首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
OBJECTIVE: To determine the anesthetic, cardiorespiratory, and metabolic effects of 4 IV anesthetic regimens in Thoroughbred horses recuperating from a brief period of maximal exercise. ANIMALS: 6 adult Thoroughbreds. PROCEDURE: Horses were preconditioned by exercising them on a treadmill. Each horse ran 4 simulated races, with a minimum of 14 days between races. Races were run at a treadmill speed that caused horses to exercise at 120% of their maximal oxygen consumption. Horses ran until fatigued or for a maximum of 2 minutes. Two minutes after exercise, horses received a combination of xylazine hydrochloride (2.2 mg/kg of body weight) and acepromazine maleate (0.04 mg/kg) IV. Five minutes after exercise, horses received 1 of the following 4 IV anesthetic regimens: ketamine hydrochloride (2.2 mg/kg); ketamine (2.2 mg/kg) and diazepam (0.1 mg/kg); tiletamine hydrochloride-zolazepam hydrochloride (1 mg/kg); and guaifenesin (50 mg/kg) and thiopental sodium (5 mg/kg). Treatments were randomized. Cardiopulmonary indices were measured, and samples of blood were collected before and at specific times for 90 minutes after each race. RESULTS: Each regimen induced lateral recumbency. The quality of induction and anesthesia after ketamine administration was significantly worse than after other regimens, and the duration of anesthesia was significantly shorter. Time to lateral recumbency was significantly longer after ketamine or guaifenesin-thiopental administration than after ketaminediazepam or tilet-amine-zolazepam administration. Arterial blood pressures after guaifenesin-thiopental administration were significantly lower than after the other regimens. CONCLUSIONS AND CLINICAL RELEVANCE: Anesthesia can be safely induced in sedated horses immediately after maximal exercise. Ketamine-diazepam and tilet-amine-zolazepam induced good quality anesthesia with acceptable perturbations in cardiopulmonary and metabolic indices. Ketamine alone and guaifenesin-thiopental regimens are not recommended.  相似文献   

2.
Detomidine (30 mcg/kg), xylazine (1.1 mg/kg) and xylazine/morphine (1.1 mg/kg and 0.75 mg/kg with 300 mg maximum dose) were compared in horses admitted for broncho-alveolar lavage. Horses (n=99) were randomized and clinicians performing the procedure were unaware of the sedation used. Horses were assessed during the procedure and for the next 2 hours. A significant number of xylazine/morphine-sedated horses showed excitement (p<0.05). The frequency of sinus block or arrest and second-degree atrioventricular block was significantly greater with detomidine. Detomidine-sedated horses were significantly more depressed than either xylazine or xylazine/morphine treated animals. Heart rate was significantly greater in horses given xylazine/morphine by 60 min. There was no significant difference between drug treatments related to reactions to the procedure or respiratory rate depression. The study indicated that all three methods are suitable for standing restraint. The more frequent adverse side effects (circling, muscle fasciculations, head pressing) accompanying xylazine/morphine should be considered.  相似文献   

3.
The aim of this study was to measure the effects of specific commonly used sedative protocols on equine solid phase gastric emptying rate, using the 13C-octanoic acid breath test (13C-OABT). The gastric emptying of a standard 13C-labelled test meal was measured once weekly in 8 mature horses over two 4 week treatment periods. Each horse acted as its own control. In treatment Period 1, saline (2 ml i.v.), xylazine (0.5 mg/kg i.v.), detomidine (0.01 mg/kg i.v.) or detomidine/butorphanol combination (0.01/0.02 mg/kg i.v.) was administered in randomised order after ingestion of the test meal. During treatment Period 2, test meal consumption was followed by saline, xylazine (1.0 mg/kg i.v.), or detomidine (0.03 mg/kg i.v.) administration, or preceded by acepromazine (0.05 mg/kg i.m.) in randomised order. The 13C:12C ratio of sequential expiratory breath samples was determined by isotope ratio mass spectrometry, and used to measure the gastric half-emptying time, t 1/2, and duration of the lag phase, t lag, for each of the 64 tests. In treatment Period 1, detomidine/butorphanol prolonged both t 1/2 and t lag with respect to xylazine 0.5 mg/kg and the saline control (P < 0.05). In Period 2, detomidine 0.03 mg/kg delayed each parameter with respect to saline, acepromazine and xylazine 1.0 mg/kg (P < 0.001). Xylazine 1.0 mg/kg also lengthened t lag relative to the saline control (P = 0.0004), but did not cause a significant change in t 1/2. Comparison of treatment periods showed that the inhibitory effect of detomidine on gastric emptying rate was dose related (P<0.05). These findings may have clinical significance for case selection when these agents are used for purposes of sedation and/or analgesia.  相似文献   

