首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
肥液浓度对单膜孔入渗NO-3-N运移特性影响的室内试验研究   总被引:5,自引:0,他引:5  
该文通过室内入渗试验,研究了不同浓度的单膜孔肥液入渗NO-3-N的分布特性。研究表明:不同浓度的膜孔肥液入渗土壤NO-3-N浓度的湿润锋运移距离与土壤水分运动的湿润锋一致;肥液浓度越大,相同入渗时间的NO-3-N浓度锋运移距离越大,土壤剖面NO-3-N浓度最大值越大,相同深度处土壤NO-3-N浓度也越大。肥液入渗土壤NO-3-N浓度分布特征与湿润体深度符合分段函数模型。供水入渗过程中,NO-3-N浓度锋运移距离和浓度最大值均随时间的延长而增大;再分布过程中,NO-3-N浓度锋运移距离继续增大,而NO-3-N浓度最大值逐渐减小。  相似文献   

2.
零排放技术是循环流水水产养殖实现可持续发展的关键之一,该文以机械—细菌—草综合水处理系统为基础进行零排放循环流水水产养殖,生产系统的两个养殖池(各1.325 m3水)共养殖淡水白鲳(Colossoma brachypomum)62尾(平均体重208.3±28.6 g,养殖密度4.87 kg/m3)。经过25 d的运行,养殖池NO-3-N、TAN(总氨氮)、TN(总氮)、TP(总磷)、COD(化学需氧量)、pH等水质指标基本维持稳定(p<0.05),NO-2-N和SS(悬浮物)显著下降。在处理系统中,机械过滤器和生物滤器的大多数水质指标显著优于沉淀器沉淀区水质(p<0.05)。沉淀器沉淀区的高浓度污液定期(每天34.3 L)输送到植物滤器,间隔循环灌溉2.55 m2 NFT培高羊茅(Festuca arundinacea Schreb.),并定期(每4 d一次)回流重复利用。牧草的净化使水质发生了显著的改善(p<0.01),NO-3-N、NO-2-N、SS的净化率超过90%,TN、TP的净化率超过85%,TAN和COD的净化率为45.2%和71.6%,此外,回流水的EC和pH显著高于污液,每次回流67.5±6.0L。淡水白鲳日增重4.55 g,饲料系数1.610。  相似文献   

3.
3 种挺水植物吸收水体NH4+、NO3-、H2PO4- 的动力学特征比较   总被引:3,自引:1,他引:2  
本文用动力学试验研究了具有景观价值的3 种挺水植物—— 水生美人蕉(Canna generalis)、细叶莎草(Cyperus papyrus)、紫芋(Colocasia tonoimo)对H2PO4-、NH4+、NO3- 的吸收特征及差异。试验结果表明: 3 种挺水植物吸收H2PO4- 时, 美人蕉的吸收速率最快, 且在较低离子浓度条件下也可以吸收该离子, 说明其具有嗜磷特性, 能够适应广范围浓度H2PO4- 环境; 吸收NO3- 时, 细叶莎草的速率最快, 但对低浓度NO3- 环境的适应能力较差, 美人蕉吸收NO3- 的特性与细叶莎草刚好相反; 吸收NH4+ 时, 细叶莎草的吸收速率最快, 且在低浓度NH4+ 环境下仍能吸收该离子, 而美人蕉的吸收速率最慢, 但能在低浓度NH4+ 环境下吸收该离子。说明不同植物对养分的吸收特性存在较大差异, 各自的污染水体修复适用范围也不同。美人蕉可用于各种浓度H2PO4- 污染的水体修复; 而NO3- 污染严重的水体最适宜用细叶莎草作先锋植物, 修复到一定程度后再种植美人蕉来维持水质; 细叶莎草在各种浓度NH4+ 污染的水体中均适用, NH4+ 污染较轻的水体也可用美人蕉修复。  相似文献   

