首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study objective was to determine the effects of 70% nitrous oxide (N2O) and fentanyl on the end-tidal concentration of sevoflurane necessary to prevent movement (MACNM) in response to noxious stimulation in dogs. Six healthy, adult, intact male, mixed-breed dogs were used on 3 occasions in a randomized crossover design. After induction of anesthesia with sevoflurane, each of the following treatments was randomly administered: fentanyl loading dose (Ld) of 15 μg/kg and infusion of 6 μg/kg per hour [treatment 1 (T1)], 70% N2O (T2), or fentanyl (Ld of 15 μg/kg and infusion of 6 μg/kg per hour) combined with 70% N2O (T3). Each dog received each of the 3 treatments once during the 3-week period. Determination of MACNM was initiated 90 min after the start of each treatment. The values were compared using the baseline MACNM, which had been determined in a previous study on the same group of dogs. Data were analyzed using a mixed-model analysis of variance (ANOVA) and Tukey-Kramer tests, and expressed as least squares mean ± SEM. The baseline MACNM decreased by 36.6 ± 4.0%, 15.0 ± 4.0%, and 46.0 ± 4.0% for T1, T2, and T3, respectively (P < 0.05), and differed (P < 0.05) among treatments. Mean fentanyl plasma concentrations did not differ (P ≥ 0.05) between T1 (3.70 ± 0.56 ng/mL) and T3 (3.50 ± 0.56 ng/mL). The combination of fentanyl and N2O resulted in a greater sevoflurane MACNM sparing effect than either treatment alone.  相似文献   

2.
Neonatal foals may require prolonged sedation to permit ventilatory support in the first few days of life. The objective of this study was to evaluate and compare the cardiopulmonary effects and clinical recovery characteristics of 2 sedative/analgesia protocols in healthy foals receiving assisted ventilation. Foals were randomized to receive dexmedetomidine, butorphanol, and propofol (DBP) or midazolam, butorphanol, and propofol (MBP) during a 24-hour period. Infusion rates of dexmedetomidine, midazolam, and propofol were adjusted and propofol boluses administered according to set protocols to maintain optimal sedation and muscle relaxation. Ventilatory support variables were adjusted to preset targets. Physiologic variables were recorded, cardiac output (CO) measured (thermodilution), and arterial and mixed venous blood collected for gas analysis at intervals up to 24 hours. Foals in group DBP received dexmedetomidine [2.4 ± 0.5 μg/kg body weight (BW) per hour], butorphanol (13 μg/kg BW per hour), and propofol (6.97 ± 0.86 mg/kg BW per hour), whereas foals in group MBP received midazolam (0.14 ± 0.04 mg/kg BW per hour), butorphanol (13 μg/kg BW per hour), and propofol (5.98 ± 1.33 mg/kg BW per hour). Foals in the DBP group received significantly more propofol boluses (9.0 ± 3.0) than those in the MBP group (4.0 ± 2.0). Although physiologic variables remained within acceptable limits, heart rate (HR), mean arterial pressure (MAP), and cardiac index (CI) were lower in foals in the DBP group than in the MBP group. Times to sternal recumbency, standing, and nursing were significantly shorter in the DBP than MBP group. We found that MBP and DBP protocols are suitable to assist ventilatory support in neonatal foals, although MBP results in a prolonged recovery compared to DBP.  相似文献   