4.
OBJECTIVES: To evaluate effects of strenuous exercise in adult horses immediately before anesthesia and to determine whether prior exercise affects anesthesia induction, recovery, or both. ANIMALS: 6 healthy Thoroughbreds in good condition and trained to run on a treadmill, each horse serving as its own control. PROCEDURE: Horses ran on a treadmill until fatigued, then were sedated immediately with detomidine hydrochloride and anesthetized with a zolazepam hydrochloride-tiletamine combination. Anesthesia was maintained with isoflurane in oxygen for another 90 minutes. Blood samples were taken before, during, and after exercise and during anesthesia. RESULTS: During exercise, changes in heart rate, core body temperature, plasma lactate concentration, arterial pH, and PaCO2 were significant. Plasma ionized calcium concentration was lower after exercise, compared with baseline values, and remained lower at 30 minutes of isoflurane anesthesia. Compared with baseline values, plasma chloride concentration decreased significantly during anesthesia after exercise. Cardiac output during anesthesia was significantly lower than that during preexercise, but significant differences between experimental and control periods were not observed. Arterial blood pressure during anesthesia was significantly lower than that during preexercise and initially was maintained better during isoflurane anesthesia after exercise. Cardiac output and blood pressure values were clinically acceptable throughout anesthesia. CONCLUSION: Administration of detomidine hydrochloride followed by zolazepam hydrochloride-tiletamine appeared to be safe and effective for sedation and anesthesia of horses that had just completed strenuous exercise. CLINICAL RELEVANCE: Anesthetic given in accordance with this protocol can be used to anesthetize horses that are injured during athletic competition to assess injuries, facilitate first aid, and possibly allow salvage of injured horses.  相似文献   

5.
OBJECTIVE: To compare effects of oxytocin, acepromazine maleate, xylazine hydrochloride-butorphanol tartrate, guaifenesin, and detomidine hydrochloride on esophageal manometric pressure in horses. ANIMALS: 8 healthy adult horses. PROCEDURE: A nasogastric tube, modified with 3 polyethylene tubes that exited at the postpharyngeal area, thoracic inlet, and distal portion of the esophagus, was fitted for each horse. Amplitude, duration, and rate of propagation of pressure waveforms induced by swallows were measured at 5, 10, 20, 30, and 40 minutes after administration of oxytocin, detomidine, acepromazine, xylazine-butorphanol, guaifenesin, or saline (0.9% NaCI) solution. Number of spontaneous swallows, spontaneous events (contractions that occurred in the absence of a swallow stimulus), and high-pressure events (sustained increases in baseline pressure of > 10 mm Hg) were compared before and after drug adminision. RESULTS: At 5 minutes after administration, detomidine increased waveform amplitude and decreased waveform duration at the thoracic inlet. At 10 minutes after administration, detomidine increased waveform duration at the thoracic inlet. Acepromazine administration increased the number of spontaneous events at the thoracic inlet and distal portion of the esophagus. Acepromazine and detomidine administration increased the number of high-pressure events at the thoracic inlet. Guaifenesin administration increased the number of spontaneous events at the thoracic inlet. Xylazine-butorphanol, detomidine, acepromazine, and guaifenesin administration decreased the number of spontaneous swallows. CONCLUSIONS AND CLINICAL RELEVANCE: Detomidine, acepromazine, and a combination of xylazine butorphanol had the greatest effect on esophageal motility when evaluated manometrically. Reduction in spontaneous swallowing and changes in normal, coordinated peristaltic activity are the most clinically relevant effects.  相似文献   

