首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heterosis effects were evaluated as traits of the dam in F2 progeny of F1 dams and F3 and 4 progeny of F2 and 3 dams in three composite populations of beef cattle. Traits included birth weight, birth date, calving difficulty percentage, and survival percentage at birth, 72 h, and weaning for calves with dams of different age classes. Breed effects were evaluated for the nine parental breeds (Red Poll [R], Hereford [H], Angus [A], Limousin [L], Braunvieh [B], Pinzgauer [P], Gelbvieh [G], Simmental [S], and Charolais [C]) that contributed to the three composite populations (MARC I = 1/4 C, 1/4 B, 1/4 L, 1/4 H, 1/8 A; MARC II = 1/4 G, 1/4 S, 1/4 H, 1/4 A; and MARC III = 1/4 R, 1/4 P, 1/4 H, 1/4 A). Among calves with 2-yr-old dams, breed effects were significant for birth weight, birth date, calving difficulty percentage, and survival percentage at birth but not at 72 h and weaning. Calf survival at weaning was lowest for smallest (less than mu - 1.5 sigma) and largest (greater than mu + 1.5 sigma) birth weight classes and did not differ among intermediate birth weight classes. Calves with difficult births with 2-yr-old dams were significantly heavier at birth (39.6 vs 35.4 kg) and had significantly lower survival at 72 h (87.1 vs 92.2%) and at weaning (77.4 vs 85.1%) than calves with 2-yr-old dams that did not experience difficult births. Among calves with dams greater than or equal to 3 yr old and from dams of all ages, breed group effects generally were significant for the traits analyzed. Important breed group effects on dystocia and survival traits were observed independent of breed group effects on birth weight. Effects of heterosis were significant for birth weight for each generation of each composite population and for the mean of the three composite populations. Generally, heterosis effects for calving difficulty percentage were not significant. Effects of heterosis generally were significant for date of birth (earlier) for each composite population and for the mean of the three composite populations. Heterosis effects on survival to weaning percentage generally were positive but generally were not significant. Heterosis retained for birth weight, birth date, and survival percentage in combined F3 and 4 generation progeny of combined F2 and 3 generation dams did not differ (P greater than .05) from expectation based on retained heterozygosity. These results support the hypothesis that heterosis in cattle for these traits is the result of dominance effects of genes.  相似文献   

2.
Heterosis effects were evaluated in F1, F2, and F3 generations of females and in the F1, F2, and combined F3 and F4 generations of males in three composite populations of beef cattle. Traits included weight, height, and condition scores at different ages, percentage of females reaching puberty at 368, 410, and 452 d, adjusted age, and adjusted weight of females at puberty and scrotal circumference and paired testicular volume of males. Breed effects were evaluated for the nine parental breeds (Red Poll [R], Hereford [H], Angus [A], Limousin [L], Braunvieh [B], Pinzgauer [P], Gelbvieh [G], Simmental [S], and Charolais [C]) that contributed to the three composite populations (MARC I = 1/4 C, 1/4 B, 1/4 L, 1/8 H, 1/8 A; MARC II = 1/4 G, 1/4 S, 1/4 H, 1/4 A; and MARC III = 1/4 R, 1/4 P, 1/4 H, 1/4 A). Breed effects were significant for all traits evaluated. Heterosis was significant for weight, height, and condition score at all ages and for most measures of puberty in each generation of each composite and for the mean of the three composite populations. Heterosis for age at puberty was largely independent of heterosis effects on 368-d weight. Heterosis was significant for scrotal circumference and paired testicular volume in each generation of each composite and for the mean of the three composite populations. Heterosis effects on scrotal measurements are mediated both through heterosis effects on growth rate and through factors that are independent of growth rate. Correlation coefficients among breed group means and correlations of breed rank for scrotal measurements with puberty traits of females were greater than or equal to .88 (P less than .01) for all puberty traits except weight at puberty, which was not associated with scrotal measurements. There was close agreement in heterosis observed for most traits and expectation based on retained heterozygosity. These results support the hypothesis that heterosis in cattle for size, puberty, and scrotal measurement traits is due to dominance effects of genes.  相似文献   