3.
ObjectiveThe objectives of this study were to determine the effects of fentanyl on the end-tidal concentration of sevoflurane needed to prevent motor movement (MACNM) in response to noxious stimulation, and to evaluate if acute tolerance develops.Study designRandomized cross-over experimental study.AnimalsSix healthy, adult (2–3 years old), intact male, mixed-breed dogs weighing 16.2 ± 1.1 kg.MethodsSix dogs were randomly assigned to receive one of three separate treatments over a 3 week period. After baseline sevoflurane MACNM (MACNM-B) determination, fentanyl treatments (T) were administered as a loading dose (Ld) and constant rate infusion (CRI) as follows: T1-Ld of 7.5 μg kg?1 and CRI at 3 μg kg?1 hour?1; T2-Ld of 15 μg kg?1 and CRI at 6.0 μg kg ?1 hour?1; T3-Ld of 30 μg kg?1 and CRI at 12 μg kg?1 hour?1. The MACNM was defined as the minimum end-tidal sevoflurane concentration preventing motor movement. The first post-treatment MACNM (MACNM-I) determination was initiated 90 minutes after the start of the CRI, and a second MACNM (MACNM-II) determination was initiated 3 hours after MACNM-I was established.ResultsThe overall least square mean MACNM-B for all groups was 2.66%. All treatments decreased (p < 0.05) MACNM, and the decrease from baseline was 22%, 35% and 41% for T1, T2 and T3, respectively. Percentage change in T1 differed (p < 0.05) from T2 and T3; however, T2 did not differ from T3. MACNM-I was not significantly different from MACNM-II within treatments.Conclusions and clinical relevanceFentanyl doses in the range of 3–12 μg kg?1 hour?1 significantly decreased the sevoflurane MACNM. Clinically significant tolerance to fentanyl did not occur under the study conditions.  相似文献   

4.
ObjectiveTo compare the effects of a constant rate infusion (CRI) of dexmedetomidine and morphine to those of morphine alone on the minimum end-tidal sevoflurane concentration necessary to prevent movement (MACNM) in ponies.Study designProspective, randomized, crossover, ‘blinded’, experimental study.AnimalsFive healthy adult gelding ponies were anaesthetized twice with a 3-week washout period.MethodsAfter induction of anaesthesia with sevoflurane in oxygen (via nasotracheal tube), the ponies were positioned on a surgical table (T0), and anaesthesia was maintained with sevoflurane (Fe‘SEVO 2.5%) in 55% oxygen. Monitoring included pulse oximetry, electrocardiography and measurement of anaesthetic gases, arterial blood pressure and body temperature. The ponies were mechanically ventilated and randomly allocated to receive IV treatment M [morphine 0.15 mg kg?1 (T10-T15) followed by a CRI (0.1 mg kg?1 hour?1)] or treatment DM [dexmedetomidine 3.5 μg kg?1 plus morphine 0.15 mg kg?1 (T10-T15) followed by a CRI of dexmedetomidine 1.75 μg kg?1 hour?1 and morphine 0.1 mg kg?1 hour?1]. At T60, a stepwise MACNM determination was initiated using constant current electrical stimuli at the skin of the lateral pastern region. Triplicate MACNM estimations were obtained and then averaged in each pony. Wilcoxon signed-rank test was used to detect differences in MAC between treatments (a = 0.05).ResultsSevoflurane-morphine MACNM values (median (range) and mean ± SD) were 2.56 (2.01–4.07) and 2.79 ± 0.73%. The addition of a continuous infusion of dexmedetomidine significantly reduced sevoflurane MACNM values to 0.89 (0.62–1.05) and 0.89 ± 0.22% (mean MACNM reduction 67 ± 11%).Conclusion and clinical relevanceCo-administration of dexmedetomidine and morphine CRIs significantly reduced the MACNM of sevoflurane compared with a CRI of morphine alone at the reported doses.  相似文献   