4.
升高CO2浓度能够促进作物的光合作用,提高作物的生物量和产量,但关于CO2与NH+4/NO-3比及其交互作用对作物影响的研究较少,为探索番茄幼苗生长发育对CO2浓度升高的响应是否对NH+4/NO-3配比有较强的依赖关系,本试验在营养液栽培条件下,以番茄(Lycopersicun esculentum Mill)为试材,研究正常大气CO2浓度(360 μL/L)和倍增CO2浓度(720 μL/L)与不同NH+4/NO-3配比的交互作用对番茄幼苗生长的影响。结果表明:CO2浓度升高提高了低NH+4/NO-3比例处理中番茄叶片的光合速率和水分利用率,提高幅度随NH+4/NO-3比例的降低而增强,光合速率增强最大达55%。在同一CO2浓度处理下净光合速率与水分利用率均随NH+4/NO-3比例的增加而显著降低。这说明CO2浓度升高对番茄幼苗生长发育的促进作用随NH+4/NO-3比例的降低而提高,但并没有减弱全NH+4-N处理中番茄幼苗的受毒害作用。综上所述,CO2浓度升高能提高植物生产的节水能力和水分生产力;水培条件下,NO-3-N是最适合番茄幼苗生长发育的氮源,其它NH+4/NO-3比例对番茄幼苗的生长发育有一定的抑制作用,仅以NH+4-N作氮源则番茄幼苗很难生长。  相似文献   

5.
单膜孔点源肥液入渗水氮分布特性试验研究   总被引:2,自引:1,他引:2  
该文通过室内试验,研究了膜孔灌肥液单点源自由入渗湿润体内水分和NO3-N浓度的分布特性,提出了膜孔肥液自由入渗湿润体内水分和NO3-N浓度分布的数学模型。研究结果表明:水分和NO3-N浓度分布模型计算精度较高,并符合点源湿润体内土壤含水率和NO3-N的分布规律;根据湿润体内水分和NO3-N浓度分布模型,推求得到了湿润体中土壤含水率、NO3-N浓度和湿润半径三者之间的关系。以上成果为进一步研究膜孔肥液入渗的影响因素和灌水技术提供了理论基础。  相似文献   

6.
沈壬水 《土壤》1974,6(4):164-168
众所周知,对于富含NO3--N、NO2--N的土壤、肥料、污水以及其他样品,用K氏法测得的全氮值不能反映出NO3--N、NO2--N的含量,因此不能代表总氮量。  相似文献   

7.
宁夏引黄灌区稻田氮素浓度变化与迁移特征   总被引:3,自引:0,他引:3  
过量施氮与不合理灌水是农田面源污染加剧的主要原因。为了寻求较优的水氮管理模式以促进农业生产和减少农田退水对黄河水体的污染, 在宁夏引黄灌区典型稻田中开展了不同水氮条件下稻田氮素迁移转化规律研究。结果表明: 不同水氮条件下稻田田面水NH4+-N 与NO3--N 浓度伴随施肥出现明显峰值, NO3--N 峰值出现时间较NH4+-N 晚, 且变化较平缓。3 次追肥时期和整个生育期田面水NH4+-N 平均浓度与施氮量和灌水量都呈显著相关, 田面水NO3--N 平均浓度与施氮量呈显著正相关, 与灌水量相关性不显著。稻田30 cm与60 cm 深度的直渗水NH4+-N 浓度受施肥影响较大, 与田面水NH4+-N 浓度变化规律相似, 90 cm 处直渗水NH4+-N 浓度峰值出现较为滞后, 且浓度较上层土体低, 120 cm 处直渗水NH4+-N 浓度大体呈现持续上升趋势,整个生育期直渗水NH4+-N 平均浓度与施氮量呈显著相关, 仅30 cm 处NH4+-N 平均浓度与灌水量呈负相关, 其他土层深度不显著。30 cm 与60 cm 直渗水NO3--N 浓度在首次灌水后急剧下降, 在施肥后有较小幅度上升, 90 cm 与120 cm 直渗水NO3--N 浓度下降缓慢, 仅30 cm 处NO3--N 平均浓度与施肥量显著正相关。总的结果表明减少施肥或灌水均可达到减少农田氮素淋失的目的。  相似文献   