3.
Heterosis effects in F1 dams producing F2 progeny and retained heterosis in combined F2 and F3 dams producing F3 and F4 progeny were evaluated in dams 2 yr old, in dams greater than or equal to 5 yr old, and in dams of all ages. Traits included pregnant percentage, calf crop born percentage, calf crop weaned percentage, 200-d calf weight per heifer or cow exposed, and 200-d calf weight. Breed effects were evaluated in the nine parental breeds (Red Poll [R], Hereford [H], Angus [A], Limousin [L], Braunvieh [B], Pinzgauer [P], Gelbvieh [G], Simmental [S], and Charolais [C]) that contributed to the three composite populations (MARC I = 1/4 B, 1/4 C, 1/4 L, 1/8 H, 1/8 A; MARC II = 1/4 G, 1/4 S, 1/4 H, 1/4 A; and MARC III = 1/4 R, 1/4 P, 1/4 H, 1/4 A). Breed effects were significant for all traits evaluated in the three age groupings and generally were greatest in 2-yr-old dams and smallest in dams greater than or equal to 5 yr old. Heterosis effects for 200-d calf weight were relatively uniform among age groupings and among the three composite populations and heterosis retained was equal to, or greater than, expectation based on retained heterozygosity. Heterosis effects in animals of all ages for reproductive traits in F1 dams producing F2 progeny differed among the three composite populations, as did heterosis retained in combined F2 and F3 dams producing F3 and F4 progeny. In dams of all ages, heterosis retained for reproductive traits in F2 and F3 dams producing F3 and F4 progeny did not differ (P greater than .05) from expectation based on retained heterozygosity in two of the three composite populations, but loss of heterosis was greater (P less than .05) than expectation based on retained heterozygosity in one of the three composite populations for calf crop born percentage, calf crop weaned percentage, and 200-d calf weight per heifer or cow exposed. This reduction was the result of increased fetal loss between pregnancy diagnosis and parturition.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Heterosis effects for birth weight, ADG from birth to weaning, 200-d weight, ADG from weaning to 368 d, 368-d weight, 368-d height, 368-d condition score, and 368-d muscling score (males only) were evaluated separately for each sex in F1, F2, and combined F3 and F4 generations in three composite beef cattle populations. Breed effects were evaluated for the nine parental breeds (i.e., Red Poll [R], Hereford [H], Angus [A], Limousin [L], Braunvieh [B], Pinzgauer [P], Gelbvieh [G], Simmental [S], and Charolais [C]) that contributed to the three composite populations (MARC I = 1/4 C, 1/4 B, 1/4 L, 1/8 H, 1/8 A; MARC II = 1/4 G, 1/4 S, 1/4 H, 1/4 A; and MARC III = 1/4 R, 1/4 P, 1/4 H, 1/4 A). Breed effects were significant for all traits evaluated. The large differences among breeds for growth and size traits in combined additive direct and additive maternal genetic effects (Gi + Gm) provide an opportunity to use genetic differences among breeds to achieve and maintain optimum additive genetic (breed) composition for growth and size traits to match cattle genetic resources to a wide range of production and marketing situations. Combined individual and maternal heterosis was significant in the F1, F2, and combined F3 and F4 generations for each composite population and for the mean of the three composite populations in both sexes for most of the traits evaluated. In both sexes, heterosis retained in combined F3 and F4 generations was greater (P less than .05) than expected based on retained heterozygosity for birth weight, ADG from weaning to 368 d, and for 368-d weight and did not differ (P greater than .05) from expectation for other traits. These results support the hypothesis that heterosis in cattle for traits related to growth and size is due to dominance effects of genes.  相似文献   

