首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Powdery mildew caused by Erysiphe graminis f. sp. tritici is one of the most important wheat diseases in many regions of theworld. A powdery mildew resistance gene, originating from wild emmerwheat (Triticum dicoccoides) accession `C20', from Rosh Pinna, Israel,was successfully transferred to hexaploid wheat through crossing andbackcrossing. Genetic analysis indicated that a single dominant genecontrols the powdery mildew resistance at the seedling stage. SegregatingBC1F2 progenies of the cross 87-1/C20//2*8866 wereused for bulked segregant analysis (BSA). The PCR approach was used togenerate polymorphic DNA fragments between the resistant and susceptibleDNA pools by use of 10-mer random primers, STS primers, and wheatmicrosatellite primers. Three markers, Xgwm159/430,Xgwm159/460, and Xgwm159/500, were found to be linked tothe resistance gene. After evaluating the polymorphic markers in twosegregating populations, the distance between the markers and the mildewresistance gene was estimated to be 5–6 cM. By means of ChineseSpring nullisomic-tetrasomics and ditelosomics, the polymorphic markersand the resistance gene were assigned to chromosome arm 5BS and werephysically mapped on the gene rich regions of fragment length (FL) 0.41–0.43 by Chinese Spring deletion lines. As no powdery mildew resistancegene has been reported on chromosome arm 5BS, the mildew resistancegene originating from C20 should be a new gene and is designated Pm30.  相似文献   

2.
小麦白粉病是严重影响小麦生产的重要病害之一,培育和应用抗病品种是有效控制和减少病害的最经济有效的方法。野生二粒小麦是硬粒小麦和普通小麦的四倍体野生祖先种,是小麦抗病性遗传改良的重要基因资源。本研究利用来自以色列的野生二粒小麦WE29与普通小麦杂交,再用普通小麦连续回交和自交,育成高抗白粉病(Blumeria graminis f. sp. tritici)小麦新品系3D258(系谱为燕大1817/WE29//5*87-1, BC4F6)。将3D258和高感小麦白粉病的普通小麦品种薛早配制杂交组合,对其F1、F2代分离群体和F3代家系进行白粉病抗性鉴定和遗传分析。结果表明3D258携带抗白粉病显性单基因,暂命名为MlWE29。利用集群分离分析法(BSA)和分子标记分析,发现6个SSR标记(Xgwm335、Xgwm213、Xgwm639、Xwmc415、Xwmc289和Xwmc75)和5个EST-STS标记(BE494426、BE442763、CD452476、BE445282和BE407068)与抗白粉病基因MlWE29连锁。利用中国春缺体-四体系、双端体系和缺失系将抗白粉病基因MlWE29标记物理定位于5BL染色体的0.59–0.79区域。这一普通小麦抗白粉病种质资源的创制及其连锁分子标记的建立为小麦抗病基因分子标记辅助选择、基因积聚和分子育种提供了新的物质基础。  相似文献   

3.
小麦白粉病是严重影响小麦生产的重要病害之一,培育和应用抗病品种是有效控制和减少病害的最经济有效的方法。野生二粒小麦是硬粒小麦和普通小麦的四倍体野生祖先种,是小麦抗病性遗传改良的重要基因资源。本研究利用来自以色列的野生二粒小麦WE29与普通小麦杂交,再用普通小麦连续回交和自交,育成高抗白粉病(Blumeria graminis f. sp. tritici)小麦新品系3D258(系谱为燕大1817/WE29//5*87-1, BC4F6)。将3D258和高感小麦白粉病的普通小麦品种薛早配制杂交组合,对其F1、F2代分离群体和F3代家系进行白粉病抗性鉴定和遗传分析。结果表明3D258携带抗白粉病显性单基因,暂命名为MlWE29。利用集群分离分析法(BSA)和分子标记分析,发现6个SSR标记(Xgwm335、Xgwm213、Xgwm639、Xwmc415、Xwmc289和Xwmc75)和5个EST-STS标记(BE494426、BE442763、CD452476、BE445282和BE407068)与抗白粉病基因MlWE29连锁。利用中国春缺体-四体系、双端体系和缺失系将抗白粉病基因MlWE29标记物理定位于5BL染色体的0.59–0.79区域。这一普通小麦抗白粉病种质资源的创制及其连锁分子标记的建立为小麦抗病基因分子标记辅助选择、基因积聚和分子育种提供了新的物质基础。  相似文献   