6.
7.
Cardiovascular effects of xylazine and detomidine in horses   总被引:6,自引:0,他引:6  
The cardiovascular effects of xylazine and detomidine in horses were studied. Six horses were given each of the following 5 treatments, at 1-week intervals: xylazine, 1.1 mg/kg, IV; xylazine, 2.2 mg/kg, IM; detomidine, 0.01 mg/kg, IV; detomidine, 0.02 mg/kg, IV; and detomidine, 0.04 mg/kg, IM. All treatments resulted in significantly decreased heart rate, increased incidence of atrioventricular block, and decreased cardiac output and cardiac index; cardiac output and cardiac index were lowest following IV administration of 0.02 mg of detomidine/kg. Mean arterial pressure was significantly reduced for various periods with all treatments; however, IV administration of 0.02 mg of detomidine/kg caused hypertension initially. Systemic vascular resistance was increased by all treatments. Indices of ventricular contractility and relaxation, +dP/dt and -dP/dt, were significantly depressed by all treatments. Significant changes were not detected in stroke volume or ejection fraction. The PCV was significantly reduced by all treatments. Respiratory rate was significantly decreased with all treatments, but arterial carbon dioxide tension did not change. Arterial oxygen tension was significantly decreased briefly with the 3 IV treatments only.  相似文献   

8.
The cardiovascular effects of medetomidine, detomidine, and xylazine in horses were studied. Fifteen horses, whose right carotid arteries had previously been surgically raised to a subcutaneous position during general anesthesia were used. Five horses each were given the following 8 treatments: an intravenous injection of 4 doses of medetomidine (3, 5, 7.5, and 10 microg/kg), 3 doses of detomidine (10, 20, and 40 microg/kg), and one dose of xylazine (1 mg/kg). Heart rate decreased, but not statistically significant. Atrio-ventricular block was observed following all treatments and prolonged with detomidine. Cardiac index (CI) and stroke volume (SV) were decreased with all treatments. The CI decreased to about 50% of baseline values for 5 min after 7.5 and 10 microg/kg medetomidine and 1 mg/kg xylazine, for 20 min after 20 microg/kg detomidine, and for 50 min after 40 microg/kg detomidine. All treatments produced an initial hypertension within 2 min of drug administration followed by a significant decrease in arterial blood pressure (ABP) in horses administered 3 to 7.5 microg/kg medetomidine and 1 mg/kg xylazine. Hypertension was significantly prolonged in 20 and 40 microg/kg detomidine. The hypotensive phase was not observed in 10 microg/kg medetomidine or detomidine. The changes in ABP were associated with an increase in peripheral vascular resistance. Respiratory rate was decreased for 40 to 120 min in 5, 7.5, and 10 microg/kg medetomidine and detomidine. The partial pressure of arterial oxygen decreased significantly in 10 microg/kg medetomidine and detomidine, while the partial pressure of arterial carbon dioxide did not change significantly. Medetomidine induced dose-dependent cardiovascular depression similar to detomidine. The cardiovascular effects of medetomidine and xylazine were not as prolonged as that of detomidine. KEY WORDS: cardiovascular effect, detomidine, equine, medetomidine, xylazine.  相似文献   