5.
Retained heterosis in F2 cows nursing F3 progeny was evaluated in 3-, 4-, and greater than or equal to 5-yr-old cows. Traits evaluated included milk yield at three stages of lactation and 200-d weight of progeny. Breed effects were evaluated in the nine parental breeds (Red Poll [R], Hereford [H], Angus [A], Limousin [L], Braunvieh [B], Pinzgauer [P], Gelbvieh [G], Simmental [S], and Charolais [C]) that contributed to the three composite populations (MARC I = 1/4 B, 1/4 C, 1/4 L, 1/8 H, 1/8 A; MARC II = 1/4 G, 1/4 S, 1/4 H, 1/4 A; and MARC III = 1/4 R, 1/4 P, 1/4 H, 1/4 A). Breed effects were significant for 12-h milk yield, estimated 200-d milk yield, and 200-d weight of progeny. Herefords were lowest (P less than .05) for 12-h milk yield and estimated 200-d milk yield, and Braunvieh produced significantly more milk than all breed groups except Pinzgauer and Simmental, for which the difference approached significance. The correlation among breed group means (nine parental breeds and three composites) for 12-h milk yield with 200-d weight of progeny was .91. When 200-d weight was adjusted to a common estimated 200-d milk yield, Hereford, Angus, Red Poll, and Limousin did not differ (P greater than .05); all were significantly lighter than Braunvieh, Pinzgauer, Gelbvieh, Simmental, and Charolais, which did not differ (P greater than .05) from each other.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The effects of heterosis for gestation length, dystocia, calf survival, birth weight, 200-d weight, and ADG from birth to weaning were evaluated in F1, F2, and combined F3 and F4 generations in three composite populations. Breed effects were evaluated for the nine parental breeds (Red Poll, Hereford, Angus, Limousin, Braunvieh, Pinzgauer, Gelbvieh, Simmental, and Charolais) that contributed to the three composite populations. Breed effects were significant for all traits evaluated except survival at birth. The large differences among breeds in additive direct and additive maternal genetic effects offer a great opportunity to use the genetic differences among breeds to achieve and maintain optimum additive genetic (breed) composition to match genetic resources to a wide range of production-marketing ecosystems. There was no heterosis for gestation length. Mean heterosis for dystocia was significant estimated in F1 but not in F2 or in the combined F3 and F4 generations. Mean heterosis was not significant in any generation for survival at birth, to 72 h, and to weaning for the F1 generation; mean heterosis was significant for survival to weaning for the F2 generation and approached significance (P = .06) for the combined F3 and F4 generations. Mean heterosis over all composite populations and heterosis for each composite population were significant in all generations for weight at birth and at 200 d and for ADG from birth to weaning. Retained heterosis was not less than expected from retained heterozygosity in composite populations for the traits evaluated. These results suggest that heterosis for these traits likely is due to dominance effects and, thus, can be attributed to the recovery of accumulated inbreeding depression in the parental breeds.  相似文献   

7.
Breed differences for weight (CW), height (CH), and condition score (CS) were estimated from records (n = 12,188) of 2- to 6-yr-old cows (n = 744) from Cycle IV of the U.S. Meat Animal Research Center's Germplasm Evaluation (GPE) Program. Cows were produced from mating Angus and Hereford dams to Angus, Hereford, Charolais, Shorthorn, Galloway, Longhorn, Nellore, Piedmontese, and Salers sires. Samples of Angus and Hereford sires were 1) reference sires born from 1962 through 1970 and 2) 1980s sires born in 1980 through 1987. The mixed model included cow age, season of measurement and their interactions, year of birth, pregnancy-lactation code (PL), and breedgroup as fixed effects for CW and CS. Analyses of weight adjusted for condition score included CS as a linear covariate. The model for CH excluded PL. Random effects were additive genetic and permanent environmental effects associated with the cow. Differences among breed groups were significant (P < 0.05) for all traits and were maintained through maturity with few interchanges in ranking. The order of F1 cows for weight was as follows: Charolais (506 to 635 kg for different ages), Shorthorn and Salers, reciprocal Hereford-Angus (HA) with 1980s sires, Nellore, HA with reference sires, Galloway, Piedmontese, and Longhorn (412 to 525 kg for different ages). Order for height was as follows: Nellore (136 to 140 cm), Charolais, Shorthorn, Salers, HA with 1980s sires, Piedmontese, Longhorn, Galloway and HA with reference sires (126 to 128 cm). Hereford and Angus cows with reference sires were generally lighter than those with 1980s sires. In general, breed differences for height followed those for weight except that F1 Nellore cows were tallest, which may in part be due to Bos taurus-Bos indicus heterosis for size.  相似文献   

