首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The priming effect (PE) plays a critical role in the control of soil carbon (C) cycling and influences the alteration of soil organic C (SOC) decomposition by fresh C input.However,drivers of PE for the fast and slow SOC pools remain unclear because of the varying results from individual studies.Using meta-analysis in combination with boosted regression tree (BRT) analysis,we evaluated the relative contribution of multiple drivers of PE with substrate and their patterns across each driver gradient.The results showed that the variability of PE was larger for the fast SOC pool than for the slow SOC pool.Based on the BRT analysis,67%and 34%of the variation in PE were explained for the fast and slow SOC pools,respectively.There were seven determinants of PE for the fast SOC pool,with soil total nitrogen (N) content being the most important,followed by,in a descending order,substrate C:N ratio,soil moisture,soil clay content,soil pH,substrate addition rate,and SOC content.The directions of PE were negative when soil total N content and substrate C:N ratio were below 2 g kg~(-1)and 20,respectively,but the directions changed from negative to positive with increasing levels of this two factors.Soils with optimal water content (50%–70%of the water-holding capacity) or moderately low pH (5–6) were prone to producing a greater PE.For the slow SOC pool,soil p H and soil total N content substantially explained the variation in PE.The magnitude of PE was likely to decrease with increasing soil pH for the slow SOC pool.In addition,the magnitude of PE slightly fluctuated with soil N content for the slow SOC pool.Overall,this meta-analysis provided new insights into the distinctive PEs for different SOC pools and indicated knowledge gaps between PE and its regulating factors for the slow SOC pool.  相似文献   

2.
Iron and steel slags are smelting wastes, mainly including blast furnace slag(BFS) and steel slag(SS) produced in the iron and steel industry. Utilization of iron and steel slags as resources for solving the problem of slag disposals has attracted much attention with increasing iron and steel smelting slags in China. Because the iron and steel slags contain calcium(Ca), magnesium(Mg), phosphorus(P), and silicon(Si), some have tried to use them as Si-and P-fertilizers, for producing Ca-Mg-P fertilizers, or as soil amendments in agriculture. However, in the iron metallurgical process, several pollutants in iron ores can inevitably transfer into iron and steel slags, resulting in the enrichment of pollutants both in BFS(mainly nickel(Ni), copper(Cu), mercury, zinc(Zn),cadmium(Cd), chromium(Cr), arsenic, lead, selenium, fluorine(F), and chlorine(Cl)) and in SS(mainly Ni, Cr, Cd, Zn, Cu, F, and Cl), in which some of pollutants(especially Cr, Ni, F, and Cl) exceed the limits of environmental quality standards for soils and groundwater. The elements of manganese, barium,and vanadium in iron and steel slags are higher than the background values of soil environment. In order to ensure soil health, food safety, and environmental quality, it is suggested that those industrial solid wastes, such as iron and steel slags, without any pretreatment for reducing harmful pollutants and with environmental safety risk, should not be allowed to use for soil remediation or conditioning directly in farmlands by solid waste disposal methods, to prevent pollutants from entering food chain and harming human health.  相似文献   

3.
The sorption of cadmium(Cd) is one of the most important chemical processes in soil, affecting its fate and mobility in both soil and water and ultimately controlling its bioavailability. In order to fundamentally understand the sorption/desorption of Cd in soil systems, X-ray absorption fine structure spectroscopy(XAFS) has been applied in numerous studies to provide molecular-level information that can be used to characterize the surface adsorption and precipitation reactions that Cd can undergo. This information greatly improves our current knowledge of the possible chemical reactions of Cd in soil. This paper critically reviews the mechanisms of Cd sorption/desorption at the mineral-water interface based on XAFS studies performed over the past twenty years. An introduction to the basic concepts of sorption processes is provided, followed by a detailed interpretation of XAFS theory and experimental data collection and processing,ending finally with a discussion of the atomic/molecular-scale Cd sorption mechanisms that occur at the soil mineral-water interface. Particular emphasis is placed on literature that discusses Cd adsorption and speciation when associated with iron, manganese, and aluminum oxides and aluminosilicate minerals.Multiple sorption mechanisms by which Cd is sorbed by these minerals have been found, spanning from outer-sphere to inner-sphere to surface precipitation,depending on mineral type, surface loading, and pH. In addition, the application of complementary techniques(e.g.,113 Cd nuclear magnetic resonance(NMR) and molecular dynamics simulation) for probing Cd sorption mechanisms is discussed. This review can help to develop appropriate strategies for the environmental remediation of Cd-contaminated soils.  相似文献   