4.
Yellow rust (stripe rust), caused by Puccinia striiformis Westend f. sp. tritici, is one of the most devastating diseases of wheat throughout the world. Wheat-Haynaldia villosa 6AL.6VS translocation lines R43, R55, R64 and R77, derived from the cross of three species, carry resistance to both yellow rust and powdery mildew. An F2 population was established by crossing R55 with the susceptible cultivar Yumai 18. The yellow rust resistance in R55 was controlled by a single dominant gene, which segregated independently of the powdery mildew resistance gene Pm21 located in the chromosome 6VS segment, indicating that the yellow rust resistance gene and Pm21 are unlikely to be carried by the same alien segment. This yellow rust resistance gene was considered to beYr26, originally thought to be also located in chromosome arm 6VS. Bulked Segregation Analysis and microsatellite primer screens of the population F2 of Yumai 18 × R55 identified three chromosome 1B microsatellite locus markers, Xgwm11, Xgwm18 and Xgwm413, closely linked to Yr26. Yr26 was placed 1.9 cM distal of Xgwm11/Xgwml8, which in turn were 3.2 cM from Xgwm413. The respective LOD values were 21 and 36.5. Therefore, Yr26 was located in the short arm of chromosome 1B. The origin and distribution of Yr26 was investigated by pedigree, inheritance of resistance and molecular marker analysis. The results indicated that Yr26 came from Triticum turgidum L. Three other 6AL.6VS translocation lines, R43, R64 and R77, also carried Yr26. These PCR-based microsatellite markers were shown to be very effective for the detection of the Yr26 gene in segregating populations and therefore can be applied in wheat breeding. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
小麦地方品种小白冬麦抗白粉病基因分子标记   总被引:1,自引:0,他引:1  
薛飞  翟雯雯  段霞瑜  周益林  吉万全 《作物学报》2009,35(10):1806-1811
小麦农家品种小白冬麦对小麦白粉病具有良好抗性,对病原菌拥有较广的抗谱,并与其他已知抗白粉病基因的抗谱不同,遗传分析证实小白冬麦的苗期抗性由一个隐性抗白粉病基因控制。为了寻找与小白冬麦所携带抗白粉病基因连锁的分子标记,采用小白冬麦和感病品种Chancellor(CC)正反交组合,在2个F2群体125和107个单株上进行验证。结果显示,抗白粉病基因mlxbd与引物Xgwm577、Xgwm1267等紧密连锁,通过中国春及其第7部分同源群缺体-四体系,双端体系和缺失系将其定位在7B染色体长臂末端区域(7BL-10,Bin 0.78~1.00), 利用与mlxbd最近的引物Xgwm577扩增23个含有已知抗白粉病基因的小麦品种,检测发现这个引物不能单独用于分子标记辅助选择育种。  相似文献   

6.
X. M. Chen    Y. H. Luo    X. C. Xia    L. Q. Xia    X. Chen    Z. L. Ren    Z. H. He    J. Z. Jia 《Plant Breeding》2005,124(3):225-228
The use of resistant cultivars is a most economical way to control powdery mildew (Blumeria graminis f.sp. tritici) in wheat (Triticum aestivum L.). Identification of molecular markers closely linked to resistance genes can greatly increase the efficiency of pyramiding resistance genes in wheat cultivars. The objective of this study was to identify molecular markers closely linked lo the powdery mildew resistance gene Pm16. An F2 population with 156 progeny was produced from the cross‘Chancellor’(susceptible) ב70281’ (resistant), A total of 45 SSR markers on chromosomes 4A and 5B of wheat and 15 SSRs on chromosome 3 of rice was used lo lest the parents, as well as the resistant and susceptible bulks: the resulting polymorphic markers were used to genotype the F2 progeny. Results indicated that the SSR marker Xgwm159, located on the short arm of chromosome 5B, is closely linked to Pm16 (genetic distance: 5.3 CM). The cytogenetical data presented in an original report, in combination with this molecular analysis, suggests that Pm16 may he located on a translocated 4A.5BS chromosome.  相似文献   