8.
通过连续7 年的定位试验, 研究了日光温室生产中不同施肥模式(常规模式、无公害模式和有机模式)对土壤NO3--N 时空分布及累积的影响。结果表明, 随着种植年限的增加, 3 种施肥模式土壤剖面各层次NO3--N含量均呈上升趋势, 年增加量顺序为常规施肥模式>无公害施肥模式>有机施肥模式。受氮素输入量(施肥)的影响, NO3--N 主要分布在0~40 cm 土层, 0~60 cm 土层NO3--N 含量总体呈作物生长前期低、中期高、后期低的趋势; 与上层土壤相比, 100 cm 以下土层NO3--N 含量有不同程度的增加。0~200 cm 土体NO3--N 平均累积量有机施肥模式比无公害施肥模式低33.8%, 比常规施肥模式低45.9%; 无公害施肥模式比常规施肥模式低18.3%。3 种施肥模式下, NO3--N 都有向2 m 以下土体淋洗的趋势。与施用化学肥料相比, 施用有机肥能明显降低土壤剖面NO3--N 含量, 控制其累积峰的下移, 但不合理施用有机肥也会产生NO3--N 淋洗而污染环境。  相似文献   

9.
不同施肥条件下农田硝态氮迁移的试验研究   总被引:22,自引:5,他引:22  
NO-3-N的淋失是旱地农田氮素损失的重要途径之一,也是引起地下水污染的一个主要原因。在黄土高原地区,夏玉米生长正逢雨季,是NO-3-N淋失的主要时期。该研究基于阻水层理论和黄土高原地区传统的垄作习惯,在手工模拟机具成垄压实施肥的基础上研究了该施肥法与传统的平地施肥、垄沟施肥(成垄不压实)条件下土壤NO-3-N的迁移动态,结果表明,在供水量相同条件下,由于平地和垄沟条件下水分分布的差异,导致平地土壤中的NO-3-N较垄沟耕作易于迁移。在生育前期,由于作物根系对NO-3-N的吸收和拦截,成垄压实与成垄不压实施肥对阻止NO-3-N随水下移差异不大;生育后期,当作物需肥量减小时,成垄压实施肥能够阻止NO-3-N向深层土壤迁移累积。玉米收获后,3种施肥方式下土壤NO-3-N迁移深度为平地(>60 cm)>垄沟施肥(>45 cm)>成垄压实施肥(<35 cm)。  相似文献   

10.
硫自养反硝化对含盐水体脱氮及其动力学模型   总被引:5,自引:0,他引:5  
以闭合循环养殖系统去除硝酸盐为目的,研究了填料床硫自养反硝化反应器对含盐水体的NO3--N去除效果及动力学特性。结果表明,反应器对NO3--N浓度为22.5~368 mg/L的含盐水体具有良好的反硝化性能。(29±1)℃条件下,进水NO3--N负荷0.052~1.088 kg/(m3·d)为最适进水负荷范围,NO3--N去除率大于95%,出水NO2--N浓度小于1 mg/L。进水NO3--N负荷2.171 kg/(m3·d)时,达到最大NO3--N体积负荷去除率,为1.65 kg/(m3·d)。动力学研究结果表明反应器填料表面生物膜对污染物NO3--N的去除呈半级反应速率关系,反应器单位体积半级动力学常数K1/2v为7.84~ 8.5 mg1/2/(L1/2·h)。建立的动力学模型采用该值的计算结果可以预测出水NO3--N的浓度,预测值与实际值采用统计软件SAS 8.0做方差分析表明,Pr>F值分别为0.9732和 0.8845,模型预测值与实际值无显著性差异。  相似文献   

