首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study the magnitude and nature of genetic variation in E. fibrosus, the levels and distribution of allozyme and RAPD variations were investigated in populations collected from Finland and Russia. The results obtained from the allozyme and RAPD studies were compared to each other in 10 of the populations. The allozyme analysis showed that 6 of 12 presumed loci (50%) were polymorphic within the species, while the mean number of polymorphic loci within populations was 4.8%. The mean number of allele per locus for the species was 1.5 and 1.05 across the populations. Genetic diversity at the species level was low (H es = 0.025), and the mean population genetic diversity was even lower (H ep = 0.007). Both these values were much lower than the average for other Elymus and self-fertilising species. The largest proportion of the total allozyme diversity was found among, rather than within the populations (G ST = 0.70). The allozyme genetic distances between the populations did not reflect geographic distances. Cluster and principal coordinates analyses revealed the same allozyme relationship patterns among the populations. A comparison of allozyme and RAPD variation in 10 of the populations showed differences in the amount of genetic variation. The RAPD analysis revealed higher levels of variation (A p = 1.19, P p = 20.3 and H ep = 0.09) than the allozyme one) A p = 1.06, P p = 5.8 and H ep = 0.008). For both markers, the largest proportion of the total gene diversity was found among the populations studied (G st = 0.63 for RAPDs and G st = 0.65 for allozyme). In contrast to the allozyme analysis, the RAPD based genetic distances did reflect geographic distances. The cluster and principal coordinates analyses showed different grouping of populations for each data set. There was a positive, but not significant, correlation (r = 0.41) between the genetic distance matrices resulting from these markers. Regional comparison revealed that the Finnish populations had a higher diversity than the Russian ones. Generally, this study indicates that E. fibrosus contains low genetic variation in its populations. The results are discussed in the context of conservation of the species.  相似文献   

2.
Genetic variation of wild populations and cultivars of Luohanguo (Siraitia grosvenorii), a plant species endemic to southern China, was assessed using random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) markers. Based on the results for 130 individuals from seven populations, a high level of genetic diversity of Luohanguo was observed at the species level. The percentage of polymorphic loci (P) was 89.4%, Nei’s gene diversity (H e) was 0.239, and Shannon’s information index (H o) was 0.373 based on the combined AFLP and RAPD data. There was a high degree of genetic differentiation, with 45.1% of the genetic variation attributed to differences between the populations. The genetic diversity of the Luohanguo cultivars is much lower than that of wild populations (P = 41.8%, H e = 0.141, H o = 0.211), and a distinct genetic differentiation is observed between the cultivars and wild accessions. The pool of genetic variation in the wild populations provides an excellent gene resource for Luohanguo breeding.  相似文献   

3.
Genetic variation and its distribution within and among 23 populations of Triticum urartu collected from Syria, Lebanon, Turkey, Armenia, and Iran was estimated using isozyme markers at eight polymorphic loci. The number of alleles per locus (A= 1.21), percentage polymorphic loci (P= 20.1%), and mean gene diversity (He= 0.024) were relatively low. In a population from Lebanon, a high number of alleles per locus (A= 2.13) and percentage polymorphic loci (P= 87.5%) was found. On average, genetic variation among populations (GST= 0.407) was smaller than within-population variation (0.593). However, different patterns of genetic structure were found among various geographic regions. Interpopulation variation was highest for the Iranian populations (0.89) followed by the Turkish populations (0.66). A reverse pattern was observed for the Syrian (0.11) and for the Lebanese (0.13) populations. The Armenian populations exhibited similar interpopulation and within-population variation. Principal component and cluster analyses resulted in distinct grouping of the geographically proximal populations, with the exception of the two Iranian populations. The Turkish populations were different from the neighboring Armenian populations compared to other countries. The populations from southern Syria and those from Lebanon also exhibited a high degree of genetic diversity. The two most heterozygous loci, Mdh-2 and Pgi-2, separated the populations along the first and second principal components, respectively. Most of the rare alleles were scattered sporadically throughout the geographic regions. Rare alleles with high frequencies were found in the Turkish and Armenian populations. These results indicated that different geographic regions require specific sampling procedures in order to capture the range of genetic variation observed in T. urartu populations.  相似文献   