5.
This study in six cows compared serum concentrations of trimethoprim and sulphadoxine (16 mg/kg body weight (BW)) after once daily and twice daily administration, and of procaine penicillin G (20,000 IU/kg BW) after subcutaneous (SQ) and intramuscular (IM) administration, and evaluated postmortem tissue concentrations of penicillin following SQ treatment. Trimethoprim and penicillin were measured microbiologically, and sulphadoxine colorimetrically. Using minimum inhibitory concentrations (MIC), trimethoprim reached serum concentrations above 0.5 μg/mL from 15 minutes to 120 minutes, and sulphadoxine exceeded 9.5 μg/mL from 10 minutes to 12 hours, after administration. At 24 hours after treatment, both had declined to below the MIC of most organisms. A second treatment at 12 hours maintained concentrations of sulphadoxine above 9.5 μg/mL for a further 24 hours. For penicillin administered IM and SQ, concentrations that peaked at 0.88 μg/mL would inhibit most common grampositive bacteria for the entire 24 hour period and fastidious gram-negative organisms from 90 minutes to 12 hours after SQ treatment, but for virtually the entire period after IM administration. Mean ± SD concentrations (μg/mL) of penicillin at euthanasia, five days after the last SQ administration, were 1.15 ± 1.27 (injection site), 1.00 ± 0.80 (liver), 0.90 ± 0.58 (renal cortex), 0,58 ± 0.17 (renal medulla), 0.13 ± 0.11 (diaphragm), 0.10 ± 0.08 (gluteal muscle), and 0.06 ± 0.04 (fat). Therefore, except for the most sensitive organisms, twice daily injection of trimethoprim/sulphadoxine (16 mg/kg BW) may be required. Penicillin G administered SQ at 20,000 IU/kg BW should provide effective serum levels for as long as IM administration against gram-positive organisms, but for only about half as long against gram-negative bacteria. The label withdrawal time of five days cannot be used when penicillin is given SQ at 20,000 IU/kg BW for three days.  相似文献   

6.
This study analyzed the pharmacokinetics of orbifloxacin (OBFX) in plasma, and its migration and retention in epithelial lining fluid (ELF) and alveolar cells within the bronchoalveolar lavage fluid (BALF). Four healthy calves received a single dose of OBFX (5.0 mg/kg) intramuscularly. Post-administration OBFX dynamics were in accordance with a non-compartment model, including the absorption phase. The maximum concentration (Cmax) of plasma OBFX was 2.2 ± 0.1 μg/ml at 2.3 ± 0.5 hr post administration and gradually decreased to 0.3 ± 0.2 μg/ml at 24 hr following administration. The Cmax of ELF OBFX was 9.3 ± 0.4 μg/ml at 3.0 ± 2.0 hr post administration and gradually decreased to 1.2 ± 0.1 μg/ml at 24 hr following administration. The Cmax of alveolar cells OBFX was 9.3 ± 2.9 μg/ml at 4.0 hr post administration and gradually decreased to 1.1 ± 0.2 μg/ml at 24 hr following administration. The half-life of OBFX in plasma, ELF, and alveolar cells were 6.9 ± 2.2, 7.0 ± 0.6, and 7.8 ± 1.6 hr, respectively. The Cmax and the area under the concentration-time curve for 0–24 hr with OBFX were significantly higher in ELF and alveolar cells than in plasma (P<0.05). These results suggest that OBFX is distributed and retained at high concentrations in ELF and alveolar cells at 24 hr following administration. Hence, a single intramuscular dose of OBFX (5.0 mg/kg) may be an effective therapeutic agent against pneumonia.  相似文献   

7.
ObjectiveTo determine the possible additive effect of midazolam, a GABAA agonist, on the end-tidal concentration of isoflurane that prevents movement (MACNM) in response to noxious stimulation.Study designRandomized cross-over experimental study.AnimalsSix healthy, adult intact male, mixed-breed dogs.MethodsAfter baseline isoflurane MACNM (MACNM-B) determination, midazolam was administered as a low (LDS), medium (MDS) or high (HDS) dose series of midazolam. Each series consisted of two dose levels, low and high. The LDS was a loading dose (Ld) of 0.2 mg kg?1 and constant rate infusion (CRI) (2.5 μg kg?1 minute?1) (LDL), followed by an Ld (0.4 mg kg?1) and CRI (5 μg kg?1 minute?1) (LDH). The MDS was an Ld (0.8 mg kg?1) and CRI (10 μg kg?1 minute?1) (MDL) followed by an Ld (1.6 mg kg?1) and CRI (20 μg kg?1 minute?1) (MDH). The HDS was an Ld (3.2 mg kg?1) and CRI (40 μg kg?1 minute?1) (HDL) followed by an Ld (6.4 mg kg?1) and CRI (80 μg kg?1 minute?1) (HDH). MACNM was re-determined after each dose in each series (MACNM-T).ResultsThe median MACNM-B was 1.42. MACNM-B did not differ among groups (p >0.05). Percentage reduction in MACNM was significantly less in the LDS (11 ± 5%) compared with MDS (30 ± 5%) and HDS (32 ± 5%). There was a weak correlation between the plasma midazolam concentration and percentage MACNM reduction (r = 0.36).Conclusion and clinical relevanceMidazolam doses in the range of 10–80 μg kg?1 minute?1 significantly reduced the isoflurane MACNM. However, doses greater than 10 μg kg?1 minute?1 did not further decrease MACNM indicating a ceiling effect.  相似文献   