7.
小麦抗白粉病新基因的AFLP和SSR标记及其染色体定位   总被引:11,自引:2,他引:9  
李韬  张增艳  林志珊  陈孝  高珊  辛志勇 《作物学报》2005,31(9):1105-1109
M53 (YAV2/TEZ//Ae.squarrosa 249) 是硬粒小麦与粗山羊草的双二倍体合成种,携带一个抗白粉病新基因,暂命名为Pm-M53,该基因对北京地区白粉病优势生理小种15号表现免疫抗性。本研究利用来源于杂交组合M53/宛7107的一个F2群体,在苗期采用白粉病15号小种(Blumeria graminis f. sp. tritici)接种,抗病反应型鉴定表明,抗感比例符合3∶1,说明其抗性受显性单基因控制;对部分F2植株的F3株系的抗病鉴定进一步证明了F2鉴定的可靠性;利用AFLP和SSR标记技术结合F2分离群体对目的基因进行了遗传作图,将目的基因定位在5D染色体的长臂上。其中AFLP标记P16M16-109(Apm109)和P5M16-161(Apm161)与目的基因的遗传距离分别为1.0和3.0 cM。SSR标记Xwmc289b、Xgwm583和Xgwm292与目的基因的遗传距离分别为20.0、33.0和24.0 cM。这些标记位于目的基因的两侧。利用中国春遗传背景的缺-四体和双端体结合AFLP标记Apm109确证了SSR标记定位的可靠性,进一步证明该基因是一个新的抗白粉病基因。  相似文献   

8.
普通小麦品种Brock抗白粉病基因分子标记定位   总被引:4,自引:2,他引:2  
为明确利用Brock转育成的小麦抗白粉病品系3B529(京411*7//农大015/Brock, F6)抗性的遗传基础,将高感白粉病小麦品系薛早和3B529杂交,获得F1代、F2分离群体和F2:3家系。抗病性鉴定和遗传分析结果表明,3B529对E09小种的抗性受1对显性基因控制,暂被定名为MlBrock。利用BSA和分子标记分析,获得了与MlBrock连锁的3个SSR标记Xcfd81、Xcfd78、Xgwm159和2个SCAR标记SCAR203和SCAR112,根据SSR和SCAR标记在中国春缺体四体、双端体和缺失系的定位结果,将MlBrock定位在小麦染色体臂5DS Bin 0~0.63区间上。MlBrock与Xcfd81和SCAR203共分离,与SCAR112的遗传距离为0.5 cM。这些分子标记的建立有利于今后Brock抗白粉病基因分子标记辅助选择和基因聚合。综合抗白粉病基因MlBrock的染色体定位和抗谱分析结果,推测MlBrock很可能是Pm2基因。  相似文献   

9.
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a devastating disease of wheat (Triticum aestivum) in China and worldwide, causing severe yield losses annually. Wild emmer (T. dicoccoides) accession IW72 collected from Israel is resistant to powdery mildew at the seedling and adult stages. Genetic analysis indicated that the resistance was controlled by a single dominant gene, temporarily designated MlIW72. The F2 population and F3 families derived from a hybrid between IW72 and susceptible durum wheat line Mo75 were used for molecular mapping of the resistance gene. MlIW72 was linked with SSR loci Xgwm344, Xcfa2040, Xcfa2240, Xcfa2257 and Xwmc525 on the long arm of chromosome 7A. In addition, two STS markers, MAG2185 (derived from RFLP marker PSR680) and MAG1759 (developed from EST CD452874), were mapped close to MlIW72. All these markers were physically located in the terminal bin 0.86–1.00 of 7AL. The chromosome location and genetic mapping results suggested that the powdery mildew resistance gene identified in wild emmer accession IW72 might be a new allele at the Pm1 locus or a new locus closely linked to Pm1.  相似文献   