4.
The genetic diversity of 38 cultivated populations of Sesamum indicum L. from four different regions of Turkey was estimated at the DNA level with the random amplified polymorphic DNA (RAPD) technique. Sixty-one bands were obtained for all populations 78% of which were polymorphic. Analysis of molecular variance (AMOVA) was used to investigate the genetic diversity of the populations which yielded highly significant differences among populations within regions (91.9% of the total genetic diversity). According to AMOVA and Shannon's index that were performed separately for each region, the highest value of genetic variation was observed among Northwest region populations (CV = 7.7; H0 = 0.304) and lowest in the Southeast regions' populations (CV = 2.6; H0 = 0.068). Nei and Li's similarity index was calculated and phylogenetic tree was established using the neighbor-joining algorithm. This phenetic analysis grouped 35 of 38 accessions in six groups leaving three highly diverse accessions outside. Wagner phylogenetic method was used to assess the phylogenetic relationships among the populations. In the majority-rule consensus tree, only 7 of the 32 forks showed above 60% occurrence. Using Principal Coordinate Analysis (PCO) of the RAPD data set, the groups were clearly separated along the first three axis. These results indicate that RAPD technique is useful for sesame systematics, and should be valuable for the maintenance of germplasm banks and the efficient choice of parents in breeding programs.  相似文献   

5.
Genetic diversity of seven cultivated populations of Codonopsis pilosula Nannf. from Longxi County, Gansu Province of China was estimated using randomly amplified polymorphic DNA (RAPD) markers. The 17 selected RAPD primers amplified 205 polymorphic bands out of a total of 235 (87.2%). Nei’s gene-diversity statistics and population differentiation parameters based on AMOVA analysis indicated that the cultivated C. pilosula populations remained a high level of genetic diversity with Hs = 0.299 and I = 0.450. A greater proportion of genetic diversity was found within (77%) rather than among (23%) the populations. In addition, we also detected that populations from different altitudes had a considerable genetic differentiation after 40 years of cultivation at the same site. Populations from higher altitude had lower genetic diversity than those from lower altitude. Our results suggested that irregular and sparse cultivation practices, i.e., random collecting, preserving, and planting seeds of the medicinal species without deliberate selection, might be an efficient way to conserve genetic resources of medicinal plants, in addition to their effective uses.  相似文献   

6.
Naturally occurring populations of wild Brassica oleracea were collected in Spain, France, and Great Britain. Allele frequencies at four isozyme loci were determined for 18 populations, while five populations were screened using five random primers to generate RAPDs. Levels of homozygosity and gene diversity, H, were computed for each population using isozyme data and RAPD data when applicable. Homozygosity levels tended to be higher in smaller populations, which could also be observed as increased numbers of homozygous loci in smaller populations. Gene diversity values based on isozymes indicated considerable within population variation regardless of population size. The RAPID based gene diversities were significantly higher and the two exceptional populations displayed diversity levels more in keeping with the rest. The coefficient of gene differentiation, G ST , for populations in each region showed that the Spanish populations were more homogenous than the French or British. When the G ST for all populations was calculated using isozymes vs. RAPD data, the RAPD data gave a significantly lower value, a plausible result of the higher within population variation detected using RAPDs. Genetic distances between populations from different regions were also calculated from both data sets and used to produce phenograms. Clustering according to geographic region was not evident using either isozyme or RAPD data.  相似文献   

7.
Sesame (Sesamum indicum L.) is a traditional oil crop cultivated throughout South East Asia. To estimate the genetic diversity of this crop in parts at the region, 22 sesame accessions collected in Vietnam and Cambodia were analyzed using 10 RAPD markers. The 10 primers generated 107 amplification products of which 88 were polymorphic fragments (83%). Genetic diversity of all populations was Ht = 0.34 when estimated by Nei’s genetic diversity and species diversity was H′sp = 0.513 when estimated by Shannon diversity index. Genetic distance ranged from 0.03 to 0.43, with a mean genetic distance of 0.23. The unweighted pair group method with arithmetic averages (UPGMA) cluster analysis for the 22 accessions divided the material in four groups. The dendrogram revealed a clear division among the sesame accessions based on their geographical region. Interestingly, some geographically distant accessions clustered in the same group, which might indicate the human factor involved in the spreading of sesame varieties. The high level of polymorphism shown suggests that RAPD techniques can also be useful for the selection of parents in sesame (Sesamum indicum L.) breeding program and for cultivar differentiation.  相似文献   