8.
BackgroundOur previously prepared ceftiofur (CEF) hydrochloride oily suspension shows potential wide applications for controlling swine Streptococcus suis infections, while the irrational dose has not been formulated.ObjectivesThe rational dose regimens of CEF oily suspension against S. suis were systematically studied using a pharmacokinetic-pharmacodynamic model method.MethodsThe healthy and infected pigs were intramuscularly administered CEF hydrochloride oily suspension at a single dose of 5 mg/kg, and then the plasma and pulmonary epithelial lining fluid (PELF) were collected at different times. The minimum inhibitory concentration (MIC), minimal bactericidal concentration, mutant prevention concentration (MPC), post-antibiotic effect (PAE), and time-killing curves were determined. Subsequently, the area under the curve by the MIC (AUC0–24h/MIC) values of desfuroylceftiofur (DFC) in the PELF was obtained by integrating in vivo pharmacokinetic data of the infected pigs and ex vivo pharmacodynamic data using the sigmoid Emax (Hill) equation. The dose was calculated based on the AUC0–24h/MIC values for bacteriostatic action, bactericidal action, and bacterial elimination.ResultsThe peak concentration, the area under the concentration-time curve, and the time to peak for PELF''s DFC were 24.76 ± 0.92 µg/mL, 811.99 ± 54.70 μg·h/mL, and 8.00 h in healthy pigs, and 33.04 ± 0.99 µg/mL, 735.85 ± 26.20 μg·h/mL, and 8.00 h in infected pigs, respectively. The MIC of PELF''s DFC against S. suis strain was 0.25 µg/mL. There was strong concentration-dependent activity as determined by MPC, PAE, and the time-killing curves. The AUC0–24h/MIC values of PELF''s DFC for bacteriostatic activity, bactericidal activity, and virtual eradication of bacteria were 6.54 h, 9.69 h, and 11.49 h, respectively. Thus, a dosage regimen of 1.94 mg/kg every 72 h could be sufficient to reach bactericidal activity.ConclusionsA rational dosage regimen was recommended, and it could assist in increasing the treatment effectiveness of CEF hydrochloride oily suspension against S. Suis infections.  相似文献   

9.

Background

Levetiracetam is used to manage status epilepticus (SE) and cluster seizures (CS) in humans. The drug might be absorbed after rectal administration and could offer a practical adjunct to rectal administration of diazepam in managing SE and CS.

Hypothesis

Levetiracetam is rapidly absorbed after rectal administration in dogs and maintains target serum concentrations for at least 9 hours.

Animals

Six healthy privately owned dogs between 2 and 6 years of age and weighing 10–20 kg.

Methods

Levetiracetam (40 mg/kg) was administered rectally and blood samples were obtained immediately before (time zero) and at 10, 20, 40, 60, 90, 180, 360, and 540 minutes after drug administration. Dogs were observed for signs of adverse effects over a 24‐hour period after drug administration.

Results

C LEV at 10 minutes was 15.3 ± 5.5 μg/mL (mean, SD) with concentrations in the target range (5–40 μg/mL) for all dogs throughout the sampling period. C max (36.0 ± 10.7 μg/mL) and T max (103 ± 31 minutes) values were calculated and 2 disparate groups were appreciated. Dogs with feces in the rectum at the time of drug administration had lower mean C max values (26.7 ± 3.4 μg/mL) compared with those without (45.2 ± 4.4 μg/mL). Mild sedation was observed between 60 and 90 minutes without other adverse effects noted.