8.
The influence of different levels of adjusted fat thickness (AFT) and HCW slaughter end points (covariates) on estimates of breed and retained heterosis effects was studied for 14 carcass traits from serially slaughtered purebred and composite steers from the US Meat Animal Research Center (MARC). Contrasts among breed solutions were estimated at 0.7, 1.1, and 1.5 cm of AFT, and at 295.1, 340.5, and 385.9 kg of HCW. For constant slaughter age, contrasts were adjusted to the overall mean (432.5 d). Breed effects for Red Poll, Hereford, Limousin, Braunvieh, Pinzgauer, Gelbvieh, Simmental, Charolais, MARC I, MARC II, and MARC III were estimated as deviations from Angus. In addition, purebreds were pooled into 3 groups based on lean-to-fat ratio, and then differences were estimated among groups. Retention of combined individual and maternal heterosis was estimated for each composite. Mean retained heterosis for the 3 composites also was estimated. Breed rankings and expression of heterosis varied within and among end points. For example, Charolais had greater (P < 0.05) dressing percentages than Angus at the 2 largest levels of AFT and smaller (P < 0.01) percentages at the 2 largest levels of HCW, whereas the 2 breeds did not differ (P > or = 0.05) at a constant age. The MARC III composite produced 9.7 kg more (P < 0.01) fat than Angus at AFT of 0.7 cm, but 7.9 kg less (P < 0.05) at AFT of 1.5 cm. For MARC III, the estimate of retained heterosis for HCW was significant (P < 0.05) at the lowest level of AFT, but at the intermediate and greatest levels estimates were nil. The pattern was the same for MARC I and MARC III for LM area. Adjustment for age resulted in near zero estimates of retained heterosis for AFT, and similarly, adjustment for HCW resulted in nil estimates of retained heterosis for LM area. For actual retail product as a percentage of HCW, the estimate of retained heterosis for MARC III was negative (-1.27%; P < 0.05) at 0.7 cm but was significantly positive (2.55%; P < 0.05) at 1.5 cm of AFT. Furthermore, for MARC III, estimates of heterosis for some traits (fat as a percentage of HCW as another example) also doubled in magnitude depending on different levels of AFT end point. Rational exploitation of breeds requires special attention to use of different end points and levels of those end points, mainly for fat thickness.  相似文献   

9.
Maternal performance of 134 Hereford (H), Brangus (B), and reciprocal crossbred (H x B and B x H) cows from 2 to 7 yr of age was evaluated under semidesert conditions in this study. Calves produced by 2- and 3-yr-old cows were sired by Brangus and Hereford bulls. Calves produced by 4- to 7-yr-old cows were sired by Charolais bulls. Breed of sire and breed of dam of cow affected kilograms of weaning weight, 205-d weight, weaning weight as a percentage of cow weight, and 205-d weight as a percentage of cow weight produced annually. Brangus (either as sire or dam of cow) was superior to Hereford in all cases. Observed maternal heterosis on 2- to 3-yr-old cows was 23.0, 20.1, 30.0, 29.1, 23.9, and 23.0% for calf birth date, weaning percentage, weaning weight per year, 205-d weight per year, weaning weight as a percentage of cow weight per year, and 205-d weight as a percentage of cow weight per year, respectively (P less than .01). Observed maternal heterosis from mature cows was 19.8, 12.8, 21.0, 18.7, 17.4, and 15.4% for calf birth date, weaning percentage, weaning weight per year, 205-d weight per year, weaning weight as a percentage of cow weight per year, and 205-d weight as a percentage of cow weight per year, respectively (P less than .01). Results indicate large heterotic effects on annual cow productivity and an adaptive advantage for cows with Brangus sires and(or) dams under semidesert conditions.  相似文献   

10.
Angus (A), Brown Swiss (S) and A X S reciprocal F1 (AS) dams were mated to A, S and AS (also reciprocal F1) sires resulting in nine breed groups of progeny with varying proportions of Angus and Brown Swiss breeding. Breed group of dam and of sire significantly influenced birth weight, preweaning daily gain, weaning weight, 205-d weight, condition score and frame size. The means for birth weight and weaning weight were 33 and 213 kg, respectively. Brown Swiss bulls sired calves with the heaviest birth and weaning weights. Calves produced by S dams likewise were heavier at birth and weaning. Pregnancy rates were influenced significantly by year, age and breed of dam and averaged 79, 95 and 92% for S, AS and A cows, respectively. Survival rate averaged 97% and was not influenced significantly by any of the effects examined. Because survival rates were similar for all breed groups, the results for weaning rate paralleled those for pregnancy rate. Genetic influences on preweaning growth traits and survival rate were partitioned into additive breed differences (B) and heterosis (H) effects for direct (d) and maternal (m) components. Pregnancy and weaning rates were examined using similar analyses except that genotype of service sire of dam replaced that of the offspring for the direct additive breed and direct heterosis components. The Bd values indicated that the Angus breed was inferior (P less than .01) to the Brown Swiss breed for all preweaning growth traits except for condition score, in which the Angus breed surpassed (P less than .01) the Brown Swiss. The Bm values also showed an advantage for the Brown Swiss breed for all preweaning growth traits. The additive maternal effect (the genotype of the females exposed), Bm, was important for pregnancy rate and weaning rate (P less than .001 and P less than .05) but not for survival rate (P greater than .10). The direct additive breed effect was not important for any reproductive trait. Direct heterosis did not affect any of the preweaning or reproduction traits; however, maternal heterosis (Hm) significantly affected all traits except birth weight, frame score and survival rate. The Hm estimates were 12.0 and 8.4 kg for weaning weight and 205-d weight, respectively. The Hm estimates for pregnancy rate, survival rate and weaning rate were 10, 2 and 13%, respectively.  相似文献   