4.
党参因产地及加工方法不同,有不同的商品名。巫溪称"大宁党"、巫山称"巫山党"、"单支党"、"条党"、"庙党",奉节称"条党"。巫溪所产党参是川党参(C.tangshen Oliv.)中的一种,即"大宁党",其名称来源于产地命名(巫溪县在明国时期为大宁县),在植物学分类上为"条党",即产于重庆、湖北、陕西交界处的党参,其形状多条状,故名"条党"。  相似文献   

5.
Trace metal contamination in soil is of great concern owing to its long persistence in the environment and toxicity to humans and other organisms.Concentrations of six potentially toxic trace metals,Cr,Ni,Cu,As,Cd,and Pb,in urban soils were measured in Dhaka City,Bangladesh.Soils from different land-use types,namely,agricultural field,park,playground,petrol station,metal workshop,brick field,burning sites,disposal sites of household waste,garment waste,electronic waste,and tannery wast,and construction waste demolishing sites,were investigated.The concentration ranges of Cr,Ni,Cu,As,Pb,and Cd in soils were 2.4–1258,8.3–1044,9.7–823,8.7–277,1.8–80,and 13–842 mg kg^-1,respectively.The concentrations of metals were subsequently used to establish hazard quotients(HQs)for the adult population.The metal HQs decreased in the order of As>Cr>Pb>Cd>Ni>Cu.Ingestion was the most vital exposure pathway of studied metals from soils followed by dermal contact and inhalation.The range of pollution load index(PLI)was 0.96–17,indicating severe contamination of soil by trace metals.Considering the comprehensive potential ecological risk(PER),soils from all land-use types showed considerable to very high ecological risks.The findings of this study revealed that in the urban area studied,soils of some land-use types were severely contaminated with trace metals.Thus,it is suggested that more attention should be paid to the potential health risks to the local inhabitants and ecological risk to the surrounding ecosystems.  相似文献   

6.
Ralf CONRAD 《土壤圈》2020,30(1):25-39
Microbial methanogenesis is a major source of the greenhouse gas methane(CH4).It is the final step in the anaerobic degradation of organic matter when inorganic electron acceptors such as nitrate,ferric iron,or sulfate have been depleted.Knowledge of this degradation pathway is important for the creation of mechanistic models,prediction of future CH4 emission scenarios,and development of mitigation strategies.In most anoxic environments,CH4 is produced from either acetate(aceticlastic methanogenesis)or hydrogen(H2)plus carbon dioxide(CO2)(hydrogenotrophic methanogenesis).Hydrogen can be replaced by other CO2-type methanogenesis,using formate,carbon monoxide(CO),or alcohols as substrates.The ratio of these two pathways is tightly constrained by the stoichiometry of conversion processes.If the degradation of organic matter is complete(e.g.,degradation of straw in rice paddies),then fermentation eventually results in production of acetate and H2 at a ratio of>67%aceticlastic and<33%hydrogenotrophic methanogensis.However,acetate production can be favored when heterotrophic or chemolithotrophic acetogenesis is enhanced,and H2 production can be favored when syntrophic acetate oxidation is enhanced.This typically occurs at low and elevated temperatures,respectively.Thus,temperature can strongly influence the methanogenic pathway,which may range from 100%aceticlastic methanogenesis at low temperatures to 100%hydrogenotrophic methanogenesis at high temperatures.However,if the degradation of organic matter is not complete(e.g.,degradation of soil organic matter),the stoichiometry of fermentation is not tightly constrained,resulting,for example,in the preferential production of H2,followed by hydrogenotrophic methanogenesis.Preferential production of CH4 by either aceticlastic or hydrogenotrophic methanogenesis can also happen if one of the methanogenic substrates is not consumed by methanogens but is,instead,accumulated,volatilized,or utilized otherwise.Methylotrophic methanogens,which can use methanol as a substrate,are widespread,but it is unlikely that methanol is produced in similar quantities as acetate,CO2,and H2.Methylotrophic methanogenesis is important in saline environments,where compatible solutes are degraded to methyl compounds(trimethyl amine and dimethyl sulfide)and then serve as non-competitive substrates,while acetate and hydrogen are degraded by non-methanogenic processes,e.g.,sulfate reduction.  相似文献   