Conclusions and Clinical Importance

This study supports the use of rectally administered levetiracetam in future studies of clinical effectiveness in the management of epileptic dogs.  相似文献   

10.
Cardiovascular effects of total intravenous anesthesia using ketamine-medetomidine-propofol drug combination (KMP-TIVA) were determined in 5 Thoroughbred horses undergoing surgery. The horses were anesthetized with intravenous administration (IV) of ketamine (2.5 mg/kg) and midazolam (0.04 mg/kg) following premedication with medetomidne (5 µg/kg, IV) and artificially ventilated. Surgical anesthesia was maintained by controlling propofol infusion rate (initially 0.20 mg/kg/min following an IV loading dose of 0.5 mg/kg) and constant rate infusions of ketamine (1 mg/kg/hr) and medetomidine (1.25 µg/kg/hr). The horses were anesthetized for 175 ± 14 min (range from 160 to 197 min). Propofol infusion rates ranged from 0.13 to 0.17 mg/kg/min, and plasma concentration (Cpl) of propofol ranged from 11.4 to 13.3 µg/ml during surgery. Cardiovascular measurements during surgery remained within clinically acceptable ranges in the horses (heart rate: 33 to 37 beats/min, mean arterial blood pressure: 111 to 119 mmHg, cardiac index: 48 to 53 ml/kg/min, stroke volume: 650 to 800 ml/beat and systemic vascular resistance: 311 to 398 dynes/sec/cm5). The propofol Cpl declined rapidly after the cessation of propofol infusion and was significantly lower at 10 min (4.5 ± 1.5 µg/ml), extubation (4.0 ± 1.2 µg/ml) and standing (2.4 ± 0.9 µg/ml) compared with the Cpl at the end of propofol administration (11.4 ± 2.7 µg/ml). All the horses recovered uneventfully and stood at 74 ± 28 min after the cessation of anesthesia. KMP-TIVA provided satisfactory quality and control of anesthesia with minimum cardiovascular depression in horses undergoing surgery.  相似文献   

11.
Six healthy adult horses (5 mares and 1 stallion) were given a single dose of acetylsalicylic acid (ASA), 20 mg/kg of body weight, by intravenous (IV), rectal, and intragastric (IG) routes. Serial blood samples were collected via jugular venipuncture over a 36-h period, and plasma ASA and salicylic acid (SA) concentrations were determined by high-performance liquid chromatography. After IV administration, the mean elimination rate constant of ASA (± the standard error of the mean) was 1.32 ± 0.09 hl, the mean elimination half-life was 0.53 ± 0.04 h, the area under the plasma concentration-versus-time curve (AUC) was 2555 ± 98 μg · min/mL, the plasma clearance was 472 ± 18.9 mL/h/kg, and the volume of distribution at steady state was 0.22 ± 0.01 L/kg. After rectal administration, the plasma concentration of ASA peaked at 5.05 ± 0.80 μg/mL at 0.33 h, then decreased to undetectable levels by 4 h; the plasma concentration of SA peaked at 17.39 ± 5.46 μg/mL at 2 h, then decreased to 1.92 ± 0.25 μg/mL by 36 h. After rectal administration, the AUC for ASA was 439.4 ± 94.55 μg · min/mL and the bioavailability was 0.17 ± 0.037. After IG administration, the plasma concentration of ASA peaked at 1.26 ± 0.10 μg/mL at 0.67 h, then declined to 0.37 ± 0.37 μg/mL by 36 h; the plasma concentration of SA peaked at 23.90 ± 4.94 μg/mL at 4 h and decreased to 0.85 ± 0.31 μg/mL by 36 h. After IG administration, the AUC for ASA was 146.70 ± 24.90 μg · min/mL and the bioavailability was 0.059 ± 0.013. Administration of a single rectal dose of ASA of 20 mg/kg to horses results in higher peak plasma ASA concentrations and greater bioavailability than the same dose given IG. Plasma ASA concentrations after rectal administration should be sufficient to inhibit platelet thromboxane production, and doses lower than those suggested for IG administration may be adequate.  相似文献   