9.
Background: Signs of tachypnea after sedation of febrile horses with α2‐agonists have been noted previously but have not been further investigated. Objectives: To examine the effects of xylazine and detomidine on respiratory rate and rectal temperature in febrile horses and to investigate if either drug would be less likely than the other to cause changes in these variables. Animals: Nine febrile horses and 9 healthy horses were included in the study. Methods: Horses were randomly assigned to sedation with xylazine 0.5 mg/kg or detomidine 0.01 mg/kg. Heart rate and respiratory rate were recorded before sedation and at 1, 3, and 5 minutes after injection. Hourly measurements of rectal temperature were performed starting before sedation. Results: All febrile horses experienced an episode of tachypnea and antipyresis after sedation. Rectal temperature in the febrile group was significantly lower at 1, 2, and 3 hours after sedation. In several measurements, the decrease was >1°C. Respiratory rate in the febrile group was significantly increased after sedation. All febrile horses were breathing >40 breaths/min and 3 horses >100 breaths/min 5 minutes after sedation. No differences were noted between the 2 treatments. No significant changes in respiratory rate or temperature were noted in the reference group. Conclusions and Clinical Importance: Febrile horses can become tachypneic after sedation with detomidine or xylazine. The antipyretic properties of α2‐agonists need consideration when evaluating patients that have been sedated several hours before examination.  相似文献   

10.
11.
The sedative effect induced by administering xylazine hydrochloride or detomidine hydrochloride with or without butorphanol tartrate to standing dairy cattle was compared in two groups of six adult, healthy Holstein cows. One group received xylazine (0.02 mg/kg i.v.) followed by xylazine (0.02 mg/kg) and butorphanol (0.05 mg/kg i.v.) 1 week later. Cows in Group B received detomidine (0.01 mg/kg i.v.) followed by detomidine (0.01 mg/kg i.v.) and butorphanol (0.05 mg/kg i.v.) 1 week later. Heart rate, respiratory rate, and arterial blood pressure were monitored and recorded before drugs were administered and every 10 minutes for 1 hour after drug administration. The degree of sedation was evaluated and graded. Cows in each treatment group had significant decreases in heart rate and respiratory rate after test drugs were given. Durations of sedation were 49.0 +/- 12.7 minutes (xylazine), 36.0 +/- 14.1 (xylazine with butorphanol), 47.0 +/- 8.1 minutes (detomidine), and 43.0 +/- 14.0 minutes (detomidine with butorphanol). Ptosis and salivation were observed in cows of all groups following drug administration. Slow horizontal nystagmus was observed from three cows following administration of detomidine and butorphanol. All cows remained standing while sedated. The degree of sedation seemed to be most profound in cows receiving detomidine and least profound in cows receiving xylazine.  相似文献   

12.
REASON FOR PERFORMING STUDY: Endoscopy of the upper airways of horses is used as a diagnostic tool and at purchase examinations. On some occasions it is necessary to use sedation during the procedure and it is often speculated that the result of the examination might be influenced due to the muscle-relaxing properties of the most commonly used sedatives. OBJECTIVES: To evaluate the effect of detomidine (0.01 mg/kg bwt) and acepromazine (0.05 mg/kg bwt) on the appearance of symmetry of rima glottidis, ability to abduct maximally the arytenoid cartilages and the effect on recurrent laryngeal neuropathy (RLN) grade. METHODS: Forty-two apparently normal horses underwent endoscopic examination of the upper airways on 3 different occasions, under the influence of 3 different treatments: no sedation (control), sedation with detomidine and sedation with acepromazine. All examinations were performed with a minimum of one week apart. The study was performed as an observer-blind cross-over study. RESULTS: Sedation with detomidine had a significant effect on the RLN grading (OR = 2.91) and ability maximally to abduct the left arytenoid cartilages (OR = 2.91). Sedation with acepromazine resulted in OR = 2.43 for the RLN grading and OR = 2.22 for the ability to abduct maximally. The ability to abduct maximally the right arytenoid cartilage was not altered. CONCLUSIONS: Sedating apparently healthy horses with detomidine or acepromazine significantly impairs these horses' ability to abduct fully the left but not the right arytenoid cartilage. This resulted in different diagnosis with respect to RLN when comparing sedation to no sedation. POTENTIAL RELEVANCE: Since the ability to abduct the right arytenoid cartilage fully is not altered by sedation, it is speculated that horses changing from normal to abnormal laryngeal function when sedated, might be horses in an early stage of the disease. To confirm or reject these speculations, further studies are needed. Until then sedation during endoscopy should be used with care.  相似文献   

