首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: To determine kinematic movements of the vertebral column of horses during normal locomotion. ANIMALS: 5 Dutch Warmblood horses without apparent lameness or problems associated with the vertebral column. PROCEDURE: Kinematics of 8 vertebrae (T6, T10, T13, T17, L1, L3, L5, and S3) and both tuber coxae were determined, using bone-fixated markers. Horses were recorded while walking on a treadmill at a constant speed of 1.6 m/s. RESULTS: Flexion-extension was characterized by 2 periods of extension and flexion during 1 stride cycle, whereas lateral bending and axial rotation were characterized by 1 peak and 1 trough. The range of motion for flexion-extension was fairly constant for vertebrae caudal to T10 (approximately 7 degrees). For lateral bending, the cranial thoracic vertebrae and segments in the pelvic region had the maximal amount of motion, with values of up to 5.6 degrees. For vertebrae between T17 and L5, the amount of lateral bending decreased to <4 degrees The amount of axial rotation increased gradually from 4 degrees for T6 to 13 degrees for the tuber coxae. CONCLUSIONS: This direct measurement method provides 3-dimensional kinematic data for flexion-extension, lateral bending, and axial rotation of the thoracolumbar portion of the vertebral column of horses walking on a treadmill. Regional differences were observed in the magnitude and pattern of the rotations. Understanding of the normal kinematics of the vertebral column in healthy horses is a prerequisite for a better understanding of abnormal function.  相似文献   

2.
OBJECTIVE: To determine the validity of using skin-fixated markers to assess kinematics of the thoracolumbar vertebral column in horses. ANIMALS: 5 Dutch Warmblood horses without abnormalities of the vertebral column. PROCEDURE: Kinematics of T6, T10, T13, T17, L1, L3, L5, S3, and both tuber coxae were determined by use of bone-fixated and skin-fixated markers. Three-dimensional coordinate data were collected while horses were walking and trotting on a treadmill. Angular motion patterns were calculated and compared on the basis of 2-dimensional analysis of data from skin-fixated markers and 3-dimensional analysis of data from bone-fixated markers. RESULTS: Flexion-extension of thoracolumbar vertebrae and axial rotation of the sacrum were satisfactorily determined at both the walk and trot, using skin-fixated markers. Data from skin-fixated markers were accurate for determining lateral bending at the walk in the midthoracic and lower lumbar portion of the vertebral column only. However, at the trot, data from skin-fixated markers were valid for determining lateral bending for all thoracolumbar vertebrae. CONCLUSIONS AND CLINICAL RELEVANCE: Caution should be taken when interpreting data obtained by use of skin-fixated markers on lateral bending motions during the walk in horses. For determination of other rotations at the walk and all rotations at the trot, use of skin-fixated markers allows valid calculations of kinematics of the vertebral column. Understanding to what extent movements of skin-fixated markers reflect true vertebral motion is a compulsory step in developing noninvasive methods for diagnosing abnormalities of the vertebral column and related musculature in horses.  相似文献   

3.
Reasons for performing study: Treadmill locomotion is frequently used for training of sport horses, for diagnostic purposes and for research. Identification of the possible biomechanical differences and similarities between the back movement during treadmill (T) and over ground (O) locomotion is essential for the correct interpretation of research results. Objectives: To compare the kinematics of the thoracolumbar vertebral column in treadmill and over ground locomotion in healthy horses. Methods: Six sound Dutch Warmblood horses trotted on a T and O during 10 s at their own preferred velocity (mean ± s.d. 3.6 ± 0.3 m/s T and 3.6 ± 0.1 m/s O), which was the same in both conditions. Kinematics of the vertebral column was captured by infrared cameras using reflective skin markers attached over the spinous processes of selected vertebrae and other locations. Flexion‐extension and lateral bending range of motion (ROM), angular motion pattern (AMP) and intravertebral pattern symmetry (IVPS) of 5 vertebral angles (T6‐T10‐T13, T10‐T13‐T17, T13‐T17‐L1, T17‐L1‐L3 and L1‐L3‐l5) were calculated. Neck angle, linear and temporal stride parameters and protraction‐retraction angles of the limbs were also calculated. Results: The vertical ROM (flexion‐extension) was similar in both conditions, but the horizontal ROM (lateral bending) of the lumbar angles T17‐L1‐L3 and L1‐L3‐L5 was less during T locomotion (mean ± s.d. difference of 1.8 ± 0.6 and 1.7 ± 0.9°, respectively, P>0.05). During O locomotion, the symmetry pattern of the lumbar vertebral angles was diminished from 0.9 to 0.7 (1 = 100% symmetry) indicating increased irregularity of the movement (P>0.05). No differences were found in the basic linear and temporal stride parameters and neck angle. Potential relevance: Vertebral kinematics during treadmill locomotion is not identical to over ground locomotion, but the differences are minor. During treadmill locomotion lumbar motion is less, and caution should be therefore taken when interpreting lumbar kinematics.  相似文献   