8.
Myrtus communis L. (Myrtaceae), in Tunisia, is closely associated with Quercus suber L. forest which stretched continuously from the North to parts of Cap Bon and Tunisian Dorsal. The destruction of the primary oak forests associated to an over-exploitation of Myrtus for its essential oil quality had led to discontinuous populations exhibiting various levels of degradation. Using starch gel electrophoresis, we analyzed the polymorphism of nine isozymes in order to assess genetic diversity and structuring of 17 natural populations prospected in the three geographical regions and coinciding with subhumid, humid inferior and semi-arid superior bioclimates. The analysis of the level and the distribution of the genetic diversity in this species might help in its conservation. Out of the 18 loci detected for all populations and isozymes analyzed, 12 loci were polymorphic. Allelic frequencies differed according to populations and particular alleles characterized ecological groups. A high level of genetic variation within populations was observed. The mean number of alleles per polymorphic locus was Ap = 1.67, the percentage of polymorphic loci was P = 60.3% and the observed (Ho) and the expected (He) heterozygosities were respectively 0.144 and 0.215. Populations belonging to subhumid (Cap Bon) and semi-arid superior (Tunisian Dorsal) climates, located in degraded sites exhibited the highest level of inbreeding (0.425 < FIS < 0.450). A high level of differentiation (FST = 0.396) and a low gene flow (Nm = 0.337) among populations, as a result of habitat intermediate destruction, were revealed. The differentiation of populations within the same bioclimate (or geographic) group was substantial and relatively higher for semi-arid superior populations (FST = 0.262), which were more distant. The three ecological groups exhibited a high level of structuring (FST = 0.401). These differentiations might be due to geographic distances and to the variations of ecological factors between sites, including human activities and environmental factors. Nei’s (1972) genetic distances calculated between pairs of populations were globally low (0.006 < D < 0.367) with a mean of 0.15. They indicate a high level of similarity between populations. UPGMA clustering, established through Nei’s genetic distances, showed three population aggregates according to their geographic/bioclimatic appartenances. The high differentiation between populations and the low level of their genetic divergence indicated their recent isolation under anthropic pressures. The species conservation (in situ or ex situ) strategies should take into account the genetic diversity level within populations and its variation between geographic groups.  相似文献   

9.
Genetic diversity and relationships within and among nine species of Coffea, one species of Psilanthus and the Piatã hybrid from the Coffee Germplasm Collection of Instituto Agronômico de Campinas (IAC), Brazil were assessed using RAPD markers. Genetic diversity and relationships were evaluated by proportion of polymorphic loci (P), Shannon’s genetic index (H′ and GST) and clustering analysis. The overall RAPD variation among all accessions was mostly partitioned between rather than within species. However, C. canephora and C. liberica showed a high genetic diversity within the species (\({\underline{\hbox{H}'}} \) sp = 0.414 and \({\underline{\hbox{H}'}} \) sp = 0.380, respectively) and this was highly structured (high \({\underline{\hbox{G}'}} \) ST). Genetic diversity from C. congensis and C. arabica was also structured, but with lower levels of genetic diversity (\({\underline{\hbox{H}'}} \) sp = 0.218 and \({\underline{\hbox{H}'}} \) sp = 0.126, respectively). The results were consistent with agronomic and molecular studies and demonstrated that the IAC Coffea Collection is representative of the phylogenetic structure observed in the genera. This study devises sampling strategies for coffee germplasm collections and provides genetic diversity parameters for future comparisons among them.  相似文献   

10.
Using the 8 specific primer pairs based on the conserved motifs of plant resistance genes, the plant disease resistance gene analog polymorphisms (RGAPs) in 15 wild emmer wheat (Triticum dicoccoides) populations from Israel had been detected. High genetic variations at the RGAP loci were observed in T. dicoccoides populations. A total of 254 discernible bands were obtained among 115 accessions, and 192 bands (75.6%) were polymorphic. Each genotype had a unique banding profile, and the genetic similarity coefficient ranged from 0.094 to 0.862. In T. dicoccoides, the proportion of polymorphic loci (P), the genetic diversity (He) and Shannon’s information index were 0.756, 0.362 and 0.541, respectively. The proportion of polymorphic loci (P) per population averaged 0.732 (range: 0.515–0.932); genetic diversity (He) averaged 0.271 (range: 0.212–0.338); and Shannon’s information index averaged 0.404 (range: 0.310–0.493). The coefficients of genetic distance (D) among populations averaged 0.107 (range: 0.043–0.178), and the results of Mantel test (r = 0.168, P = 0.091) showed that the estimates of genetic distance were geographically independent. Neighbor-joining cluster analysis suggested that the genetic relationships of T. dicoccoides populations were associated with their ecogeographic distribution. The hierarchical analysis of molecular variance (AMOVA) and the coefficient of gene differentiation (G ST ) values revealed that most of the variations were presented within populations, although significant differences among populations and regions were also detected. The values of P and Shannon’s information index were negatively correlated with the two factors: Tdd (day–night temperature difference) and Ev (mean annual evaporation), whereas they were positively correlated with one water factor: Rn (mean annual rainfall). The correlation matrix between He in the RGAPs and geographic variables contained 20 significant (P < 0.05) correlations. The present study established that T. dicoccoides in Israel had a considerable amount of genetic variations at RGAP loci at least partly correlated with ecological factors.  相似文献   