13.
14.
The cardiovascular changes associated with anesthesia induced and maintained with romifidine/ketamine versus xylazine/ ketamine were compared using 6 horses in a cross over design. Anesthesia was induced and maintained with romifidine (100 microg/kg, IV)/ketamine (2.0 mg/kg, IV) and ketamine (0.1 mg/kg/min, IV), respectively, in horses assigned to the romifidine/ ketamine group. Horses assigned to the xylazine/ketamine group had anesthesia induced and maintained with xylazine (1.0 mg/kg, IV)/ketamine (2.0 mg/kg, IV) and a combination of xylazine (0.05 mg/kg/min, IV) and ketamine (0.1 mg/kg/min, IV), respectively. Cardiopulmonary variables were measured at intervals up to 40 min after induction. All horses showed effective sedation following intravenous romifidine or xylazine and achieved recumbency after ketamine administration. There were no significant differences between groups in heart rate, arterial oxygen partial pressures, arterial carbon dioxide partial pressures, cardiac index, stroke index, oxygen delivery, oxygen utilization, systemic vascular resistance, left ventricular work, or any of the measured systemic arterial blood pressures. Cardiac index and left ventricular work fell significantly from baseline while systemic vascular resistance increased from baseline in both groups. The oxygen utilization ratio was higher in the xylazine group at 5 and 15 min after induction. In conclusion, the combination of romifidine/ketamine results in similar cardiopulmonary alterations as a xylazine/ketamine regime, and is a suitable alternative for clinical anesthesia of the horse from a cardiopulmonary viewpoint.  相似文献   

15.
16.
OBJECTIVE: To determine the cardiopulmonary and sedative effects of medetomidine hydrochloride in adult horses and to compare those effects with effects of an equipotent dose of xylazine hydrochloride. ANIMALS: 10 healthy adult female horses. PROCEDURE: 5 horses were given medetomidine (4 microg/kg of body weight, i.v.), and the other 5 were given xylazine (0.4 mg/kg, i.v.). Heart rate, respiratory rate, arterial blood pressures, pulmonary arterial blood pressures, and cardiac output were recorded, and sedation and ataxia scores were assigned before and every 5 minutes after drug administration for 60 minutes. Rectal temperature and blood gas partial pressures were measured every 15 minutes after drug administration. RESULTS: Arterial blood pressure was significantly decreased throughout the study among horses given medetomidine and was significantly decreased for 40 minutes among horses given xylazine. Compared with baseline values, cardiac output was significantly decreased 10, 20, and 40 minutes after administration of medetomidine and significantly increased 40 and 60 minutes after administration of xylazine. Despite the significant decrease in respiratory rate in both groups, results of blood gas analyses were not significantly changed over time. Ataxia and sedation scores were of similar magnitude for the 2 groups, but ataxia persisted slightly longer among horses given medetomidine. Horses resumed eating hay 10 to 55 minutes after drug administration. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that equipotent low doses of medetomidine and xylazine induce comparable levels of ataxia and sedation and similar cardiopulmonary changes in adult horses.  相似文献   

17.
The sedative effects of a new alpha 2-adrenoceptor agonist, romifidine, were compared with those of xylazine and detomidine. Five horses were treated with two doses of romifidine (40 micrograms/kg body weight and 80 micrograms/kg body weight), two doses of detomidine (10 micrograms/kg body weight and 20 micrograms/kg body weight) and one dose of xylazine (1 mg/kg body weight) given by intravenous injection using a Latin-square design. The dose of 80 micrograms/kg romifidine appeared equipotent to 1 mg/kg xylazine and 20 micrograms/kg detomidine, although at these doses both xylazine and detomidine had a shorter action. Detomidine 20 micrograms/kg and xylazine both produced greater lowering of the head and a greater degree of ataxia than romifidine at either dose. Romifidine produced sedation similar to that of the other drug regimes. The effect upon imposed stimuli was similar.  相似文献   