11.
Postweaning growth, feed efficiency, and carcass traits were analyzed on 1,422 animals obtained by mating F1 cows to F1 (Belgian Blue x British breeds) or Charolais sires. Cows were obtained from mating Hereford, Angus, and MARC IIIHereford, 1/4 Angus, 1/4 Pinzgauer, and 1/4 Red Poll) dams to Hereford or Angus (British breeds), Tuli, Boran, Brahman, or Belgian Blue sires. Breed groups were fed in replicated pens and slaughtered serially in each of 2 yr. Postweaning average daily gain; live weight; hot carcass weight; fat depth; longissimus area; estimated kidney, pelvic, and heart fat (percentage); percentage Choice; marbling score; USDA yield grade; retail product yield (percentage); retail product weight; fat yield (percentage); fat weight; bone yield (percentage); and bone weight were analyzed in this population. Quadratic regressions of pen mean weight on days fed and of cumulative ME consumption on days fed were used to estimate gain, ME consumption and efficiency (Mcal of ME/kg of gain) over time (0 to 200 d on feed), and weight (300 to 550 kg) intervals. Maternal grandsire breed was significant (P < 0.01) for all traits. Maternal granddam breed (Hereford, Angus, or MARC III)was significant (P < 0.05) only for fat depth, USDA yield grade, retail product yield, fat yield, fat weight, and bone yield. Sire breed was significant (P < 0.05) for live weight, hot carcass weight, longissimus area, and bone weight. Sex class was a significant (P < 0.001) source of variation for all traits except for percentage Choice, marbling score, retail product yield, and fat yield. Interactions between maternal grandsire and sire breed were nonexistent. Sire and grandsire breed effects can be optimized by selection and use of appropriate crossbreeding systems.  相似文献   

12.
The objective of this study was to characterize breeds representing diverse biological types for postweaning growth and carcass composition traits in terminal crossbred cattle. Postweaning growth and carcass traits were analyzed on 434 steers and 373 heifers obtained by mating F1 cows to Charolais sires. Maternal grandsires represented Hereford, Angus, and MARC III (1/4 Hereford, 1/4 Angus, 1/4 Pinzgauer, and 1/4 Red Poll) dams to Hereford or Angus (British Breeds), Norwegian Red, Swedish Red and White, Wagyu, or Friesian breeds. Breed groups were slaughtered serially in each of 2 yr (2002 and 2003). Postweaning ADG, slaughter weight, hot carcass weight, dressing percentage, percentage Choice, LM area, marbling score, USDA yield grade, fat thickness, retail product yield (percentage), retail product weight, fat yield (percentage), fat weight, bone yield (percentage), and bone weight were analyzed. Maternal grandsire breed was significant (P < 0.05) for all traits except dressing percentage, percentage Choice, and LM area. Marbling score for animals with Norwegian Red, Wagyu, Swedish Red and White, British Breeds, and Friesian inheritance was 550, 544, 532, 530, and 515, respectively (SEM = 8). Retail product weight for these animals was 224, 211, 227, 223, and 223 kg, respectively (SEM = 2 kg). Maternal granddam breed was not significant for any of the traits analyzed. Grandsire breed effects can be optimized by selection and use of appropriate crossbreeding systems.  相似文献   

