首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Cryopreservation is the process of freezing and preserving cells and tissues at low temperatures. Controlled slow freezing and vitrification have successfully been used for cryopreservation of mammalian embryos. We investigated the effect of these two cryopreservation methods on in vitro produced four‐cell stage bovine embryos which were classified according to their quality and separated into three groups. The first group was maintained as untreated controls (n = 350). Embryos of the second (n = 385) and the third (n = 385) groups were cryopreserved either by controlled slow freezing or by vitrification. Embryos in groups 2 and 3 were thawed after 1 day. Hundred embryos were randomly selected from the control group, and 100 morphologically intact embryos from the second and third group were thawed after 1 day and cultured to observe the development up to the blastocyst stage. The blastocyst development rate was 22% in the control group, 1% in the slow‐freezing group and 3% in the vitrification group. Remaining embryos of all three groups were examined by light microscopy, transmission electron microscopy and immunofluorescence confocal microscopy with subsequent histological staining procedures. Cryopreservation caused degenerative changes at the ultra‐structural level. Compared with vitrification, slow freezing caused an increased mitochondrial degeneration, cytoplasmic vacuolization, disruption of the nuclear and plasma membrane integrity, organelle disintegration, cytoskeletal damage, a reduced thickness of the zona pellucida and a formation of fractures in the zona pellucida. Further studies are required to understand and decrease the harmful effects of cryopreservation.  相似文献   

2.
The lower results in cryopreservation of in vitro‐produced (IVP) sheep embryos, when compared to the in vivo derived, limits its use. Four groups of blastocyst (BL) were evaluated: fresh IVP (n = 3), fresh in vivo derived (n = 3), warmed IVP cryopreserved in open pulled straws (OPS, n = 3) and warmed in vivo derived cryopreserved in OPS (n = 3). Ultrastructural observation of processed fresh embryos showed a reduced number of microvilli and mitochondria in the IVP ones, as well as a lower number of mature mitochondria, that can be associated with deficient metabolism in IVP embryos, possibly involved in the lower resistance to cryopreservation. Both in vivo‐derived and IVP embryos had a large number of vesicles, with light and dense content. In embryos vitrified by OPS, major changes were observed mainly in IVP embryos with small changes in grade 2 (fair) and high changes in grade 3 (bad) semithin scoring. The main changes associated with cryopreservation included disruption of cellular membranes and poor intracellular preservation, with loss of microvilli and the presence of cellular debris. In conclusion, ultrastructural evaluation of IVP blastocysts cryopreserved in OPS was herein described for the first time, reporting more severe cellular damage in these embryos when compared to those produced in vivo. This is probably associated with a lower cryotolerance that can be related to their lipid content and metabolism.  相似文献   

3.
Microinjection of exogenous DNA into the cytoplasm of matured oocytes or zygotes is a promising technique to generate transgenic animals. However, the data about the microinjection time and procedure in sheep are limited and have not treated in detail. To obtain more in-depth information, the Sarda sheep oocytes from abattoir-derived ovaries were subjected to IVM and IVF. Then, the GFP plasmid as a reporter gene was injected into the cytoplasm of MII oocytes (n: 95) and zygotes at different post-insemination intervals (6–8 hpi, n: 120; 8–10 hpi, n: 122; 10–12 hpi, n: 110 and 12–14 hpi, n: 96). There were no significant differences in the cleavage rates between the groups. However, blastocyst rate of injected zygotes at all-time intervals was significantly lower than injected MII oocytes and control group (< 0.05). Interestingly, the proportion of GFP-positive embryos was higher at 8–10 hpi compared with other injected groups (4 % versus 0 %, < 0.01). Among these, the proportion of mosaic embryos was high and two of those embryos developed to the blastocyst stage. In conclusion, we settled on the cytoplasmic microinjection of GFP plasmid at 8–10 hpi as an optimized time point for the production of transgenic sheep and subsequent experiments.  相似文献   