12.
The present study aimed to quantitatively evaluate muscle mass and gene expression in dogs with glucocorticoid-induced muscle atrophy. Five healthy beagles received oral prednisolone for 4 weeks (1 mg/kg/day), and muscle mass was then evaluated via computed tomography. Histological and gene expression analyses were performed using biopsy samples from the biceps femoris before and after prednisolone administration. The cross-sectional area of the third lumbar paraspinal and mid-femoral muscles significantly decreased after glucocorticoid administration (from 27.5 ± 1.9 to 22.6 ± 2.0 cm2 and from 55.1 ± 4.7 to 50.7 ± 4.1 cm2, respectively; P<0.01). The fast- and slow-twitch muscle fibers were both atrophied (from 2,779 ± 369 to 1,581 ± 207 μm2 and from 2,871 ± 211 to 1,971 ± 169 μm2, respectively; P<0.05). The expression of the growth factor receptor-bound protein 10 (GRB10) significantly increased after prednisolone administration (P<0.05). Because GRB10 suppresses insulin signaling and the subsequent mammalian target of rapamycin complex 1 activity, increased expression of GRB10 may have resulted in a decrease in protein anabolism. Taken together, 1 mg/kg/day oral prednisolone for 4 weeks induced significant muscle atrophy in dogs, and GRB10 might participate in the pathology of glucocorticoid-induced muscle atrophy in canines.  相似文献   

13.
ObjectiveTo evaluate the effect of tramadol on sevoflurane minimum alveolar concentration (MACSEVO) in dogs. It was hypothesized that tramadol would dose-dependently decrease MACSEVO.Study designRandomized crossover experimental study.AnimalsSix healthy, adult female mixed-breed dogs (24.2 ± 2.6 kg).MethodsEach dog was studied on two occasions with a 7-day washout period. Anesthesia was induced using sevoflurane delivered via a mask. Baseline MAC (MACB) was determined starting 45 minutes after tracheal intubation. A noxious stimulus (50 V, 50 Hz, 10 ms) was applied subcutaneously over the mid-humeral area. If purposeful movement occurred, the end-tidal sevoflurane was increased by 0.1%; otherwise, it was decreased by 0.1%, and the stimulus was re-applied after a 20-minute equilibration. After MACB determination, dogs randomly received a tramadol loading dose of either 1.5 mg kg?1 followed by a continuous rate infusion (CRI) of 1.3 mg kg?1 hour?1 (T1) or 3 mg kg?1 followed by a 2.6 mg kg?1 hour?1 CRI (T2). Post-treatment MAC determination (MACT) began 45 minutes after starting the CRI. Data were analyzed using a mixed model anova to determine the effect of treatment on percentage change in baseline MACSEVO (p < 0.05).ResultsThe MACB values were 1.80 ± 0.3 and 1.75 ± 0.2 for T1 and T2, respectively, and did not differ significantly. MACT decreased by 26 ± 8% for T1 and 36 ± 12% for T2. However, there was no statistically significant difference in the decrease between the two treatments.Conclusion and clinical relevanceTramadol significantly reduced MACSEVO but this was not dose dependent at the doses studied.  相似文献   

14.
15.
Weaning stress can cause tight junctions damage and intestinal permeability enhancement, which leads to intestinal imbalance and growth retardation, thereby causing damage to piglet growth and development. Spermine can reduce stress. However, the mechanism of spermine modulating the intestinal integrity in pigs remains largely unknown. This study aims to examine whether spermine protects the intestinal barrier integrity of piglets through ras-related C3 botulinum toxin substrate 1 (Rac1)/phospholipase C-γ1 (PLC-γ1) signaling pathway. In vivo, 80 piglets were categorised into 4 control groups and 4 spermine groups (10 piglets per group). The piglets were fed with normal saline or spermine at 0.4 mmol/kg BW for 7 h and 3, 6 and 9 d. In vitro, we investigated whether spermine protects the intestinal barrier after a tumor necrosis factor α (TNF-α) challenge through Rac1/PLC-γ1 signaling pathway. The in vivo study found that spermine supplementation increased tight junction protein mRNA levels and Rac1/PLC-γ1 signaling pathway gene expression in the jejunum of piglets. The serum D-lactate content was significantly decreased after spermine supplementation (P < 0.05). The in vitro study found that 0.1 μmol/L spermine increased the levels of tight junction protein expression, Rac1/PLC-γ1 signaling pathway and transepithelial electrical resistance, and decreased paracellular permeability (P < 0.05). Further experiments demonstrated that spermine supplementation enhanced the levels of tight junction protein expression, Rac1/PLC-γ1 signaling pathway and transepithelial electrical resistance, and decreased paracellular permeability compared with the NSC-23766 and U73122 treatment with spermine after TNF-α challenge (P < 0.05). Collectively, spermine protects intestinal barrier integrity through Rac1/PLC-γ1 signaling pathway in piglets.  相似文献   