13.
Heifer and steer progeny of 2-yr-old first-cross (F1) heifers and 3- to 6-yr-old F1 cows, from Hereford dams and five sire breeds, were evaluated for postweaning feedlot growth and carcass composition. Breeds of sire of dam were Angus (A), Red Poll (RP), Tarentaise (T), Simmental (Sm), and Pinzgauer (P). Calves from 2-yr-old heifers were sired by Shorthorn, and calves from 3- to 6-yr-old dams were sired by Charolais. Breed of sire of dam was significant (P less than .05 to P less than .01) for total gain and final weight for female progeny from 2-yr-old dams. At all weights, Sm, P, and T ranked above A and RP. Progeny of A, P, Sm, and T F1 2-yr-old dams were not significantly different but were higher (P less than .05) than RP heifers in total feedlot gain. Breed of sire of dam was significant (P less than .05) for carcass weight and longissimus muscle area; T ranked highest and RP lowest. Breed was not significant for any growth traits of steer progeny of 2-yr-old dams. Breed was significant for marbling score; A ranked highest and exceeded (P less than .01) both RP and Sm steers. Breed was significant (P less than .05) for most growth traits in the heifer progeny of the 3- to 6-yr-old dams bred to Charolais sires. Heifer calves of the Sm group were heavier (P less than .05) than all other groups for most weights and total gain. For total gain, P and T were intermediate and A and RP lowest. For heifer carcass traits from 3- to 6-yr-old dams, breed was significant (P less than .05 to P less than .01) for carcass weight, longissimus muscle area, percentage of cutability, and estimated kidney, heart, and pelvic fat. Heifers from Sm-sired dams were heavier (P less than .05) than those from all other groups but ranked second to heifers from P for percentage of cutability. Marbling scores of RP heifer carcasses ranked highest of all groups. Breed was not significant (P greater than .05) for any of the weights or gains in steer progeny of 3- to 6-yr-old dams; however, the Sm and P groups ranked above A and RP for all feedlot test weights.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The objective of this study was to investigate a potential association of an inactive myostatin allele with early calf mortality, and evaluate its effect on growth and carcass traits in a crossbred population. Animals were obtained by mating F1 cows to F1 (Belgian Blue x British Breed) or Charolais sires. Cows were obtained from mating Hereford, Angus, and MARC III (1/4 Hereford, 1/4 Angus, 1/4 Pinzgauer, and 1/4 Red Poll) dams to Hereford, Angus, Tuli, Boran, Brahman, or Belgian Blue sires. Belgian Blue was the source of the inactive myostatin allele. Myostatin genotypes were determined for all animals including those that died before weaning. Early calf mortality was examined in the F2 subpopulation (n = 154), derived from the F1 sires mated to F1 cows from Belgian Blue sires, to evaluate animals with zero, one, or two copies of inactive myostatin allele. An overall 1:2:1 ratio (homozygous active myostatin allele:heterozygous:homozygous inactive myostatin allele) was observed in the population; however, a comparison between calves dying before weaning and those alive at slaughter showed an unequal distribution across genotypes (P < 0.01). Calves with two copies of the inactive allele were more likely (P < 0.01) to die before weaning. Postweaning growth traits were evaluated in the surviving animals (n = 1,370), including birth, weaning, and live weight at slaughter, and postweaning ADG. Carcass composition traits analyzed were hot carcass weight, fat thickness, LM area, marbling score, USDA yield grade, estimated kidney, pelvic, and heart fat, retail product yield and weight, fat yield and weight, bone yield and weight, and percentage of carcasses classified as Choice. Charolais lack the inactive myostatin allele segregating in Belgian Blue; thus, in the population sired by Charolais (n = 645), only animals with zero or one copy of the inactive myostatin allele were evaluated. Animals carrying one copy were heavier at birth and at weaning, and their carcasses were leaner and more muscled. In the population sired by Belgian Blue x British Breed (n = 725), animals with two copies of inactive myostatin allele were heavier at birth, leaner, and had a higher proportion of muscle mass than animals with zero or one copies. Heterozygous animals were heaviest at weaning and had the highest live weight, whereas animals with zero copies had the highest fat content. The use of the inactive myostatin allele is an option to increase retail product yield, but considerations of conditions at calving are important to prevent mortality.  相似文献   