4.
This study evaluated the effects of co‐culture of immature cumulus oocyte complexes (COCs) with denuded immature oocytes (DO) during in vitro maturation on the developmental competence and quality of cloned bovine embryos. We demonstrated that developmental competence, judged by the blastocyst formation rate, was significantly higher in the co‐cultured somatic cell nuclear transfer (SCNT+DO, 37.1 ± 1.1%) group than that in the non‐co‐cultured somatic cell nuclear transfer (SCNT‐DO, 25.1 ± 0.9%) group and was very similar to that in the control IVF (IVF, 38.8 ± 2.8%) group. Moreover, the total cell number per blastocyst in the SCNT+DO group (101.7 ± 6.2) was higher than that in the SCNT‐DO group (81.7 ± 4.3), while still less than that in the IVF group (133.3 ± 6.0). Furthermore, our data showed that mRNA levels of the methylation‐related genes DNMT1 and DNMT3a in the SCNT+DO group were similar to that in the IVF group, while they were significantly higher in the SCNT‐DO group. Similarly, while the mRNA levels of the deacetylation‐related genes HDAC2 and HDAC3 were significantly higher in the SCNT‐DO group, they were comparable between the IVF and SCNT+DO groups. However, the mRNA levels of HDAC1 and DNMT3B were significantly higher in the SCNT+DO group than in the other groups. In conclusion, the present study demonstrated that co‐culture of COCs with DO improves the in vitro developmental competence and quality of cloned embryos, as evidenced by increased total cell number.  相似文献   

5.
Studies with sheep are important to improve our knowledge about the factors that control folliculogenesis in mammals and to explore possible physiological differences among species. The aims of this study were to characterize FGF‐2 protein expression in ovine ovaries and to verify the effect of FGF‐2 on the morphology, apoptosis and growth of ovine pre‐antral follicles cultured in vitro. After collection, one fragment of ovarian tissue was fixed for histological analysis and TUNEL analysis (fresh control). The remaining fragments were cultured for 7 days in control medium (α‐MEM+) alone or supplemented with FGF‐2 at different concentrations (1, 10, 50, 100 or 200 ng/ml). After culturing, ovarian tissue was destined to histology and TUNEL analysis, and oocyte and follicle diameters were measured. The immunostaining for FGF‐2 was observed in oocytes from primordial, primary and secondary follicles, as well as in granulosa cells of secondary and antral follicles. The percentage of normal follicles was similar among control medium, 1 and 10 ng/ml FGF‐2, and significantly higher than those observed in 50, 100 or 200 ng/ml FGF‐2. A significant increase in follicle diameter was observed when tissues were cultured in 10, 50, 100 or 200 ng/ml FGF‐2 compared with the fresh control and the other treatments. Similar results were observed for oocyte diameter in tissues cultured with 50, 100 or 200 ng/ml FGF‐2 (p < 0.05). However, the percentage of apoptotic cells only decreased (p < 0.05) in ovarian tissues cultured in 1 or 10 ng/ml FGF‐2 compared with the control medium and other FGF‐2 treatments. In conclusion, this study demonstrated the presence of FGF‐2 in ovine ovaries. Furthermore, 10 ng/ml FGF‐2 inhibits apoptosis and promotes ovine follicle growth. As the sheep ovary is more similar to that of humans, the culture system demonstrated in this work seems to be an appropriate tool for studies towards human folliculogenesis.  相似文献   

6.
7.
Fibroblast growth factor (FGF10) acts at the cumulus oocyte complex, increasing the expression of cumulus cell expansion‐related genes and oocyte competency genes. We tested the hypothesis that addition of FGF10 to the maturation medium improves oocyte maturation, decreases the percentage of apoptotic oocytes and increases development to the blastocyst stage while increasing the relative abundance of developmentally important genes (COX2, CDX2 and PLAC8). In all experiments, oocytes were matured for 22 h in TCM‐199 supplemented with 0, 2.5, 10 or 50 ng/ml FGF10. In Experiment 1, after maturation, oocytes were stained with Hoechst to evaluate meiosis progression (metaphase I, intermediary phases and extrusion of the first polar body) and submitted to the TUNEL assay to evaluate apoptosis. In Experiment 2, oocytes were fertilized and cultured to the blastocyst stage. Blastocysts were frozen for analysis of COX2, CDX2 and PLAC8 relative abundance. In Experiment 1, 2.5 ng/ml FGF10 increased (p < 0.05) the percentage of oocytes with extrusion of the first polar body (35%) compared to 0, 10 and 50 ng/ml FGF10 (21, 14 and 12%, respectively) and FGF10 decreased the percentage of oocytes that were TUNEL positive in all doses studied. In Experiment 2, there was no difference in the percentage of oocytes becoming blastocysts between treatments and control. Real‐time RT‐PCR showed a tendency of 50 ng/ml FGF10 to increase the relative abundance of COX2 and PLAC8 and of 10 ng/ml FGF10 to increase CDX2. In conclusion, the addition of FGF10 to the oocyte maturation medium improves oocyte maturation in vitro, decreases the percentage of apoptotic oocytes and tends to increase the relative abundance of developmentally important genes.  相似文献   