16.
A high rate of mortality, expense, and complications of immunosuppressive therapy in dogs underscores the need for optimization of drug dosing. The purpose of this study was to determine, using a flow-cytometric assay, the 50% T-cell inhibitory concentration (IC50) of dexamethasone, cyclosporine, and the active metabolites of azathioprine (6-mercaptopurine) and leflunomide (A77 1726) in canine lymphocytes stimulated with concanavalin A (Con A). Whole blood was collected from 5 privately owned, healthy dogs of various ages, genders, and breeds. Peripheral blood mononuclear cells, obtained by density-gradient separation, were cultured for 72 h with Con A, a fluorochrome-tagged cell proliferation dye, and various concentrations of dexamethasone (0.1, 1, 10, 100, 1000, and 10 000 μM), cyclosporine (0.2, 2, 10, 20, 30, 40, 80, and 200 ng/mL), 6-mercaptopurine (0.5, 2.5, 50, 100, 250, and 500 μM), and A77 1726 (1, 5, 10, 25, 50, and 200 μM). After incubation, the lymphocytes were labeled with propidium iodide and an antibody against canine CD5, a pan T-cell surface marker. Flow cytometry determined the percentage of live, proliferating T-lymphocytes incubated with or without immunosuppressants. The mean (± standard error) IC50 was 3460 ± 1900 μM for dexamethasone, 15.8 ± 2.3 ng/mL for cyclosporine, 1.3 ± 0.4 μM for 6-mercaptopurine, and 55.6 ± 22.0 μM for A77 1722. Inhibition of T-cell proliferation by the 4 immunosuppressants was demonstrated in a concentration-dependent manner, with variability between the dogs. These results represent the initial steps to tailor this assay for individual immunosuppressant protocols for dogs with immune-mediated disease.  相似文献   

17.
The effects of 2 different continuous rate infusions (CRIs) of medetomidine over an 8-hour period on sedation score, selected cardiopulmonary parameters, and serum levels of medetomidine were evaluated in 6 healthy, conscious dogs using a crossover study design. The treatment groups were: CONTROL = saline bolus followed by saline CRI; MED1 = 2 μg/kg body weight (BW) medetomidine loading dose followed by 1 μg/kg BW per hour CRI; and MED2 = 4 μg/kg BW medetomidine loading dose followed by 2 μg/kg BW per hour CRI. Sedation score (SS), heart rate (HR), respiratory rate (RR), temperature (TEMP), systolic arterial pressure (SAP), mean arterial pressure (MAP), and diastolic arterial pressure (DAP), arterial and mixed venous blood gas analyses, lactate, and plasma levels of medetomidine were evaluated at baseline, at various intervals during the infusion, and 2 h after terminating the infusion. Statistical analysis involved a repeated measures linear model. Both infusion rates of medetomidine-induced dose-dependent increases in SS and dose-dependent decreases in HR, SAP, MAP, and DAP were measured. Respiratory rate (RR), TEMP, central venous pH, central venous oxygen tension, and oxygen extraction ratio also decreased significantly in the MED2 group at certain time points. Arterial oxygen and carbon dioxide tensions were not significantly affected by either infusion rate. In healthy dogs, both infusion rates of medetomidine-induced clinically relevant sedative effects, accompanied by typical alpha2 agonist-induced hemodynamic effects, which plateaued during the infusion and subsequently returned to baseline. While additional studies in unhealthy animals are required, the results presented here suggest that medetomidine infusions at the doses studied may be useful in canine patients requiring sedation for extended periods.  相似文献   

