64%~8.37%,精度较高,能够较好地与模型拟合。【结论】1)该系统能够很好地实现苹果糖度无损检测,并且通过糖度和大小两项指标对苹果进行多级柔性分拣可以提高苹果质量,收获口碑,提高区域知名度,以点带面,带动地方经济发展,推动乡村振兴;2)目前试验中所采用的水果均为无外部机械损伤和缺陷、无病害的苹果、梨等薄皮水果,针对内部有损害或表面有破损的苹果或其他类型水果的糖度检测模型还需要进一步研究。  相似文献   

15.
基于声学响应信号分析方法设计了一款禽蛋蛋壳裂纹在线检测系统,该系统包括运动控制模块和声学信号采集与分析模块。该系统可实现对在线输送鸡蛋的多次自动敲击与音频信号采集。试验结果显示,该模型的完好蛋检测准确率为92%,裂纹蛋检测准确率为100%。该禽蛋蛋壳检测系统对蛋壳裂纹识别具有较高的检测率和稳定性,可满足实际应用需求。   相似文献   

16.
基于色调分形维数的柑橘糖度和有效酸度检   总被引:5,自引:1,他引:4  
研究了宫川温州蜜柑糖度及有效酸度的机器视觉检测技术及影响检测精度的因素.对机器视觉系统采集的柑橘图像进行图像裁切、亮度法去图像背景和RGB空间至HSI空间的转换,将柑橘色调范围分割为0°~20°、20°~40°、40°~60°、60°~80°、80°~100°和100°~120°共6个区域,提取各区域色调分形维数,以此作为BP神经网络输入,无损检测宫川温州蜜柑糖度及有效酸度.167个测试样本的检测结果表明:在±1.5°Brix精度范围内糖度正确识别率为66.6175%,在±0.5精度范围内有效酸度正确识别率为73.9275%.宫川温州蜜柑糖度及有效酸度与果皮色调分形维数之间具有相关性,可用机器视觉检测其糖度及有效酸度.  相似文献   

17.
含水率、颜色和pH值是牛肉的重要品质指标,近年来可见/近红外光谱因其成本低、快速无损等特点被广泛应用于肉品检测中。针对现有探头采集样品面积过小、代表性差等问题,利用高效的环形光源对双通道可见/近红外光谱系统进行改进,建立了一种高效、稳定的双通道可见近红外光谱系统。首先,基于多次采集生鲜牛肉样品获得400~2450nm波段的有效光谱数据,对改进前反射探头和环形探头的性能进行了对比分析,发现环形探头的稳定性更有优势,在整个波段的变异系数均小于10%。然后利用改进后探头组成的系统采集了61块生鲜牛肉样品的可见/近红外光谱数据。采用了无处理、SG平滑、哈尔变换、一阶导数、二阶导数、标准正态变换、多元散射校正、去趋势化以及各方法组合等方法对光谱数据进行预处理。利用第1波段数据建立颜色参数L*、 a* 、b*的偏最小二乘模型,分别利用第1波段数据、第2波段数据和双波段数据(双波段简单拼接)建立含水率和pH值的PLSR模型并进行了对比。结果发现:第1波段的数据无需经过预处理,即可对颜色参数L*、 a* 、b*取得较好的预测结果,其PLSR模型验证集相关系数和标准误差分别为0.9603、0.9616、0.9367和1.3332、1.1844、0.6553;对于含水率和pH值,无论光谱数据是否经过预处理,第1波段数据的建模效果要好于第2波段数据,但是经过预处理的双波段数据(400~2450nm波段)能够取得更好的预测结果,其PLSR模型验证集相关系数和标准误差分别为0.9541、0.8716和0.5475、0.1272。结果证明,基于高效环形探头的双通道可见近红外光谱系统建立的牛肉多品质参数预测模型,可实现准确、无损、快速检测,获得比较稳定的检测结果。  相似文献   