15.
Data from 1,909 purebred, F1, backcross and F2 and F3 inter se combinations of Angus and Hereford were used to estimate average individual, maternal and grandmaternal genetic effects, individual and maternal heterosis, dominance and epistatic genetic effects. Models for evaluating heterosis and epistatic or recombination effects were discussed. Average individual effects indicate that Angus, compared with Hereford, had calves that were born earlier, had lighter birth weights, lower pre- and postweaning gains and lower pregnancy rates. Angus also produced lighter weight carcasses with more fat cover and marbling. Maternal effects of Angus were in the direction of reduced birth weight, greater calving ease, higher preweaning but lower postweaning growth rate and increased fatness when contrasted with Hereford. There was a tendency for opposite direction of maternal and grandmaternal effects for traits influenced by preweaning maternal environment. When additive X additive effects were ignored, total heterosis was significant for earlier day born, heavier birth weight, preweaning and postweaning gain, and heavier and fatter carcasses. Heterosis retained in F3 inter se vs F1 generation crosses indicated that net epistatic effects were relatively negligible for date of calving, birth weight, weaning gain and fat cover. There was a greater reduction of heterosis effects than expected from dominance alone for survival, pregnancy and marbling score. Loss of heterosis in F3 was less than expected for postweaning gain, carcass weight and rib eye area. Except for survival, pregnancy and marbling, these deviations from dominance expectations, or lack of them, are favorable for F3 composite populations.  相似文献   

16.
The performance of 264 contemporary 2-yr-old straightbred and crossbred dams during 1978 to 1981 was studied and maternal heterosis was estimated. Dam breed groups were Hereford (HH), Angus-Hereford (AH), 25% Simmental-75% Hereford (1S3H), 50% Simmental-50% Hereford (1S1H) and 75% Simmental-25% Hereford (3S1H). Differences among dam breed groups were nonsignificant for length of gestation, calving difficulty and late milk production but were important (P less than .01) for calf weights (birth, early and late milking periods and weaning), calf average daily gains during various intervals from conception to weaning, early milk production and other calf traits at weaning (height, weight/height and visual condition score). Dam breed group means (HH, AH, 1S3H, 1S1H and 3S1H, respectively) for representative calf traits were .37, .39, .39, .42 and .42 kg/d for estimated average daily gain the last 3 mo of gestation; 33.6, 34.7, 35.7, 37.6 and 37.1 kg for birth weight; 191, 205, 209, 228 and 228 kg for weaning and 7.5, 8.4, 8.3, 9.5 and 10.0 kg for 24-h early milk production. Therefore, 2-yr-old crossbred dams raised calves that were generally larger for the preweaning gain traits than HH dams. Differences among dam breed groups were significant for traits involving reproduction; means (HH, AH, 1S3H, 1S1H and 3S1H, respectively) were .58, .92, .72, .91 and .79 for proportion calving and 105, 179, 126, 182 and 154 kg for actual calf weaning weight per cow exposed to breeding. Estimates of percentage maternal heterosis were 6.3, 12.9, 9.0 and 7.6% for calf weights at birth, 40 d, 130 d and weaning, respectively; 1.8, 5.7 and 5.7% for calf hip height, height/weight and condition score at weaning, respectively; and 43.1 and 34.6% for proportion calving and actual calf weaning weight per cow exposed to breeding. The dominance model explained most (greater than 95%) of the variation observed among dam breed group means for most traits.  相似文献   

17.
Data from topcross cows (n = 468) from six breeds of sire (Angus, Brahman, Hereford, Pinzgauer, Sahiwal, Tarentaise) and two breeds of dam (Angus and Hereford) of Cycle III of the Germplasm Evaluation (GPE) program at the U.S. Meat Animal Research Center (MARC) comprising cow weight (CW, n = 9,012), height (CH, n = 9,010), and condition score (CS, n = 8,991) recorded in four seasons per year from 2 to 6 yr of age were used to estimate breed-group differences. The mixed models included cow age, season of measurement and their interactions, year of birth, pregnancy-lactation code (PL), and breed group as fixed effects for CW and CS. Analyses of weight adjusted for condition score included CS as a linear covariate. Model for CH excluded PL. Random effects were additive genetic and permanent environmental effects. Differences among breed-groups were significant for all traits for different ages and were maintained across ages, with few interchanges in ranking through maturity. Cows with Sahiwal sires were lightest (392 to 479 kg), whereas Hereford-Angus (HA) reciprocal-cross cows were shortest (119 to 123 cm) at each age. Cows with Brahman sires were heaviest and tallest among breed groups at all ages, exceeding HA cows by 19 to 24 kg and 9 to 10 cm, respectively. Cows with Pinzgauer and Tarentaise sires were intermediate for weight and height and interchanged ranking across ages. Differences in weight due to differences in condition seemed to be of small magnitude because adjustment for condition score did not affect rankings of breed groups across ages. Important changes for mature size of cows can be achieved by breed substitution with the breeds of sires used in this study.  相似文献   