18.
Beta-glucan has been shown to have a beneficial effect on gastrointestinal health. This experiment was conducted to investigate the effects of β-glucan isolated from Agrobacterium sp. ZX09 on growth performance and intestinal health of weaning pigs. A total of 108 weaned pigs (21 d of age; 6.05 ± 0.36 kg) were randomly divided into 3 groups (6 pens/group; 6 pigs/pen), and the groups were each treated with the following diets: 1) basal diet, 2) basal diet supplemented with 20 mg/kg olaquindox, 3) basal diet supplemented with 200 mg/kg β-glucan, for 21 d. Compared with the control group, pigs fed with 200 mg/kg β-glucan had greaterBW, average daily gain and duodenal villus height to crypt depth ratio (P < 0.05). Olaquindox increased the duodenal or jejunal villus height of pigs compared with β-glucan. Compared with the control group, β-glucan tended to increase the occludin mRNA expression in the jejunum (0.05 < P < 0.10). Beta-glucan enriched the beneficial microbiota in the ileum of pigs (P < 0.05). In conclusion, β-glucan may promote growth performance by improving intestinal health and increasing beneficial microbiota of weaned pigs. The study results will provide valuable theoretical guidance for the utilization of β-glucan in weaned pigs.  相似文献   

19.
20.
To assess plasma trace mineral (TM) concentrations, the acute phase protein response, and behavior in response to a lipopolysaccharide (LPS) challenge, 96 Angus cross steers (average initial body weight [BW]: 285 ± 14.4 kg) were sorted into two groups by BW (heavy and light; n = 48/group), fitted with an ear-tag–based accelerometer (CowManager SensOor; Agis, Harmelen, Netherlands), and stagger started 14 d apart. Consecutive day BW was recorded to start the 24-d trial (days −1 and 0). Dietary treatments began on day 0: common diet with either 30 (Zn30) or 100 (Zn100) mg supplemental Zn/kg DM (ZnSO4). On day 17, steers received one of the following injection treatments intravenously to complete the 2 × 3 factorial: 1) SALINE (~2–3 mL of physiological saline), 2) LOWLPS: 0.25 µg LPS/kg BW, or 3) HIGHLPS: 0.375 µg LPS/kg BW. Blood, rectal temperature (RT), and BW were recorded on day 16 (−24 h relative to injection), and BW was used to assign injection treatment. Approximately 6, 24 (day 18), and 48 (day 19) h after treatment, BW, RT, and blood were collected, and final BW recorded on day 24. Data were analyzed in Proc Mixed of SAS with fixed effects of diet, injection, diet × injection; for BW, RT, dry matter intake (DMI), plasma TM, and haptoglobin-repeated measures analysis were used to evaluate effects over time. Area under the curve analysis determined by GraphPad Prism was used for analysis of accelerometer data. Body weight was unaffected by diet or injection (P ≥ 0.16), but there was an injection × time effect for DMI and RT (P < 0.05), where DMI decreased in both LPS treatments on day 16, but recovered by day 17, and RT was increased in LPS treatments 6 h post-injection. Steers receiving LPS spent less time highly active and eating than SALINE (P < 0.01). Steers in HIGHLPS spent lesser time ruminating, followed by LOWLPS and then SALINE (P < 0.001). An injection × time effect (P < 0.001) for plasma Zn showed decreased concentrations within 6 h of injection and remained decreased through 24 h before recovering by 48 h. A tendency for a diet × time effect (P = 0.06) on plasma Zn suggests plasma Zn repletion occurred at a greater rate in Zn100 compared to Zn30. These results suggest that increased supplemental Zn may alter the rate of recovery of Zn status from an acute inflammatory event. Additionally, ear-tag–based accelerometers used in this study were effective at detecting sickness behavior in feedlot steers, and rumination may be more sensitive than other variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号