7.
Burying a straw layer and applying flue gas desulphurization(FGD)gypsum are effective practices to ameliorate soil salinization or alkalization and to increase crop yield;however,little information exists on the effects of such integration in saline-alkali soils.A soil column experiment was conducted to investigate the effects of a straw layer plus FGD gypsum on soil salinity and alkalinity.We placed a straw layer(5 cm thick)at a depth of 30 cm and mixed FGD gypsum into the 0–20 cm soil layer at application rates of 7.5,15.0,22.5,and 30.0 t ha^-1,with no straw layer and FGD gypsum as a control(CK).The soil water content in the 0–30 cm soil layer was significantly higher(>7.8%)in the treated soil profiles after infiltration than in the CK,but decreased after evaporation.The electrical conductivity(EC)of the 10–30 cm soil layer was 230.2%and 104.9%higher in the treated soil profiles than in the CK after infiltration and evaporation,respectively,and increased with increasing rates of FGD gypsum application,with Ca^2+and SO4^2-being the main dissolved salts.Compared to those in the CK,the concentrations of Na^+,Cl^-,and HCO3-decreased in the treated soil profiles at depths above 55 cm,but the other soluble ions increased,after infiltration.A similar trend occurred after evaporation for all soluble ions except for HCO3-.The p H and exchangeable sodium percentage in the treated soil profiles were significantly lower than those in the CK over the entire profile,and decreased with increasing FGD gypsum application rates.Therefore,the incorporation of a straw layer plus FGD gypsum can reduce salinity and alkalinity,but the quantity of FGD gypsum should be controlled in saline-alkali soils.  相似文献   

8.
Measuring ammonia(NH3)volatilization from urea-fertilized soils is crucial for evaluation of practices that reduce gaseous nitrogen(N)losses in agriculture.The small area of chambers used for NH3volatilization measurements compared with the size of field plots may cause significant errors if inadequate sampling strategies are adopted.Our aims were:i)to investigate the effect of using multiple open chambers on the variability in the measurement of NH3volatilization in urea-amended field plots and ii)to define the critical period of NH3-N losses during which the concentration of sampling effort is capable of reducing uncertainty.The use of only one chamber covering 0.015%of the plot(51.84 m2)generates a value of NH3-N loss within an expected margin of error of 30%around the true mean.To reduce the error margin by half(15%),3–7 chambers were required with a mean of 5 chambers per plot.Concentrating the sampling efforts in the first two weeks after urea application,which is usually the most critical period of N losses and associated errors,represents an efficient strategy to lessen uncertainty in the measurements of NH3volatilization.This strategy enhances the power of detection of NH3-N loss abatement in field experiments using chambers.  相似文献   