11.
Levels of genetic variation and genetic structure of 15 wild populations and three domesticated populations of Capsicum annuum were studied by RAPD markers. A total of 166 bands (all of them polymorphic) and 126 bands (125 of them polymorphic) were amplified in wild and domesticated populations, respectively. Mean percentage of polymorphism was 34.2% in wild populations and 34.7% in domesticated populations. Mean and total genetic diversity were 0.069 and 0.165 for wild populations and 0.081 and 0.131 for domesticated populations. Parameters of genetic diversity estimated from 54 bands with frequencies ≥1 − (3/n) (n = sample size) showed that 56.7% of the total variation was within and 43.3% among wild populations, whereas 67.8% of the variation was within and 32.2% among domesticated populations. AMOVA indicated that total genetic diversity was equally distributed within (48.9 and 50.0%) and among (50.0 and 51.1%) populations in both wild and domesticated samples. Wild and domesticated populations were clearly resolved in a UPGMA dendrogram constructed from Jaccard’s distances (average GD = 0.197), as well as by AMOVA (17.2% of variance among populations types, p = 0.001) and by multidimensional scaling analysis. Such differentiation can be associated with domestication as well as different origin of gene pools of the wild (Northwestern Mexico) and cultivated (more probably Central Mexico) samples analyzed. The considerable genetic distances among cultivars (average GD = 0.254) as well as the high number of diagnostic bands per cultivar (33 out of 126 bands), suggest that genetic changes associated with domestication could have resulted from artificial selection intervening in different directions, but the inclusion of more domesticated samples might clarify the nature of distinctions detected here.  相似文献   

12.
The last two centuries witnessed the human-caused fragmentation of Tunisian Ceratonia siliqua L. (Caesalpinoideae) populations which were often represented by scattered individuals. Seventeen populations growing in four bioclimatic zones: sub-humid, upper semi-arid, mean semi-arid and lower semi-arid zones, were sampled for allozyme diversity to assess their genetic diversity and structuration using eight isozymes revealed by starch gel electrophoresis. The species showed high diversity within populations. The average number of alleles per polymorphic locus was 1.98, the percentage of polymorphic loci was 83.4% and the mean observed heterozygosity (Ho) and expected heterozygosity (He) under Hardy–Weinberg equilibrium were respectively 0.247 and 0.316. A substantial level of inbreeding within populations induced by Wahlund effect, was observed (FIS = 0.231). High diversity resulted from the great number of genotypes in the ancestral population before fragmentation, favoured by the outbreeding of the species. High differentiation and low gene flow were detected among populations (FST = 0.200) and among pairs of ecological zones (0.113< FST <0.198). However, the differentiation coefficient of the four zones was low (FST = 0.085) and similar to the average FST for forest trees. Population structuration depends on geographic distance between sites rather than bioclimate, indicating that structuration has occurred slowly and that climatic conditions have had little effect. Nei's genetic distances (D) between populations were low and ranged from 0.004 to 0.201. Mean D value for all population was 0.087. The UPGMA clustering established for all populations through Nei's genetic distances did not clearly show that, for the majority of populations, grouping had resulted from ecological factors or geographic location. The substantial differentiation and the high genetic similarities between populations indicate that populations have been recently isolated as a result of anthropic pressure. In-situ conservation strategies must first focus on populations with a high level of genetic diversity and rare alleles. Appropriate conservation action should take account of bioclimatic zones. Ex-situ preservation should be based on a maximum number of individuals collected within populations in each ecological group and their propagation in different bioclimates by means of cuttings.  相似文献   