11.
鲍放养密度对循环水养殖水质的影响及生物滤器净化效果   总被引:1,自引:1,他引:0  
该文以皱纹盘鲍(Haliotis discus hannai Ino)循环水养殖的排放水体为研究对象,以提高水循环系统综合利用率为目标,比较了鲍(壳长为(38.34±1.63)mm,体质量(7.97±0.42)g)在高(500个/m~2)、中(300个/m~2)、低(100个/m~2)密度下养殖水环境的变化特点,并综合评价了移动床曝气生物滤器的水处理效果。研究表明:放养密度对水体中总氨氮(TAN)、亚硝酸盐氮(NO_2~–-N)、总氮(TN)、总磷(TP)、磷酸盐(PO_4~(3–)-P)浓度和可培养异养细菌总数均有显著影响(P0.05),依次表现为高密度组中等密度组低密度组。中、高密度组硝酸盐氮(NO_3~–-N)、化学需氧量(COD)浓度和弧菌总数并没有显著差异(P0.05),但均显著高于低密度组(P0.05)。现行工况下(水循环率、温度、水力负荷等),生物滤器对TAN、NO_2~–-N、NO_3~–-N、TN、PO_4~(3–)-P、TP、COD的平均去除率分别为16.40%、15.81%、2.93%、12.22%、2.91%、6.48%、9.47%。该生物滤器对养殖排放水中能够对鲍产生明显毒害作用的TAN、NO_2~–-N处理效果较好,使其均维持在安全的浓度范围内,满足实际生产需求。但对NO_3~–-N、TN的脱除以及低浓度PO_4~(3–)-P和COD的处理效率相对较低。因此,综合经济和生态效益等多方面因素,在该试验的多层、立体循环水养殖系统内,将皱纹盘鲍的密度设定为500个/m~2时是较为合适的。  相似文献   

12.
抽屉式生物滤器净化效果   总被引:5,自引:2,他引:3  
以浸没式生物滤器为对照,研究了抽屉式生物滤器对循环养殖水的净化效果和不同氧含量对NH4-N、NO2-N、化学需氧量(COD)、异养菌、弧菌去除率的影响。结果表明:抽屉式生物滤器单位体积对NH4-N、NO2-N、COD、异养菌、弧菌的去除率均显著高于浸没式生物滤器,前者分别是后者的2.68、7.37、3.33、24.87、46.67倍;高溶氧对生物滤器NH4-N、NO2-N、COD、异养菌的去除率显著高于低溶氧条件下的去除率,高溶氧可维持养殖系统较低的NH4-N、NO2-N、COD、弧菌数量。在抽屉式循环系统预计最大养殖密度下,养鱼池水质良好,NH4-N质量浓度<0.2 mg/L,NO2-N质量浓度<0.4 mg/L,鱼成活率高于98%。该试验表明:抽屉式生物滤器是一种易冲洗、占地面积小、净化效率高的生物滤器;高溶氧能提高鱼类生长率、生物滤器净化率和抑制弧菌的生长。  相似文献   

13.
为了提升氮素利用效率和生产能力,采用室内培养试验方法,研究不同土壤含水率(田间持水量的30%、60%、100%及175%)条件下增氧水处理对土壤硝化作用的影响,并分别利用硝化动力学方程和硝化作用强度定量评价NH4+-N和NO3--N含量的动态变化特征,比较NH4+-N初始消耗速率、NH4+-N最大消耗速率、达到最大消耗速率所用时间以及NO3--N平均生成速率的变化。结果表明:粉质砂壤土氮素转化以硝化作用为主;随着含水率的升高,土壤硝化作用强度呈现先增加后降低的趋势,并在田间持水量条件下达到最大。在不同含水率条件下增氧水处理对土壤硝化作用的影响具有显著差异(P<0.05)。与常规水处理相比,在田间持水量的60%条件下,增氧水处理对土壤硝化过程的促进作用更为明显,NH4+-N最大消耗速率提高了8.9%,最大消耗速率出现时间提前,NO3--N平均生成速率增加,硝化作用更强;而在田间持水量条件下,增氧水处理的土壤NH4+-N消耗没有显著差异,仅NO3--N平均生成速率增加;田间持水量的175%条件下,增氧水处理土壤NH4+-N最大消耗速率降低了21.5%,最大消耗速率出现时间滞后,但NO3--N平均生成速率没有显著变化。该研究提出了增氧水处理促进氮素转化作用的最适水分条件,为发展农业高效水肥利用技术提供了理论依据。  相似文献   