10.
小麦品系抗小麦白粉病基因分子标记鉴定   总被引:8,自引:2,他引:6  
利用与3个抗小麦白粉病基因(PmPS5A, PmPS5B, PmY39)连锁的微卫星标记对分别由波斯小麦PS5和(或)小伞山羊草Y39衍生的72个小麦抗病品系进行了抗白粉病基因鉴定。在24个由波斯小麦PS5和小伞山羊草Y39合成的双二倍体Am9衍生的品系中,有2个品系含有PmPS5A的标记,有19个品系含有PmPS5B的标记,有7个品系含有PmY39的标记,还有  相似文献   

11.
为探讨偏凸山羊草-柱穗山羊草双二倍体SDAU18在小麦遗传改良中的利用价值,以SDAU18和普通小麦品种烟农15及其9个杂种世代为材料,分析不同自交和回交世代染色体和性状分离的特点。结果表明,随自交和以烟农15为轮回亲本回交世代的增加,染色体数目逐渐减少,回交比自交能使后代的染色体数目更快趋近普通小麦的42条,至F5和BC3F1代,染色体数目为42的植株已分别达93.9%和92.0%。与自交世代相比,回交后代减数第一分裂中期的花粉母细胞的染色体构型较为简单,回交次数过多不利于外源染色体与普通小麦染色体发生重组,一般应以回交2~3次为宜;随自交和回交世代的增进,杂种的育性提高,至F3和BC2F1代育性基本稳定。在不同杂种世代可分离出具有矮秆、大穗、大粒、对白粉病、条锈病免疫或高抗及外观品质优良的变异类型,以F3和BC1F1代的变异类型最丰富。  相似文献   

12.
An Israeli accession (TTD140) of wild emmer, Triticum turgidum var. dicoccoides, was found resistant to several races of powdery mildew. Inoculation of the chromosome-arm substitution lines (CASLs) of TTD140, in the background of the Israeli common wheat cultivar ‘Bethlehem’ (BL), with five isolates of powdery mildew revealed that only the line carrying the short arm of chromosome 2B of wild emmer (CASL 2BS) exhibited complete resistance to four of the five isolates. To map and tag the powdery mildew resistance gene, 41 recombinant substitution lines, derived from a cross between BL and CASL 2BS, were used to construct a linkage map at the gene region. The map, which encompasses 69.5 cM of the distal region of chromosome arm 2BS, contains six RFLP markers, a morphological marker (glaucousness inhibitor, W1 I), and the powdery mildew resistance gene. Segregation ratios for resistance in F2 of BL × CASL 2BS and in the recombinant lines, combined with the susceptability of F1 progeny to all tested isolates, indicate that resistance is controlled by a single recessive allele. This alleleco-segregated with a polymorphic locus detected by the DNA marker Xwg516, 49.4 cM from the terminal marker Xcdo456. The new powdery mildew resistance gene was designated Pm26. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
H. Kumar  R. B. Singh 《Euphytica》1981,30(1):147-151
Summary An analysis of adult plant resistance of powdery mildew in 15 F1, F2 and F3 populations of pea derived from crossing 15 diverse and susceptible lines with one resistant line revealed that resistance to powdery mildew is controlled by duplicate recessive genes. The genes were designated as er1 and er2.Disease reaction showed independent segregation with three known markers in the resistant parent, namely, af (afila, chromosome 1), st (stipule reduced, chromosome 3) and tl (clavicula, chromosome 7).Contribution form the Department of Genetics and Plant Breeding Banaras Hindu University, Varanasi-221005, India.  相似文献   