18.
Breed means and differences for weight (CW, n = 19,851), height (CH, n = 14,553), and condition scores (CS, n = 19,536) recorded in four seasons per year were evaluated for 881 cows ranging from 2 to 7 yr of age from Cycle I of the Germplasm Evaluation Program at the U.S. Meat Animal Research Center. Cows were straightbred Herefords and Angus and topcrosses from mating of Hereford, Angus, South Devon, Jersey, Simmental, Limousin, and Charolais sires to Hereford and Angus dams. The model included cow age, season of measurement, and their interactions, with year of birth, pregnancy-lactation (PL) code, and breed group as fixed effects for CW and CS. Analyses of weight adjusted for condition score included CS as covariate. Model for CH excluded PL. Random effects were additive genetic and permanent environmental effects. Data were analyzed by REML. Differences due to breeds of sire were significant for all traits. Differences were generally maintained across ages, with few interchanges in ranking through maturity. Rankings were in the following order: Jersey (lightest and shortest), Hereford-Angus (and reciprocal), Limousin, South Devon, Simmental, and Charolais (heaviest and tallest). The only exception was that Limousin-sired cows were heavier than South Devon-sired cows after 5 yr of age. Cows sired by breeds of British origin tended to be lighter than breeds of continental European origin. Adjustment for condition score changed estimates of breed differences. Rankings of breed groups, however, were generally the same for actual weight and weight adjusted for condition score. Results indicated that the part of the differences in weight due to differences in condition were of small magnitude. Differences tended to increase when adjusted for condition score, especially in contrasts of continental vs British breeds. Differences among breed groups for height followed differences for weight closely.  相似文献   

19.
Data from Hereford, 25% Simmental-75% Hereford, 50% Simmental-50% Hereford, and 75% Simmental-25% Hereford dams were used to estimate maternal heterosis and level of agreement with the dominance model. Cows were located at the Northern Agricultural Research Center near Havre, MT and were managed consistent with practices for western range environments. Sample halves of dam breed groups were bred to Charolais and Tarentaise sires to produce calves at 3 to 8 yr of age. There were 766 exposures to breeding that resulted in 581 calves. Breed group means for most traits supported the dominance model. Maternal heterosis was estimated by regression techniques for 22 cow and calf traits. Maternal heterosis was not significant for day of conception, number of services, gestation length, or calving difficulty. Estimates of maternal heterosis for calf growth traits ranged from .7% for weaning height to 5.2% for weaning weight and 7.5% for weaning condition score. Calf weight per unit of cow weight at weaning showed significant maternal heterosis (7.1%). Higher levels of maternal heterosis were exhibited for milk production (8.2 to 11.1%) and the negative, but nonsignificant, estimate of maternal heterosis for early minus late milk production suggested more persistent lactation for crossbred cows. Maternal heterosis was 11.5% for proportion of dams that calved and 10.4% for proportion of dams that weaned calves. Calf weaning weight per cow exposed to breeding, a characteristic combining calf growth and dam reproduction, exhibited 17.9% maternal heterosis.  相似文献   

20.
Data from Angus, Hereford, and top-cross cows (n = 641) from 2- to 8-yr-old daughters of seven breeds of sires included in Cycle II of the Germplasm Evaluation Program at the U.S. Meat Animal Research Center, comprising cow weight (CW, n = 15,698), height (CH, n = 15,676), and condition score (CS, n = 15,667), were used to estimate breed-group differences. Data were recorded in four seasons of each year (1975 to 1982). The mixed model included cow age, season of measurement, and their interactions, year of birth, pregnancy-lactation code (PL), and breed-group as fixed effects for CW and CS. Analyses of weight adjusted for condition score included CS as covariate. The model for CH excluded PL. Random effects were additive genetic and permanent environmental effects. Differences among breed-groups were significant for all traits at different ages and were maintained across ages, with few interchanges in ranking through maturity. Cows were ranked (by breed of sire) in the following order for weight: Red Poll (lightest), Hereford-Angus (reciprocal), Braunvieh, Gelbvieh, Maine Anjou, and Chianina (heaviest). In general, cows sired by breeds of British origin were lighter and shorter than those of continental origin. Differences in weight due to differences in condition seemed to be of small magnitude because making an adjustment for condition score did not affect rankings of breed groups across ages. Differences among breed groups for height were consistent with differences for weight. Cows from Chianina sires were taller than Hereford-Angus cows by 14 to 15 cm across ages. In this study, breed of sire effects were significantly different for the mature size of their daughters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号