9.
Radionuclide fallout during nuclear accidents on the land may impair the atmosphere, contaminate farmland soils and crops, and can even reach the groundwater. Previous research focused on the field distribution of deposited radionuclides in farmland soils, but details of the amounts of radionuclides in the plough layer and the changes in their proportional distribution in the soil profile with time are still inadequate. In this study, a lysimeter experiment was conducted to determine the vertical migration of 137Cs and 60Co in brown and aeolian sandy soils, collected from the farmlands adjoining Shidaowan Nuclear Power Plant(NPP) in eastern China, and to identify the factors influencing their migration depths in soil. At the end of the experiment(800 d), >96% of added 137Cs and 60Co were retained in the top 0–20 cm soil layer of both soils;very little 137Cs or 60Co initially migrated to 20–30 cm, but their amounts at this depth increased with time. The migration depth of 137Cs was greater in the aeolian sandy soil than in the brown soil during 0–577 d, but at the end of the experiment, 137Cs migrated to the same depth(25 cm) in both soils. Three phases on the vertical migration rate(v) of 60Co in the aeolian sandy soil can be identified: an initial rapid movement(0–355 d, v = 219 ± 17 mm year-1), followed by a steady movement(355–577 d, v = 150 ± 24 mm year-1) and a very slow movement(577–800 d, v = 107 ± 7 mm year-1). In contrast, its migration rate in the brown soil(v = 133 ± 17 mm year-1) was steady throughout the 800-d experimental period. The migration of both 137Cs and 60Co in the two soils appears to be regulated by soil clay and silt fractions that provide most of the soil surface area, soil organic carbon(SOC), and soil pH, which were manifested by the solid-liquid distribution coefficient of 137Cs and 60Co. The results of this study suggest that most 137Cs and 60Co remained within the top layer(0–20 cm depth) of farmland soils following a simulated NPP accident, and little reached the subsurface(20–30 cm depth). Fixation of radionuclides onto clay minerals may limit their migration in soil, but some could be laterally distributed by soil erosion and taken up by crops, and migrate into groundwater in a high water table level area after several decades.Remediation measures, therefore, should focus on reducing their impact on the farmland soils, crops, and water.  相似文献   

10.
李向林  张兴  黄静 《南方农业》2007,1(6):15-16
青花菜又称绿叶菜,原产于地中海沿岸,其特点是营养价值高,含有多种矿物质等营养,位居同类蔬菜之首。由于青花菜生育期短,耐寒性强,主要产区在北方,在南方只有冷凉地区有少量栽培,而贵州属典型的南亚热气候类型,特别是在罗甸地区,秋季作物收获后,冬季只种植一些白菜类蔬菜。而营养价值高的青花菜,  相似文献   

11.
【目的】以富士(Fuji)、 秦冠(Qinguan)嫁接在平邑甜茶(Malus hupehensis Rehd.)上的当年生盆栽苗为试验材料,采用砂培方法,研究了缺氮胁迫和干旱对富士和秦冠生长情况、 光合参数、 植株各部位氮磷钾含量及氮素利用效率的影响,分析比较了低氮干旱条件下富士和秦冠生长及氮素利用的差异,以期为果树生产高效肥水利用提供理论指导。【方法】试验共设四个处理: 正常氮正常水(ZZ)、 低氮正常水(DZ)、 正常氮干旱(ZG)、 低氮干旱(DG)。氮素和水分均设置两个水平,分别为正常氮(6 mmol/L NO-3-N)、 低氮(0.3 mmol/LNO-3-N)、 正常供水(保持盆中砂子相对含水量为饱和含水量的80%~85%)、 干旱处理(保持盆中砂子相对含水量为饱和含水量的60%~65%)。【结果】富士和秦冠的生物量(茎和叶)、 株高茎粗等生长指标以及光合速率、 气孔导度、 蒸腾速率均为正常氮正常水(ZZ)>低氮正常水(DZ)>正常氮干旱(ZG)>低氮干旱(DG),并且相对应处理下秦冠的以上指标均高于富士;正常供水下,缺氮处理使富士、 秦冠的根冠比比正常氮处理均有所增加,富士提高了2.05%,秦冠提高了22.40%。富士和秦冠的氮、 磷、 钾含量均表现出正常氮正常水(ZZ)>低氮正常水(DZ)>正常氮干旱(ZG)>低氮干旱(DG); 氮、 钾元素含量在植株各部位的分布顺序依次是叶>根>茎,磷元素则是根>叶>茎;光合氮素利用效率(PNUE)和氮素利用效率表现为秦冠处理之间差异极显著,富士处理之间差异不显著;秦冠的PNUE和NUE明显高于富士,在低氮正常水(DZ)处理下,秦冠氮肥利用率比富士高42.07%,在低氮干旱(DG)处理下高64.14%;低氮胁迫下富士和秦冠的NUE显著提高,并且秦冠提高的幅度高于富士。【结论】施用氮肥能够显著提高富士与秦冠的干物质量,同等水肥条件下,秦冠生长优于富士;水分亏缺会减少叶片对氮的吸收,干旱条件下适度增施氮肥,可提高果树的抗旱能力;低氮干旱胁迫下秦冠的生长指标、 光合指标及氮素利用效率指标均优于富士,表现出较强的抗低氮干旱胁迫的能力。  相似文献   