14.
控制排水条件下淹水稻田田面及地下水氮浓度变化   总被引:8,自引:5,他引:3  
为了在减少农田面源污染,提高氮肥的利用效率。该文通过蒸渗测坑进行淹水稻田不同渗漏强度控制试验,研究了稻田施肥后NH4+-N、NO3--N浓度变化及各生育阶段不同渗漏强度稻田水NH4+-N、NO3--N浓度变化。结果表明:施分蘖肥后,地表水及地下水NH4+-N浓度急剧升高而后回落,均在施肥后第5天出现峰值,分别为17.75和10.34?mg/L;地表水NO3--N浓度短暂升高后便回落,在施肥后第2天出现峰值,但地下水NO3--N浓度急剧上升而后回落,在施肥后第5天出现峰值(3.25?mg/L),6?d上升了249.4%。稻田补水会扰动土壤,促进土壤表层吸附的NH4+-N的释放及硝化进程,使地表水中NH4+-N和NO3--N浓度升高,随着淹水时间的延长,NH4+-N和NO3--N浓度会随之降低。不同渗漏强度(2和4?mm/d)对稻田水氮素变化有一定影响,但各处理之间差异不显著。因此,施肥后应该避免排水,应避免雨后和灌水后立即进行地表排水。  相似文献   

15.
生物絮凝反应器对中试循环水养殖系统中污水的处理效果   总被引:2,自引:0,他引:2  
试验设计了一种生物絮凝反应器,用作中试规模循环水养殖系统(recirculating aquaculture system,RAS)的唯一水处理装置,研究其在不同水力停留时间(hydraulic retention time,HRT,12、6、4.5、3 h)条件下的运行效果。试验结果表明,反应器可耐受最小HRT为4.5 h,当HRT降低至3 h,反应器发生不可逆的洗出现象而使试验不能继续进行。反应器絮体沉降性能一般,随着HRT的减小(12、6和4.5 h HRT),絮体体积指数(SVI-30)逐渐降低,但是始终大于150 m L/g,为丝状菌膨胀,主要的丝状细菌由TM7 genera incertae sedis逐渐演变为Haliscomenobacter和Meganema菌属,相对丰度逐渐降低。12 h HRT反应器污染物去除率最高。反应器亚硝氮(NO_2~--N)、硝氮(NO_3~--N)在4.5 h HRT出水质量浓度最低,分别为(0.02±0.01)、(1.70±0.06)mg/L;氨氮(total ammonium nitrogen,TAN)、总氮(total nitrogen,TN)、悬浮颗粒物(suspended solids,SS)出水质量浓度在12 h HRT时最低,分别为(0.48±0.05)、(4.47±1.00)、(14.20±8.14)mg/L,同时未造成有机污染。4.5 h HRT对RAS养殖区污染物的控制效果最佳,TAN、NO_2~--N、NO_3~--N、SS质量浓度分别被控制在0.76、0.10、2.95、60.00 mg/L以下。反应器在不同HRT条件下均以异养细菌为主,主要通过同化作用去除TAN,好氧反硝化细菌和厌氧反硝化细菌同时是反应器的优势菌属。反应器可获得较长的稳定运行状态和良好的水处理效果,具有用作RAS核心水处理装置的可行性,该研究可为其在RAS的进一步研究和应用提供参考。  相似文献   