13.
Anchote (Coccinia abyssinica) is plant endemic in Ethiopia with a high calcium content grown for its edible tuberous roots. In spite of its importance as food security crop, there is no information available on molecular genetic diversity of this crop. Therefore, the aim of this study was to assess genetic diversity within and among 12 populations of anchote using ISSR markers. Using nine ISSR primers, a total of 87 scorable bands was generated of which 74 were polymorphic. Within population diversity based on polymorphic bands ranged from 13.8 to 43.53 % with a mean of 33.05 %, Nei’s genetic diversity of 0.04–0.156 with a mean of 0.12, Shannon information index of 0.07–0.23 with a mean of 0.175 and analysis of molecular variation (AMOVA) of 51.4 % were detected. With all diversity parameters, the highest diversity was obtained from Gimbi, Bedele and Ale populations, whilst the lowest was from Manna. AMOVA showed a 48.56 % between populations variability and significantly lower than that of within population variation. Population differentiation with FST was 48.56 %. From Jaccard’s pairwise similarity coefficient, Decha and Nedjo were most related populations exhibiting 0.76 similarity and Manna and Nedjo were the most distantly related populations with similarity of 0.52. The only pentanucliotide primer used in the study, Primer 880 (GGAGA)3, showed a unique band in some individuals that appeared to be associated with morphological quantitative traits (lowest seed number, high protein content, largest fruit size and smallest vine length). Illubabor and Gimbi populations exhibited highest genetic diversity so that the populations should be considered as the primary sites in designing conservation areas for this crop.  相似文献   

14.
Orychophragmus violaceus, a ground covering plant that is widely distributed in China. It has both high economical value in food, forage, health care and ornamental value in gardening. In this study, the genetic diversity of 245 individuals from nine populations in China were investigated using the inter-simple sequence repeat markers. Of the 100 primers screened, eight were highly polymorphic. Using these primers, 162 discernible DNA fragments were generated with 150 (92.59%) being polymorphic, indicating a pronounced genetic variation at the species level. Also, there were high levels of polymorphism at the population level with the percentage of polymorphic bands ranging from 85.74 to 90.06%. Analysis of molecular variance showed that the genetic variation within populations was 80.80% and the variance among populations was 16.43%. The Nei’s G ST (0.1643) and gene flow among populations (Nm = 2.5760) revealed large gene exchanges among populations. O. violaceus belongs to out-crossing plants. It is capable of reproducing by self-sowing, thus can influence population genetic structure. The pronounced genetic variation within populations tells us that O. violaceus is a proper plant for genetic research and that there is great potential of breeding this species for gardening.  相似文献   

15.
Random amplified polymorphic DNA markers were used to study sub-structure and genetic differentiation amongst 31 populations (seven cultivated and 24 wild populations) belonging to 14 Asiatic Vigna species. Ten pre-selected RAPD primers generated 152 polymorphic amplification products. Estimates of polymorphism indices were higher for the wild taxa in comparison to the cultivated forms. FST values between populations ranged from 0.111 to 0.801 and Nei’s genetic diversity values between and within species varied from 0.26 to 0.70 and 0.04 to 0.56 respectively. The high FST and FCT values indicated strong subdivision of populations and high differentiation among species. Analysis of molecular variance was performed by grouping the populations conforming to specific species. AMOVA was also performed separately to better resolve the differentiation of species within mungo–radiata complex. Molecular phylogenetic relationships amongst the species of radiata–mungo complex; namely, black gram (V. mungo (L.) Hepper), green gram (V. radiata (L.) Wilczek), V. radiata var. sublobata, V. radiata var. setulosa, V. mungo var. silvestris and V. hainiana, were studied through cluster analyses. Two distinct groups were recognized within the complex, with population samples of V. hainiana forming one cluster. Further, V. hainiana appeared to be equidistant to both V. radiata and V. mungo.  相似文献   

16.
Genetic diversity of 69 populations of Agropyron cristatum (L.) Gaertn. originated from various regions of northern China was analyzed using 29 polymorphic microsatellite primers that were mapped on the wheat genome. The number of polymorphic bands ranged from 2 (Xgwm285, Xgwm43, Xgwm291, and Xgwm257) to 27 (Xgwm314) with an average of 10.480. The highest genetic diversity value was detected in the populations from Xinjiang Province (0.735), and the lowest was observed in populations from Qinghai Province (0.553). The proportion of diversity among and within regions was 16.9% and 83.1% of the total variation, respectively. According to the dendrogram generated by UPGMA cluster analysis based on Nei’s genetic distance matrix, all the populations of A. cristatum were distinctly clarified. At the Nei’s distance of 0.62, the populations were divided into 6 groups. The phenogram indicated that populations from similar ecogeographical regions were clustered together. The principal coordinate analysis showed that the populations from Inner Mongolia were more closely related to each other, and were less variable than the populations from Xinjiang Province.  相似文献   