18.
The effect of combinations of nalbuphine (0.3 mg/kg) with either detomidine (10 μg/kg) or acepromazine (50 μg/kg) was investigated in ponies. Nalbuphine enhanced the degree of sedation produced by both sedatives; sedation with detomidine and nalbuphine was profound. Cardiovascular and respiratory effects were mild and could usually be attributed to the effect of the sedative itself. Side effects were minimal and gave no cause for concern. It was concluded that nalbuphine, in combination with acepromazine or detomidine, is a safe and effective sedative for use in ponies.  相似文献   

19.
OBJECTIVE: To evaluate cardiopulmonary effects of glycopyrrolate in horses anesthetized with halothane and xylazine. ANIMALS: 6 horses. PROCEDURE: Horses were allocated to 2 treatment groups in a randomized complete block design. Anesthesia was maintained in mechanically ventilated horses by administration of halothane (1% end-tidal concentration) combined with a constant-rate infusion of xylazine hydrochloride (1 mg/kg/h, i.v.). Hemodynamic variables were monitored after induction of anesthesia and for 120 minutes after administration of glycopyrrolate or saline (0.9% NaCl) solution. Glycopyrrolate (2.5 microg/kg, i.v.) was administered at 10-minute intervals until heart rate (HR) increased at least 30% above baseline or a maximum cumulative dose of 7.5 microg/kg had been injected. Recovery characteristics and intestinal auscultation scores were evaluated for 24 hours after the end of anesthesia. RESULTS: Cumulative dose of glycopyrrolate administered to 5 horses was 5 microg/kg, whereas 1 horse received 7.5 microg/kg. The positive chronotropic effects of glycopyrrolate were accompanied by an increase in cardiac output, arterial blood pressure, and tissue oxygen delivery. Whereas HR increased by 53% above baseline values at 20 minutes after the last glycopyrrolate injection, cardiac output and mean arterial pressure increased by 38% and 31%, respectively. Glycopyrrolate administration was associated with impaction of the large colon in 1 horse and low intestinal auscultation scores lasting 24 hours in 3 horses. CONCLUSIONS AND CLINICAL RELEVANCE: The positive chronotropic effects of glycopyrrolate resulted in improvement of hemodynamic function in horses anesthetized with halothane and xylazine. However, prolonged intestinal stasis and colic may limit its use during anesthesia.  相似文献   

20.
ObjectiveTo evaluate and compare the antinociceptive effects of the three alpha-2 agonists, detomidine, romifidine and xylazine at doses considered equipotent for sedation, using the nociceptive withdrawal reflex (NWR) and temporal summation model in standing horses.Study designProspective, blinded, randomized cross-over study.AnimalsTen healthy adult horses weighing 527–645 kg and aged 11–21 years old.MethodsElectrical stimulation was applied to the digital nerves to evoke NWR and temporal summation in the left thoracic limb and pelvic limb of each horse. Electromyographic reflex activity was recorded from the common digital extensor and the cranial tibial muscles. After baseline measurements a single bolus dose of detomidine, 0.02 mg kg?1, romifidine 0.08 mg kg?1, or xylazine, 1 mg kg?1, was administered intravenously (IV). Determinations of NWR and temporal summation thresholds were repeated at 10, 20, 30, 40, 60, 70, 90, 100, 120 and 130 minutes after test-drug administration alternating the thoracic limb and the pelvic limb. Depth of sedation was assessed before measurements at each time point. Behavioural reaction was observed and recorded following each stimulation.ResultsThe administration of detomidine, romifidine and xylazine significantly increased the current intensities necessary to evoke NWR and temporal summation in thoracic limbs and pelvic limbs of all horses compared with baseline. Xylazine increased NWR thresholds over baseline values for 60 minutes, while detomidine and romifidine increased NWR thresholds over baseline for 100 and 120 minutes, respectively. Temporal summation thresholds were significantly increased for 40, 70 and 130 minutes after xylazine, detomidine and romifidine, respectively.Conclusions and clinical relevanceDetomidine, romifidine and xylazine, administered IV at doses considered equipotent for sedation, significantly increased NWR and temporal summation thresholds, used as a measure of antinociceptive activity. The extent of maximal increase of NWR and temporal summation thresholds was comparable, while the duration of action was drug-specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号