18.
基于高光谱图像的龙眼叶片叶绿素含量分布模型   总被引:2,自引:0,他引:2  
针对传统高光谱单点法检测叶绿素含量效率低、精度不足等问题,提出一种基于高光谱图像和卷积神经网络(CNN)多特征融合的深度学习龙眼叶片叶绿素含量分布预测模型。首先进行Savitzky-Golay光谱去噪,然后通过奇异值分解(SVD)和独立成分分析(ICA)提取特征光谱,再对特征光谱图像提取灰度共生矩阵(GLCM)和CNN纹理特征,最后建立粒子群优化(PSO)支持向量回归(SVR)、深度神经网络(DNNs)分布模型。结果表明,基于特征光谱建模的PSO-SVR预测效果最佳,全期的校正集和验证集模型决定系数R2为0.822 0和0.815 2。对比多种主流模型,基于特征光谱、GLCM纹理、CNN纹理特征的ICA-DNNs模型预测精度最高,校正集和验证集R2分别为0.835 8和0.821 0。试验结果表明,高光谱图像可快速无损地对龙眼叶片叶绿素含量分布进行检测,可为龙眼树实时营养监测和病害早期防治提供理论依据。  相似文献   

19.
为了实现作物生长过程中叶绿素的动态在线监测,设计开发了一款叶绿素在线检测传感器系统。应用可见-近红外(660、880 nm)波段光谱检测植物叶绿素含量的体积小、功耗低的模块,通过AD转换电路、数字滤波电路得到叶片反射光数字信号,利用灰度板对反射光信号进行反射率校准,660 nm和880 nm波段的反射率校正模型的R~2分别为0. 999 6和0. 999 5;取10个不同等级叶绿素溶液样本共80个,使用国标法检测叶绿素含量后将溶液倒入无纺布开展叶绿素梯度仿真测量。叶绿素检测模块测量双波长反射率后,分别计算归一化差值植被指数(NDVI)和叶绿素指标SPAD指数值。建立相应的叶绿素含量检测数学模型,其决定系数R~2分别为0. 955 7、0. 958 7。开展活体植株叶绿素检测验证试验,叶片原位光谱测量后,再将叶片剪碎,使用国标法测量叶绿素真实值,检测样本与真实值的相关系数分别为0. 888 7、0. 874 5。进而开展在线动态监测试验,实时监测水肥胁迫组和正常水肥管理对照组玉米幼苗植株,监测90 h内的叶绿素含量变化,可知,相同管理条件下植株叶绿素含量变化规律大致相同,受水肥胁迫的影响,水肥胁迫组的叶绿素浓度呈下降趋势。证明了传感器系统在线监测作物叶绿素动态的可行性,可为农作物生长与胁迫动态监测提供技术支持。  相似文献   

20.
为满足苹果内部品质产地检测分级需求,本研究研发出检测模块和分级模块,构成可移动式苹果内部品质果园产地分级系统。在此系统的基础上,以苹果糖度和霉心病为代表品质指标,提出一种基于乘法效应消除(Multiplicative Effect Elimination,MEE)的光谱校正方法,用于消除苹果物理属性差异导致的有效光程变化对光谱的影响。利用该系统获取苹果600~900 nm漫透射光谱数据,分别采用多元散射校正(Multiple Scattering Correction,MSC)、标准正态变量变换(Standard Normal Variate Transform,SNV)和MEE算法对苹果光谱预处理后,建立糖度偏最小二乘回归(Partial Least Squares Regression, PLSR)预测模型和霉心病偏最小二乘判别(Partial Least Squares - Discriminant Analysis,PLS-DA)模型。结果表明,MEE算法相比于MSC和SNV算法建模结果更好,糖度预测模型的校正集相关系数(Rc)、校正集均方根误差(Root Mean Square Error of Calibration,RMSEC)、预测集相关系数(Rp)和预测集均方根误差(Root Mean Square Error of Prediction,RMSEP)分别为0.959、0.430%、0.929和0.592%;霉心病判别模型的校正集敏感性、校正集特异性、校正集准确率、预测集敏感性、预测集特异性和预测集准确率分别为98.33%、96.67%、97.50%、100.00%、90.00%和95.00%。将建立的最佳预测模型导入分级系统进行试验,结果表明该系统的分级准确率为90.00%,分级速度约3个/s。该系统具有成本低、结构简单、移动方便等优点,可以满足苹果内部品质果园产地检测分级需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号