14.
Wild Aegilops species related to cultivated wheat (Triticum spp.) possess numerous genes of agronomic interest and can be valuable sources of resistance to diseases, pests and extreme environmental factors. These genes can be incorporated into the wheat genome via intergeneric crossing, following, where necessary, the development of chromosome addition and substitution lines from the resulting hybrids. The transfer of a single segment from an alien chromosome can be achieved by translocations. The Aegilops (goatgrass) species, which are the most closely related to wheat, exhibit great genetic diversity, the exploitation of which has been the subject of experimentation for more than a century. The present paper gives a survey of the results achieved to date in the field of wheat–Aegilops hybridisation and gene transfer. The Aegilops genus consists of 11 diploid, 10 tetraploid and 2 hexaploid species. Of these 23 Aegilops species, most of the diploids (Ae. umbellulata Zhuk., Ae. mutica Boiss., Ae. bicornis (Forssk.) Jaub. & Spach, Ae. searsii Feldman & Kislev ex Hammer, Ae. caudata L., Ae. sharonensis Eig, Ae. speltoides Tausch, Ae. longissima Schweinf. & Muschl.) and several polyploids (Ae. ventricosa Tausch, Ae. peregrina (Hack. In J. Fraser) Marie & Weiller, Ae. geniculata Roth, Ae. kotschyi Boiss., Ae. biuncialis L.) have been used to develop wheat–Aegilops addition lines. Wheat–Aegilops substitution lines were developed using several species, including Ae. umbellulata, Ae. caudata, Ae. tauschii, Ae. speltoides, Ae. sharonensis, Ae. longissima and Ae. geniculata. Translocations carrying genes responsible for useful agronomic traits were developed with Ae. umbellulata, Ae. comosa, Ae. ventricosa, Ae. longissima, Ae. speltoides and Ae. geniculata. A large number of genes were transferred from Aegilops species to cultivated wheat, including those for resistance to leaf rust, stem rust, yellow rust and powdery mildew, and various pests (cereal cyst nematode, root knot nematode, Hessian fly, greenbug). Many molecular markers are linked to these resistance genes. The development of new molecular markers is also underway. There are still many untapped genetic resources in Aegilops species that could be used as resistance sources for plant breeding.  相似文献   

15.
The Triticum dicoccoides-derived wheat line Zecoi-1 provides effective protection against powdery mildew. F3 segregation analysis of Chinese Spring × Zecoi-1 hybrids showed that resistance in line Zecoi-1 is controlled by a single dominant gene. Amplified fragment length polymorphism (AFLP) analysis of bulked segregants from F3s showing the homozygous resistant and susceptible phenotypes identified eight markers, of which four were associated with the resistance allele in repulsion phase. Following the assignment of these four repulsion phase AFLP markers to wheat chromosome 2B with the aid of Chinese Spring nulli-tetrasomic lines, they were physically mapped in the terminal breakpoint interval 0.89 (2BL-6)–1.00 (telomere) of chromosome 2BL. Genetic and physical mapping of simple sequence repeat markers from the distal half of chromosome 2BL located the wild emmer-derived powdery mildew resistance gene distal of breakpoint 0.89 in deletion line 2BL-6. Based on disease response patterns, genomic origin and chromosomal location the resistance gene in Zecoi-1 is temporarily designated MlZec1.  相似文献   

16.
小麦新种质CH09W83为八倍体小偃麦TAI7047与高感小麦品种晋太170杂交、回交后代衍生而来的高代选系,在苗期免疫或高抗我国白粉病菌株E09、E20、E21、E23、E26、Bg1和Bg2。为定位CH09W83中的抗病基因,将CH09W83与感病亲本杂交和回交,通过对F1、F2、F2:3和BC1代的接种鉴定和遗传分析,证实CH09W83成株期对E09的抗性由1对隐性核基因控制,暂命名为pmCH83。采用分离群体分组分析法(bulked segregant analysis, BSA),以658对SSR标记对台长29(感病)× CH09W83的F2群体分析发现,抗性基因pmCH83与SSR标记Xgpw7272、Xwmc652、Xgwm251、Xgwm193连锁,与两翼邻近标记Xwmc652和Xgwm251的遗传距离分别为3.8 cM和4.3 cM。利用中国春缺体–四体、双端体将pmCH83及其连锁标记定位在4BL染色体上。原位杂交、染色体配对及连锁标记分析结果表明,CH09W83可能是一个小麦与中间偃麦草的隐形异源渗入系。系谱和图谱位置分析表明,pmCH83很可能是来自中间偃麦草一个新的抗白粉病基因。  相似文献   