12.
Laser-induced breakdown spectroscopy (LIBS) is a new technique for the analysis of plant material. This study investigates the application of LIBS to pasture-based plant samples. The LIBS measurements were obtained from pelletized pasture samples (100 samples) that had been also analyzed by inductively coupled plasma–optical emission spectroscopy (ICP-OES) following microwave digestion for calibration and comparison purposes. Comparisons for elements sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), manganese (Mn), iron (Fe), copper (Cu), zinc (Zn), boron (B), phosphorus (P), and sulfur (S) showed that LIBS could be used for almost all the standard profile total elements with concentrations down to low mg/kg levels (observed error of Na: 0.024 percent, K: 0.18 percent, Mg: 0.016 percent, Ca: 0.073 percent, P: 0.017 percent, Mn: 31 mg/kg, Fe: 150 mg/kg, Zn: 6.6 mg/kg, and B: 1.1 mg/kg). Elemental analysis at less than mg/kg levels was not possible using LIBS. The elements S and Cu were particularly difficult to analyze with reliability using LIBS at the concentration levels found in the plant samples. Replacing microwave digestion and subsequent ICP analysis with a direct analysis of dried plant samples using LIBS has the potential to improve the productivity and reduce the cost of testing.  相似文献   

13.
正The Center for Agricultural Resources Research(CARR),the Institute of Genetics and Developmental Biology(IGDB),Chinese Academy of Sciences,invites applicants for several research group leader positions.CARR is one of the research organizations in Chinese Academy of Sciences(CAS).We seek nominations and applications from individuals who have expertise and a record of accomplishment in research areas related to ecology,agro-hydrology,  相似文献   

14.
The responses of tallgrass prairie plant communities and ecosystem processes to fire and grazing are well characterized. However, responses of invertebrate consumer groups, and particularly soil-dwelling organisms, to these disturbances are not well known. At Konza Prairie Biological Station, we sampled soil macroinvertebrates in 1994 and 1999 as part of a long-term experiment designed to examine the effects and interactions of annual fire, mowing, and fertilization (N and P) on prairie soil communities and processes. For nearly all taxa, in both years, responses were characterized by significant treatment interactions, but some general patterns were evident. Introduced European earthworms (Aporrectodea spp. and Octolasion spp.) were most abundant in plots where fire was excluded, and the proportion of the total earthworm community consisting of introduced earthworms was greater in unburned, unmowed, and fertilized plots. Nymphs of two Cicada genera were collected (Cicadetta spp. and Tibicen spp.). Cicadetta nymphs were more abundant in burned plots, but mowing reduced their abundance. Tibicen nymphs were collected almost exclusively from unburned plots. Treatment effects on herbivorous beetle larvae (Scarabaeidae, Elateridae, and Curculionidae) were variable, but nutrient additions (N or P) usually resulted in greater densities, whereas mowing usually resulted in lower densities. Our results suggest that departures from historical disturbance regimes (i.e. frequent fire and grazing) may render soils more susceptible to increased numbers of European earthworms, and that interactions between fire, aboveground biomass removal, and vegetation responses affect the structure and composition of invertebrate communities in tallgrass prairie soils.  相似文献   