17.
To investigate the genetic diversity of Linum usitatissimumL. in Sweden, 18 accessions, including 13 cultivars and five landraces, were analysed. This study was based on genetic variation in three enzyme systems (i.e., PGD, GPI and MDH) by using horizontal starch gel electrophoresis. The total genetic diversity of the studied flax material was very high (H T= 0.62). Even though the highest genetic diversity lies within the accessions (G ST= 0.07), a clear differentiation between fibre and oil flax was found with respect to three polymorphic loci (Pgd-1, Gpi-2 and Mdh-1). A phenogram, based on Nei's genetic distances between the accessions studied, showed five clearly defined groups but with low variation within the groups. The unexpected high genetic diversity found within accessions in the studied flax material may indicate that flax is more outbreeding than earlier believed.  相似文献   

18.
In this study, the genetic diversity and differentiation of 10 natural Prunus pseudocerasus Lindl. populations were investigated using inter-simple sequence repeat (ISSR) markers. Totally, 18 selected primers generated 150 loci, with an average of 8.33 bands per primer. The results showed that the percentage of polymorphic bands (PPB) was pretty low at the population level (PPB = 1.13–32%), but relatively high at the species level (PPB = 84%). Besides, a high level of genetic differentiation among populations was detected based on the gene differentiation coefficient (G ST = 0.7118) and the hierarchical analysis of molecular variance (AMOVA) (Φ ST = 64.53%, P < 0.001), in line with the low inter-population gene flow (N m = 0.2025). Moreover, Mantel test revealed a significant correlation between genetic and geographic distances among the populations (r = 0.5272, P < 0.005). The high level of intraspecific genetic diversity was probably related with its life history traits, while its small population size and the resultant high levels of genetic drift and inbreeding might explain the low genetic diversity within populations. The relatively high inter-population genetic differentiation was largely attributed to its small population size, habitat fragmentation, the mode of pollen and seed dispersal, and geographic isolation. Based on the present study, conservation strategies were proposed to preserve this valuable natural germplasm resource.  相似文献   

19.
The genetic relatedness among 51 accessions, 14 species of the genus Zingiber and genetic variability of a clonally propagated species, Zingiber montanum (Koenig) Link ex Dietr., from Thailand were studied using random amplified polymorphic DNA (RAPD) profiles. Twenty-nine random primers gave reproducible amplification banding patterns of 607 polymorphic bands out of 611 scored bands accounting for 99.40% polymorphism across the genotypes. Jaccard’s coefficient of similarity varied from 0.119 to 0.970, indicative of distant genetic relatedness among the genotype studied. UPGMA clustering indicated eight distinct clusters of Zingiber, with a high cophenetic correlation (r = 1.00) value. Genetic variability in Z. montanum was exhibited by the collections from six regions of Thailand. High molecular variance (87%) within collection regions of Z. montanum accessions was displayed by AMOVA and also explained the significant divergence among the sample from six collection regions. Our results indicate that RAPD technique is useful for detecting the genetic relatedness within and among species of Zingiber and that high diversity exists in the clonally propagated species, Z. montanum.  相似文献   

20.
Genetic variation based on isozyme and RAPD analyses was investigated in 47 and 34 accessions respectively of Vigna vexillata from different geographical origins and belonging to three botanical varieties. A total of 9 enzyme systems were studied, accounting for 14 putative loci, 8 of which were polymorphic. The analysis of genetic diversity revealed a low level of within accession variation (HS=0.013), while between accession diversity (DST) was 0.120. Coefficient of gene differentiation (GST) was 0.905, indicating that most variation was among accessions. Nei's genetic distances were calculated on the basis of allelic frequencies and a UPGMA dendrogram was constructed. Twenty arbitrary 10-mer oligonucleotides were used in RAPD analysis. Amplification profiles disclosed a higher level of polymorphism than isozymes. Based on amplification patterns, the similarity index of Jaccard was calculated and a dendrogram constructed on the basis of the similarity matrix. The final clustering based on RAPD data was similar to the one obtained using isozyme allelic frequencies. The classification in botanical varieties did not reflect the allelic constitution of the different samples. On the other hand, referring to geographical origin, most accessions from Africa and from Latin America were distributed respectively in two distinct clusters in the dendrogram. This grouping might also reflect the differences observed in the germination behaviour of V. vexillata from the two continents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号