17.
One of the most important diseases of barley (Hordeum vulgare) is powdery mildew, caused by Blumeria graminis f. sp. hordei. Spring barley line 173-1-2 was selected from a Moroccan landrace and revealed broad-spectrum resistance to powdery mildew. The objective of this study was to map and characterize the gene for seedling powdery mildew resistance in this line. After crossing with the susceptible cultivar ‘Manchuria’, genetic analysis of F2 and F3 families at the seedling stage revealed powdery mildew resistance in line 173-1-2 conditioned by a single recessive gene. Molecular analysis of non-segregating homozygous resistant and homozygous susceptible F2 plants conducted on the DArTseq platform (Diversity Arrays Technology Pty Ltd) identified significant markers which were converted to allele-specific PCR markers and tested among 94 F2 individuals. The new resistance gene was mapped on the long arm of chromosome 6H. No other powdery mildew recessive resistance gene has been located on 6H so far. Therefore, we concluded that the 173-1-2 barley line carries a novel recessive resistance gene designated as mlmr.  相似文献   

18.
小麦新种质CH7124由八倍体小偃麦TAI8335与高感白粉病小麦品种晋麦33杂交后代衍生而来,在苗期对白粉病菌株E09、E20、E21、E23、E26、Bg1和Bg2表现免疫或高抗,抗病表现与TAI8335及其野生亲本中间偃麦草相似。基因组原位杂交未检测到CH7124含有外源染色体信号。利用CH7124与感病亲本SY95-71和绵阳11的杂交群体接种鉴定和遗传分析证实,CH7124成株期对E09的抗性由1对显性核基因控制,暂命名为Pm CH7124。采用分离群体分组分析法(bulked segregant analysis,BSA)对SY95-71/CH7124的F6群体进行SSR标记扫描,发现抗性基因Pm CH7124与5对SSR标记连锁,与两翼邻近标记Xgwm501和Xbarc101的遗传距离分别为1.7 c M和4.5 c M。利用中国春缺体–四体和双端体材料,将Pm CH7124及其连锁标记定位在小麦2B染色体长臂上。通过分析2BL上其他抗白粉病基因的抗谱、抗性来源、物理图谱位置以及连锁标记在Pm CH7124作图群体中的多态性,认为Pm CH7124不同于2BL上已知的抗白粉病基因Pm6、Pm33、Pm JM22、Ml Zec1、Ml AB10和Ml LX99。  相似文献   

19.
Summary A new source of resistance to wheat powdery mildew caused by Erysiphe graminis has been transferred to hexaploid bread wheat, Triticum aestivum, from the wild tetraploid wheat, Triticum dicoccoides. The donor was crossed to bread wheat and the pentaploid progeny was then self-pollinated. Plants having a near stable hexaploid chromosome complement were selected in the F3 progeny and topcrossing and backcrossing of these to a second wheat cultivar to improve the phenotype was undertaken. Monosomic analysis of early backcross lines showed the transferred gene to be located on chromosome 4A. The gene has been designated Pm16.  相似文献   

20.
Y. J. Yi    H. Y. Liu    X. Q. Huang    L. Z. An    F. Wang    X. L. Wang 《Plant Breeding》2008,127(2):116-120
Powdery mildew, caused by Blumeria graminis (DC.) E.O. Speer f. sp. tritici, is an important disease in wheat (Triticum aestivum L.). Bulk segregant analysis (BSA) was employed to identify SRAP (sequence‐related amplified polymorphism), sequence tagged site (STS) and simple sequence repeat (SSR) markers linked to the Pm4b gene, which confers good resistance to powdery mildew in wheat. Out of 240 SRAP primer combinations tested, primer combinations Me8/Em7 and Me12/Em7 yielded 220‐bp and 205‐bp band, respectively, each of them associated with Pm4b. STS‐241 also linked to Pm4b with a genetic distance of 4.9 cM. Among the eight SSR markers located on wheat chromosome 2AL, Xgwm382 was found to be polymorphic and linked to Pm4b with a genetic distance of 11.8 cM. Further analysis was carried out using the four markers to investigate marker validation for marker‐assisted selection (MAS). The results showed that a combination of the linked markers STS?241, Me8/Em7?220 and Xgwm382 could be used for marker‐assisted selection of the resistance gene Pm4b in wheat breeding programmes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号