16.
厌氧池-潜流人工湿地处理低浓度农村生活污水的研究   总被引:4,自引:0,他引:4  
杨文婷  王德建  纪荣平 《土壤》2010,42(3):485-491
研究了厌氧池-潜流人工湿地系统(anaerobic tank-subsurface flow constructed wetland systerm,AT-SFCW)对江苏省常熟市农村生活污水的处理,探讨了该系统对生活污水中主要污染物的去除效果,并将厌氧池部分与湿地部分的处理效果进行了比较。结果表明,该系统对化学需氧量(CODcr)、总氮(TN)、总磷(TP)、氨氮(NH3-N)、硝氮(NO3--N)的总平均去除率分别达到44.3%、42.7%、73.9%、45.6%、37.5%,出水平均浓度分别为16.9、5.2、0.1、3.3、1.4 mg/L,达到国家城镇污水处理厂污染物排放一级A类标准(GB18918-2002)。系统中厌氧池部分对CODcr、TN、NO3--N的去除率分别达到17.4%、6.7%、57.7%。TP经厌氧池后有较明显的上升,升高率达到15.3%。系统中湿地部分对TP、NH3-N、TN、CODcr的去除起主要作用,去除率分别达到89.2%、44.5%、36.0%、26.9%。该系统对农村生活污水的处理效果较好,建设运行成本低廉,维护管理方便,适合农村地区生活污水处理的运用与推广。  相似文献   

17.
草酸青霉菌HB1溶磷能力及作用机制   总被引:2,自引:0,他引:2  
一些功能微生物具有溶磷能力且同一菌株对不同难溶性磷酸盐的溶解能力存在差异。该研究以草酸青霉菌HB1为研究对象,通过固体平板培养试验、摇瓶培养试验和土壤培养试验系统研究了不同磷源(磷酸钙、磷矿粉、磷酸铁、磷酸铝)与氮源(铵态氮、硝态氮)供应下HB1溶磷能力及其作用机制,并验证了其在高、低不同磷水平土壤中的溶磷能力。结果表明,接种HB1的不同磷源培养基上均有溶磷圈出现,根据溶磷圈直径/菌落直径初步确定HB1溶解磷酸钙的能力较强;摇瓶培养试验表明供试磷源为磷酸钙、磷酸铁时HB1发酵液中有效磷含量为884、265 mg/L(铵态氮),或945、206 mg/L(硝态氮),其溶磷能力不受氮源形态影响;磷矿粉为磷源时,HB1发酵液中有效磷含量可达199 mg/L(供应铵态氮),为硝态氮供应的7.14倍;而磷酸铝为磷源时,HB1发酵液中有效磷含量为120 mg/L(供应硝态氮),为铵态氮供应的3.29倍;此外,供应铵态氮条件下,HB1对难溶性磷酸盐的溶解能力与介质中pH值呈显著的负相关关系。HB1接种于不同磷水平的土壤中培养21 d,在低磷和高磷土壤中HB1均能有效定殖且增加了土壤有效磷含量,比不接菌对照分别增加45.00%和14.17%。综上,草酸青霉菌HB1对磷酸钙和磷矿粉的溶磷效果较好,并通过分泌氢质子酸解含磷矿物实现溶磷作用,且HB1在低磷土壤中溶磷能力较强。  相似文献   