8.
Modifying electrical activation conditions have been used to improve in vitro embryo production and development in pigs. However, there is insufficient information about correlations of porcine embryo development with oocyte pre‐ and post‐activation conditions. The purpose of this study was to compare the developmental rates of porcine oocytes subjected to different mannitol exposure times, either pre‐ or post‐electrical activation, and to elucidate the reason for the optimal mannitol exposure time. Mannitol exposure times around activation were adjusted as 0, 1, 2 or 3 min. Blastocyst development were checked on day 7. Exposure of oocytes to mannitol for 1 or 2 min before electrical activation produced significantly higher blastocyst rates than exposure for 0 or 3 min. There was no significant difference in blastocyst rates when activated oocytes were exposed to mannitol for 0, 1, 2 or 3 min after electrical activation. While exposure of oocytes to mannitol for 1 min pre‐ and 3 min post‐activation showed significantly higher blastocyst development than 0 min pre‐ and 0 min post‐activation. It also showed higher maintenance of normal oocyte morphology than exposure for 0 min pre‐ and 0 min post‐activation. In conclusion, exposure of oocytes to mannitol for 1 min pre‐ and 3 min post‐activation seems to be optimal for producing higher in vitro blastocyst development of porcine parthenogenetic embryos. The higher blastocyst development is correlated with higher maintenance of normal morphology in oocytes exposed to mannitol for 1 min pre‐ and 3 min post‐activation.  相似文献   

9.
This study detected the distribution of laminin during embryonic formation by immunofluorescence. To determine the possible function of laminin on developmental ability of in vitro fertilized embryos, the presumptive zygotes were divided and transferred to CR1aa medium supplemented with different concentrations (0 μg/ml, 5 μg/ml, 10 μg/ml and 20 μg/ml) of laminin. To explore the association with sperm–oocyte fusion, oocytes and/or sperm were pre‐incubated with laminin or anti‐β1 antibody before insemination. Laminin was absent in mature oocytes and could be detected first at the 8‐cell stage and then displayed an increasing tendency. Adding 10 μg/ml laminin to the culture medium improved embryonic development including cleavage rate, blastocyst rate, total cell numbers in the blastocyst and cell numbers in the inner cell mass. Laminin inhibited sperm–oocyte fusion when incubated with oocytes and/or sperm before in vitro fertilization, and only integrin‐β1 of sperm was involved in sperm–oocyte binding. Inhibition may be caused by blocking β1, but why laminin inhibits fertilization is still unknown. The results suggest that laminin plays an important role during embryonic formation and has a negative function in sperm–oocyte fusion, but improves embryonic development. However, only integrin‐β1 is involved in sperm–oocyte binding.  相似文献   

10.
Cells are blessed with a group of stress protector molecules known as heat shock proteins (HSPs), amongst them HSP70, encoded by HSPA‐1A gene, is most abundant and highly conserved protein. Variety of stresses hampers the developmental competence of embryos under in vivo and in vitro conditions. Present work was designed to study the quantitative expression of HSPA‐1A mRNA in immature oocytes (IMO), matured oocytes (MO), in vitro produced (IVP) and in vivo‐derived (IVD) buffalo embryos to assess the level of stress to which embryos are exposed under in vivo and in vitro culture conditions. Further, HSPA‐1A gene sequence was analysed to determine its homology with other mammalian sequences. The mRNA expression analysis was carried out on 72 oocytes (40 IMO; 32 MO), 76 IVP and 55 IVD buffalo embryos. Expression of HSPA‐1A was found in oocytes and throughout the developmental stages of embryos examined irrespective of the embryo source; however, higher (p < 0.05) expression was observed in 8–16 cell, morula and blastocyst stages of IVP embryos as compared to IVD embryos. Phylogenetic analysis of bubaline HSPA‐1A revealed that it shares 91–98% identity with other mammalian sequences. It can be concluded that higher level of HSPA‐1A mRNA in IVP embryos in comparison with in vivo‐derived embryos is an indicator of cellular stress in IVP system. This study suggests need for further optimization of in vitro culture system in which HSPA‐1A gene could be used as a stress biomarker during pre‐implantation development.  相似文献   