15.
Abstract

A 3-year study was carried out to investigate quality parameters in 14 tree fruit and berry species grown in southern Norway. The species were blueberry, apple, aronia, sour cherry, sweet cherry, red raspberry, strawberry, blackcurrant, gooseberry, red currant and elderberry, harvested along with wild bilberry, cloudberry and lingonberry. Significant differences between species were identified for all quality parameters. The coefficient of variation between species was lowest for pH (12.5%), dry matter (18.9%) and soluble solids (25.3%), followed by titratable acids (59.3%), total phenolics (83.8%), antioxidant capacity FRAP (85.7%) and antiradical power by the DPPH-assay (97.8%), total monomeric anthocyanins (132%) and ascorbic acid (137%). Average coefficient of variation within species were lower and ranged from 4 (pH) to 62% (ascorbic acid). Only the FRAP values were significantly affected by harvesting year with lower levels in 2004 than in 2005 and 2006. There were significant interactions between species and harvesting year for dry matter, soluble solids, pH, ascorbic acid and FRAP. The results indicate generic ranges in composition within species independent upon growing location and climate, and the composition of the tree fruits and berries is not likely to deviate from these ranges. It is concluded that desirable composition of tree fruits and berries and their products should primarily be achieved by selection among species rather than searching fors broadened variation within individual species.  相似文献   

16.
Potassium (K) fixation and release in soil are important factors in the long-term sustainability of a cropping system. Changes in K concentration and characteristics of K fixation and release in rhizosphere and nonrhizosphere soils in the rapeseed (Brassica napus L.)–rice (Oryza sativa L.) rotation were investigated using a rhizobox system. The concentrations of different forms of K in both rhizosphere and nonrhizosphere soils decreased with plants compared to without plants, regardless of K fertilizer application. Potassium uptake by crops mainly came from the rhizosphere soil. In the treatment without K fertilizer (–K), the main form of K supplied by the soil to the crops was 1.0 mol L?1 nitric acid (HNO3) nonextractable K, followed by nonexchangeable K, and then exchangeable K. In the treatment with K fertilizer (+K), the main K forms supplied by the soil to the crops were exchangeable K and nonexchangeable K. The amount and rate of K fixation after one cycle of the rapeseed–rice rotation was greater in rhizosphere soil than in nonrhizosphere soil. The amount and rate of K fixation of soil in the +K treatment were significantly less than in the –K treatment. The cumulative amounts of K released with 1.0 mol L?1 ammonium acetate (NH4OAc) and 1.0 mol L?1 HNO3 extraction increased with the increasing numbers of extractions, but the K-releasing power of soil by successive extraction decreased gradually and finally became almost constant. The release of K was less in rhizosphere soil than in nonrhizosphere soil. The release of K in the +K treatment was similar to that in the –K treatment in rhizosphere soil, but the K release in nonrhizosphere soil was greater with the +K than the –K treatment. Overall, the information obtained in this study will be helpful in formulating more precise K fertilizer recommendations for certain soils.  相似文献   

17.
Biologically enhanced dissolution offers a method to speed removal of chlorinated solvent dense non-aqueous-phase liquid (DNAPL) sources such as tetrachloroethene (PCE) and trichoroethene (TCE) from aquifers. Bioremediation is accomplished by adding an electron donor to the source zone where fermentation to intermediates leading to acetic acid and hydrogen results. The hydrogen and possibly acetic acid are used by dehalogenating bacteria to convert PCE and TCE to ethene and hydrochloric acid. Reductive dehalogenation is thus an acid forming process, and sufficient alkalinity must be present to maintain a near neutral pH. The bicarbonate alkalinity required to maintain pH above 6.5 is a function of the electron donor: 800 mg/L of bicarbonate alkalinity is sufficient to achieve about 1.2 mM TCE dechlorination with glucose, 1.7 mM with lactate, and a much higher 3.3 mM with formate. Laboratory studies indicate that in mixed culture, formate can be used as an electron donor for complete conversion to ethene, contrary to pure cultures studies indicating it cannot. Various strategies can be used to add electron donor to an aquifer for DNAPL dehalogenation while minimizing pH problems and excessive electron donor usage, including use of injection-extraction wells, dual recirculation wells, and nested injection-extraction wells.  相似文献   