18.
为了避免剩余污泥厌氧发酵液利用时泥液难分离的问题,探讨了直接将发酵混合物用作外加碳源处理低碳氮比(C/N)污水的可行性。为此,首先对比了酸性(pH值=4.0±0.2)、中性(不控pH值)、碱性(pH值=10.0±0.2)条件下长期运行的剩余污泥厌氧发酵混合物的特性;其次,分别考察了碱性厌氧发酵混合物的不同投加量(0、10、20、30、50、100、200 mL),在反硝化及释磷过程中的利用。结果表明:碱性条件下溶解性化学需氧量(soluble chemical oxygen demand,SCOD)和短链脂肪酸(short-chain fatty acids,SCFAs)产量要远高于酸性和中性条件的,其中C/N比和C/P比分别高达18.9和57.0,更适合作为外加碳源利用。反硝化过程中,当初始NO_3~--N=(15.0±0.5)mg/L时,最佳投加量为30 mL,此时NO_3~--N去除率为100%;释磷过程中,最佳投加量为20 mL,此时最大净释磷量为22.8 mg/L。剩余污泥碱性厌氧发酵混合物用作外加碳源是可行的,既解决了碳源不足及剩余污泥处理的双重问题,又简化了传统发酵液利用时泥液分离的操作步骤,适用于处理低C/N比乡镇生活污水。  相似文献   

19.
秸秆还田对于培育地力、提高作物品质与产量具有重要意义,然而在中国南方水稻种植区稻麦轮作耕作方式下,小麦秸秆还田后出现了水稻田面水质恶化的问题。该研究设置不同秸秆还田以及不同进气量的微纳米加气灌溉6个处理,开展水稻盆栽试验,观察分析水稻生育期内稻田水化学指标以及氮磷损失的变化规律。结果表明:水稻田面水与渗漏水中化学需氧量(Chemical Oxygen Demand,COD)浓度以及氮磷浓度的起伏变化主要受施肥因素影响;秸秆还田条件下水稻田面水COD浓度、总氮(Total Nitrogen,TN)浓度、铵态氮(NH4+-N)浓度、硝态氮(NO3--N)浓度均有所提升,总磷(Total Phosphorus,TP)浓度有所降低;水稻渗漏水COD浓度、NH4+-N浓度在秸秆还田后会有所升高,TN浓度、NO3--N浓度会有所降低;微纳米加气灌溉有利于降低秸秆还田后稻田水的COD浓度、TN浓度、NH4+-N浓度,其最优去除率可达19%、31%、45%。秸秆还田有利于提高稻田氮磷利用率,但是会增加氮素损失量,微纳米加气灌溉可以有效减少小麦秸秆还田后稻田的氮磷损失量,综合考虑改善稻田水COD浓度、减少氮磷损失以及保证水稻产量,推荐使用0.7 L/min进气量的微纳米气泡水对小麦秸秆还田后的水稻进行灌溉。该研究结果可为秸秆还田条件下稻麦轮作区水稻灌溉管理提供理论和技术指导。  相似文献   

20.
不同水、氮条件对水稻苗生长及伤流液的影响   总被引:14,自引:2,他引:12  
为探明不同水分供应和氮素形态对水稻根苗及伤流液的影响,设正常水分及50 g/L PEG模拟水分胁迫和3种不同质量比例的NH4+-N/NO3--N(9/1,5/5,1/9)氮素营养处理,测定了水稻幼苗生物量,根系形态指标,根系活力及根基伤流量。结果表明,正常水分条件下,NH4+-N促进水稻根系平均直径增大,有利于水稻地上部物质累积;NO3--N则使水稻根系总吸收面积增大,促进根系物质累积;NH4+-N/NO3--N为5/5处理的水稻活跃吸收面积最大,活跃吸收面积比亦最高。水分胁迫条件下,NH4+-N/NO3--N为5/5的处理更有利于水稻地上部分的生长,NO3--N有利于水稻鲜重和干重增加,促进根系平均直径增大,水稻的根系总吸收面积、活跃吸收面积均随NO3--N供应比例的增加呈上升趋势。正常水分条件下,水稻幼苗白天的耗水量随NH4+-N/ NO3--N比例降低呈下降趋势,水分胁迫条件降低了水稻对水分的吸收。水分胁迫显著降低各处理水稻伤流量,正常水分条件下,NH4+-N/NO3--N为5/5处理的水稻伤流量最大;水分胁迫后,9/1处理的水稻伤流量相对较多。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号