11.
Currently, in vitro‐produced embryos derived by ovum pick up (OPU) and in vitro fertilization (IVF) technologies represent approximately one‐third of the embryos worldwide in cattle. Nevertheless, the culture of small groups of embryos from an individual egg donor is an issue that OPU‐IVF laboratories have to face. In this work, we tested whether the development and quality of the preimplantation embryos in vitro cultured in low numbers (five embryos) could be improved by the addition of epidermal growth factor, insulin, transferrin and selenium (EGF‐ITS) or by the WOW system. With this aim, immature oocytes recovered from slaughtered heifers were in vitro matured and in vitro fertilized. Presumptive zygotes were then randomly cultured in four culture conditions: one large group (LG) (50 embryos/500 μl medium) and three smaller groups [five embryos/50 μl medium without (control) or with EGF‐ITS (EGF‐ITS) and five embryos per microwell in the WOW system (WOW)]. Embryos cultured in LG showed a greater ability to develop to blastocyst stage than embryos cultured in smaller groups, while the blastocyst rate of WOW group was significantly higher than in control. The number of cells/blastocyst in LG was higher than control or WOW, whereas the apoptosis rate per blastocyst was lower. On the other hand, the addition of EGF‐ITS significantly improved both parameters compared to the control and resulted in similar embryo quality to LG. In conclusion, the WOW system improved embryo development, while the addition of EGF‐ITS improved the embryo quality when smaller groups of embryos were cultured.  相似文献   

12.
The present study was designed to explore effects of follistatin (FST) on pre‐implantational development of parthenogenetically activated embryos (PAEs) in pigs. First, we investigated the FST messenger RNA expression level and dynamic FST protein expression patterns in porcine oocytes and PAEs. Then, PAEs were placed in embryo culture medium supplemented with 10 ng/mL of FST‐288, FST‐300, and FST‐315. Next, PAEs were cultured with 0, 1, 10 and 100 ng/mL of FST‐315 protein throughout the in vitro culture (IVC) duration. Further, 10 ng/mL of FST‐300 was added from the start of IVC in which PAEs were treated for 30, 48 and 60 h. The results showed that 1 ng/mL FST‐315 could significantly increase the total cell numbers of blastocyst and trophectoderm cell number in PAEs. Exogenous FST‐300 supplementation could significantly promote the early cleavage divisions and improve the blastocyst formation rate of porcine embryos. FST‐300 appeared to affect early embryonic development before activation of the embryonic genome. In all, the study confirmed for the first time that FST plays a role in promoting early embryonic development in pigs, which differed with different FST subtypes. FST‐300 could facilitate the initial cleavage time and improve the blastocyst formation rate, and FST‐315 could improve the blastocyst quality.  相似文献   

13.
Maternal nutrient restriction during pregnancy is a major problem worldwide for human and animal production. Arginine (Arg) is critical to health, growth and reproduction. N‐carbamylglutamate (NCG), a key enzyme in arginine synthesis, is not extensively degraded in rumen. The aim of this study was to investigate ameliorating effects of rumen‐protected arginine (RP‐Arg) and NCG supplementation on dietary in undernourished Hu sheep during gestation. From day 35 to 110 of gestation, 32 Hu ewes carrying twin foetuses were randomly divided into four groups: a control (CG) group (n = 8; fed 100% National Research Council (NRC) requirements for pregnant sheep), a nutrient‐restricted (RG) group (n = 8; fed 50% NRC requirements, which included 50% mineral–vitamin mixture) and two treatment (Arg and NCG) groups (n = 8; fed 50% NRC requirements supplemented with 20 g/day RP‐Arg or 5 g/day NCG, which included 50% mineral–vitamin mixture). The umbilical venous plasma samples of foetus were tested by 1H‐nuclear magnetic resonance. Thirty‐two differential metabolites were identified, indicating altered metabolic pathways of amino acid, carbohydrate and energy, lipids and oxidative stress metabolism among the four groups. Our results demonstrate that the beneficial effect of dietary RP‐Arg and NCG supplementation on mammalian reproduction is associated with complex metabolic networks.  相似文献   