18.
Staff members of the Department of Botany of Palacký University in Olomouc and Gene Bank Department – Workplace Olomouc, Research Institute of Crop Production in Prague, Czech Republic, conducted an expedition in seven European countries (Austria, Czech Republic, France, Germany, Italy, the Netherlands, Switzerland) in August/September 1999 to collect wild Lactuca spp. germplasm and study its geographic distribution, ecology and biodiversity. During the mission, more than 600 locations were visited resulting in the collection of 602 seed samples (accessions) of wild Lactuca species and 13 seed samples of related genera (Chondrilla and Mycelis). Lactuca serriola f. serriola, L. serriola f. integrifolia, L. saligna and L. viminea subsp. chondrilliflora were prevalent in southern Europe (Italy, France), however, only L. serriola was common in central and western Europe (Austria, Czech Republic, Germany, Netherlands, Switzerland). The greatest diversity of Lactuca species was found in France, where also the most seed samples (165) were collected. The most characteristic habitats with a high density of Lactuca spp. populations were observed along roads and highways, grassy ditches, ruderal communities, and dust-heaps. Natural infections by powdery mildew (Erysiphe cichoracearum) and downy mildew (Bremia lactucae) on some wild Lactuca spp. were observed. Recent observations concerning the geographic distribution, population structure, habitats, and natural occurrence of diseases of Lactuca spp. are discussed. This assemblage of genetic resources of Lactuca spp. can serve as the basis of future studies of species diversification, spatial population structure, plant microevolution, domestication processes, and genetic variability of host-parasite interactions.  相似文献   

19.
Three slow-growing legume trees used for desert reforestation and urban gardening in the Sonoran Desert of Northwestern Mexico and the Southwestern USA were evaluated whether their growth can be promoted by inoculation with plant growth-promoting bacteria (Azospirillum brasilense and Bacillus pumilus), unidentified arbuscular mycorrhizal (AM) fungi (mainly Glomus sp.), and supplementation with common compost under regular screenhouse cultivation common to these trees in nurseries. Mesquite amargo (Prosopis articulata) and yellow palo verde (Parkinsonia microphylla) had different positive responses to several of the parameters tested while blue palo verde (Parkinsonia florida) did not respond. Survival of all tree species was over 80% and survival of mesquite was almost 100% after 10 months of cultivation. Inoculation with growth-promoting microorganisms induced significant effects on the leaf gas exchange of these trees, measured as transpiration and diffusive resistance, when these trees were cultivated without water restrictions.  相似文献   

20.
Inoculation of wheat seedlings with the plant growth-promoting bacterium Azospirillum brasilense Cd was immobilized in alginate microbeads and, without applying any stress, significantly increased the quantity of several photosynthetic pigments, such as chlorophyll a, chlorophyll b, and the auxiliary photoprotective pigments violaxanthin, zeaxanthin, antheroxanthin, lutein, neoxanthin, and β-carotene. This resulted in greener plants with no apparent visible stress. After monitoring the quantity of photosynthetic pigments for 4 weeks, we observed that inoculated plants had higher quantities of pigments in shoot and stem. The greatest difference in the quantity of all pigments between inoculated and noninoculated plants occurred in the first week of growth. Regardless of treatment, the quantity of pigments in stems was three to four times less than the quantity of these pigments in shoots. Application of Azospirillum, either as liquid inoculant or as alginate microbeads, did not alter the positive effect of the bacteria on pigment production or the positive response of the plants towards A. brasilense Cd inoculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号