14.
15.
Although the technique of interspecies somatic cell nuclear transfer can be used to increase the population size of endangered mammals, the mitochondrial heteroplasmy in cloned embryos and animals makes this idea doubtful. In present study, goat–sheep cloned embryos were constructed by fusing goat foetal fibroblasts (GFFs) into sheep oocytes and then cultured in vitro to investigate the capability of sheep oocyte dedifferentiating GFF nucleus. Moreover, at each stage of 1‐ (immediately after fused), 2‐, 4‐, 8‐, 16‐cell, morula and blastocyst, the copy number of mtDNA from GFF and sheep oocyte was examined using real‐time PCR. The results showed that: 7.4% of the fused cloned embryos can develop to the blastocyst stage; in the process of one cell to the morula stage, the copy number of two kinds of mtDNA was stable relatively; however, in the process of morula to the blastocyst stage, the decreasing in the copy number of GFF‐derived mtDNA, while the increasing in sheep oocyte‐derived, resulted in their ratio of decreasing sharply from 2.0 ± 1.0% to 0.012 ± 0.004%. This study demonstrates that: (i) the goat–sheep cloned embryos have the ability to develop to blastocyst in vitro; (ii) from the morula stage to the blastocyst stage of goat–sheep cloned embryos, goat derived mitochondria can be gradually replaced with those from sheep oocyte.  相似文献   

16.
The present study evaluated the effects of genetic backgrounds on the developmental competence and thermotolerance of bovine in vitro‐produced (IVP) embryos. First, Holstein (Hol) and Japanese Black (JB) oocytes were fertilized with sperm from Hol, JB and a thermotolerant breed (Brahman), and in vitro development was evaluated when the embryos were exposed to heat shock on Day 2 (Day 0 = day of fertilization). Sperm genetic backgrounds affected the developmental competence in controls (P < 0.05). Second, the effect of sperm pre‐incubation for 4 h on subsequent in vitro fertilization was assessed using different sperm genetic backgrounds. The pre‐incubation of sperm did not decrease the embryonic development regardless of the breed of the sperm. A milder heat shock (40.0°C) effect on parthenotes (Hol and JB) and IVP embryos were evaluated. JB parthenotes showed developmental arrest after Day 4, and the rate of development to the blastocyst stage decreased by heat shock, but not in Hol parthenotes. Heat shock decreased developmental competence after cleavage of IVP embryos regardless of genetic background. The thermotolerance of IVP embryos would be controlled by both maternal and paternal factors but genetic involvement was still unclear. Further evaluation is needed to reveal the genetic contribution to thermotolerance.  相似文献   

17.
This study investigated the feasibility of applying fixed‐time (cryopreserved) embryo transfer in ewes. Embryos (n = 106) were non‐surgically recovered from superovulated donors (n = 39) on day 6–7 after oestrus. Straws containing one or two embryos (morulae and/or blastocysts) subjected to either slow freezing (SF, n = 62) or vitrification (VT, n = 44) were randomly used within fixed‐time embryo transfer on Day 8.5. Recipient ewes were nulliparous (n = 58) bearing corpora lutea after synchronous oestrous induction protocol. The pregnancy rate was higher (p = .03) in SF (39.4%) than VT (16.9%) and survival rate tended (p = .08) to be higher in SF than in VT (25.8% vs. 15.9%). Lambing rates were similar (p = .13) between SF (20.9%) and VT (15.9%). Embryos recovered by non‐surgical route after cervical dilation treatment and later cryopreserved by either slow freezing or vitrification produced reasonable pregnancy rates after FTET.  相似文献   

18.
The aim of the present investigation was to study the effect of calcium ionophore activation on blastocyst production following intracytoplasmic sperm injection (ICSI) in in vitro‐matured Caprine oocytes. A total of 470 in vitro‐matured oocytes were selected and randomly divided in to three groups. Cumulus oocyte complexes (COCs) recovered by slicing the Caprine ovaries were matured in TCM199 supplemented with 10% foetal bovine serum (FBS) + 10% follicular fluid + FSH (5 μg/ml) + LH (10 μg/ml) + estradiol (1 μg/ml) + EGF (10 ng/ml) + BSA (3 mg/ml) for 27 h in humidified atmosphere at 38.5°C with 5% CO2 in CO2 incubator. After 27 h of culture, selected COCs (n = 470) were separated from cumulus cells by treating with 0.1% hyaluronidase enzyme and passing repeatedly through a fine pipette and randomly divided into three groups. In group 1, (n = 168) matured oocytes were injected with injection micropipette without sperm as control. In group 2, (n = 152) capacitated spermatozoa were injected into cytoplasm of in vitro‐matured oocytes through injection micropipette. In group 3, (n = 150) capacitated spermatozoa were injected into cytoplasm of in vitro‐matured oocytes through injection micropipette and then activated with 5 μm Ca ionophore for 5 min. The oocytes of all groups were then culture in RVCL media for embryo development. The cleavage rate was observed after 48–72 h of injection. The cleavage rate and blastocyst production in group 1, 2 and 3 were 0.00 and 0.00, 18.42 and 3.57 and 61.33% and 16.30%, respectively. The result indicated that mechanical activation failed to induce cleavage in in vitro‐matured Caprine oocytes, whereas chemical activation of intracytoplasmic sperm‐injected in vitro‐matured Caprine oocytes showed significantly higher cleavage rate and blastocyst production as compare to non‐activated oocytes.  相似文献   

19.
This study examined the effects of O2 concentration (5% vs 20%) during in vitro maturation (IVM), fertilization (IVF) and culture (IVC) or supplementation of IVM and IVC media with cysteamine (50 and 100 μm , respectively; IVM, IVF and IVC carried out in 20% O2), on blastocyst rate and relative mRNA abundance of some apoptosis‐related genes measured by real‐time qPCR in immature and in vitro‐matured buffalo oocytes and in embryos at 2‐, 4‐, 8‐ to 16‐cell, morula and blastocyst stages. The blastocyst rate was significantly higher (p < 0.05) while the percentage of TUNEL‐positive cells was significantly lower (p < 0.05) under 5% O2 than that under 20% O2. The mRNA expression of anti‐apoptotic genes BCL‐2 and MCL‐1 was significantly higher (p < 0.05) and that of pro‐apoptotic genes BAX and BID was lower (p < 0.05) under 5% O2 than that under 20% O2 concentration at many embryonic stages. Following cysteamine supplementation, the blastocyst rate and the relative mRNA abundance of BCL‐XL and MCL‐1 was significantly higher (p < 0.05) and that of BAX but not BID was lower (p < 0.05) at many stages of embryonic development, although it did not affect the percentage of TUNEL positive cells in the blastocysts significantly. The mRNA expression pattern of these genes during embryonic development was different in 5% vs 20% O2 groups and in cysteamine supplemented vs controls. At the 8‐ to 16‐cell stage, where developmental block occurs in buffalo, the relative mRNA abundance of BCL‐2 and MCL‐1 was highest under 5% O2 concentration and that of BAX and BID was highest (p < 0.05) under 20% O2 concentration. These results suggest that one of the mechanisms through which beneficial effects of low O2 concentration and cysteamine supplementation are mediated during in vitro embryo production is through an increase in the expression of anti‐apoptotic and a decrease in the expression of pro‐apoptotic genes.  相似文献   

20.
The quality of porcine blastocysts produced in vitro is poor in comparison with those that develop in vivo. We examined the quality of in vitro‐matured and fertilized (IVM/IVF) oocytes, their abilities to develop to blastocysts under in vivo and in vitro conditions, and the potential of the embryos to develop to term after transfer. IVM/IVF oocytes were either transferred and the embryos recovered on Days 5 and 6 (100% and 87.5%, respectively) (‘ET‐vivo’ embryos), or cultured in vitro for 5 or 6 days (‘IVC’ embryos). The proportion of blastocysts differed significantly between the two groups on Day 5 (20.6% and 8.0%, respectively), but not on Day 6 (23.8% and 21.2%, respectively). The mean number of cells in ET‐vivo blastocysts on Days 5 or 6 was significantly higher (72.8 and 78.7, respectively) than that in IVC blastocysts (22.1 and 39.7, respectively). When IVM/IVF oocytes and IVC blastocysts on Day 6 were transferred, all (three and three, respectively) developed to piglets (16 and 16, respectively), without any difference in the rates of development to term (2.1% and 2.6%, respectively). These data suggest that, although blastocyst production differs between the two culture conditions, IVM/IVF oocytes possess the same ability to develop to term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号