4.
REASONS FOR PERFORMING STUDY: Lameness has often been suggested to result in altered movement of the back, but there are no detailed studies describing such a relationship in quantitative terms. OBJECTIVES: To quantify the effect of induced subtle forelimb lameness on thoracolumbar kinematics in the horse. METHODS: Kinematics of 6 riding horses was measured at walk and at trot on a treadmill before and after the induction of reversible forelimb lameness grade 2 (AAEP scale 1-5). Ground reaction forces (GRF) for individual limbs were calculated from kinematics. RESULTS: The horses significantly unloaded the painful limb by 11.5% at trot, while unloading at walk was not significant. The overall flexion-extension range of back motion decreased on average by 0.2 degrees at walk and increased by 3.3 degrees at trot (P<0.05). Changes in angular motion patterns of vertebral joints were noted only at trot, with an increase in flexion of 0.9 degrees at T10 (i.e. angle between T6, T10 and T13) during the stance phase of the sound diagonal and an increase in extension of the thoracolumbar area during stance of the lame diagonal (0.7degrees at T13, 0.8 degres at T17, 0.5 degres at L1, 0.4 degrees at L3 and 0.3 degrees at L5) (P<0.05). Lameness further caused a lateral bending of the cranial thoracic vertebral column towards the lame side (1.3 degrees at T10 and 0.9 degrees at T13) (P<0.05) during stance of the lame diagonal. CONCLUSIONS: Both range of motion and vertebral angular motion patterns are affected by subtle forelimb lameness. At walk, the effect is minimal, at trot the horses increased the vertebral range of motion and changed the pattern of thoracolumbar motion in the sagittal and horizontal planes, presumably in an attempt to move the centre of gravity away from the lame side and reduce the force on the affected limb. POTENTIAL RELEVANCE: Subtle forelimb lameness affects thoracolumbar kinematics. Future studies should aim at elucidating whether the altered movement patterns lead to back and/or neck dysfunction in the case of chronic lameness.  相似文献   

5.
Objective-To identify differences in intersegmental bending angles in the cervical, thoracic, and lumbar portions of the vertebral column between the end positions during performance of 3 dynamic mobilization exercises in cervical lateral bending in horses. Animals-8 nonlame horses. Procedures-Skin-fixed markers on the head, cervical transverse processes (C1-C6) and spinous processes (T6, T8, T10, T16, L2, L6, S2, and S4) were tracked with a motion analysis system with the horses standing in a neutral position and in 3 lateral bending positions to the left and right sides during chin-to-girth, chin-to-hip, and chin-to-tarsus mobilization exercises. Intersegmental angles for the end positions in the various exercises performed to the left and right sides were compared. Results-The largest changes in intersegmental angles were at C6, especially for the chin-to-hip and chin-to-tarsus mobilization exercises. These exercises were also associated with greater lateral bending from T6 to S2, compared with the chin-to-girth mobilization or neutral standing position. The angle at C1 revealed considerable bending in the chin-to-girth position but not in the 2 more caudal positions. Conclusions and Clinical Relevance-The amount of bending in different parts of the cervical vertebral column differed among the dynamic mobilization exercises. As the horse's chin moved further caudally, bending in the caudal cervical and thoracolumbar regions increased, suggesting that the more caudal positions may be particularly effective for activating and strengthening the core musculature that is used to bend and stabilize the horse's back.  相似文献   

6.
OBJECTIVE: To measure passive spinal movements induced during dorsoventral mobilization and evaluate effects of induced pain and spinal manipulative therapy (SMT) on passive vertebral mobility in standing horses. ANIMALS: 10 healthy adult horses. PROCEDURES: Baseline vertical displacements, applied force, stiffness, and frequency of the oscillations were measured during dorsoventral spinal mobilization at 5 thoracolumbar intervertebral sites. As a model for back pain, fixation pins were temporarily implanted into the dorsal spinous processes of adjacent vertebrae at 2 of the intervertebral sites. Vertebral variables were recorded again after pin placement and treadmill locomotion. In a randomized crossover study, horses were allocated to control and treatment interventions, separated by a 7-day washout period.The SMT consisted of high-velocity, low-amplitude thrusts applied to the 3 non-pin-placement sites. Control horses received no treatment. RESULTS: The amplitudes of vertical displacement increased from cranial to caudal in the thoracolumbar portion of the vertebral column. Pin implantation caused no immediate changes at adjacent intervertebral sites, but treadmill exercise caused reductions in most variables. The SMT induced a 15% increase in displacement and a 20% increase in applied force, compared with control measurements. CONCLUSIONS AND CLINICAL RELEVANCE: The passive vertical mobility of the trunk varied from cranial to caudal. At most sites, SMT increased the amplitudes of dorsoventral displacement and applied force, indicative of increased vertebral flexibility and increased tolerance to pressure in the thoracolumbar portion of the vertebral column.  相似文献   

7.
REASON FOR PERFORMING STUDY: Although there is anecdotal evidence of clinical effectiveness of chiropractic in treatment of equine back pain, little scientific work has been reported on the subject. OBJECTIVES: To quantify the effect of chiropractic manipulations on back and limb kinematics in horse locomotion. METHODS: Kinematics of 10 Warmblood horses were measured over ground at walk and trot at their own, preferred speed before, and one hour and 3 weeks after chiropractic treatment that consisted of manipulations of the back, neck and pelvic area. Speed was the same during all measurements for each horse. RESULTS: Chiropractic manipulations resulted in increased flexion-extension range of motion (ROM) (P<0.05) at trot in the vertebral angular segments: T10-T13-T17 (0.3 degrees ) and T13-T17-L1 (0.8 degrees ) one hour after treatment, but decreased ROM after 3 weeks. The angular motion patterns (AMPs) of the same segments showed increased flexion at both gaits one hour after treatment (both angles 0.2 degrees at walk and 0.3 degrees at trot, P<0.05) and 3 weeks after treatment (1.0 degrees and 2.4 degrees at walk and 1.9 degrees and 2.9 degrees at trot, P<0.05). The lumbar (L3 and L5) area showed increased flexion after one hour (both angles 0.3 degrees at walk and 0.4 degrees at trot P<0.05), but increased extension after 3 weeks (1.4 degrees and 1.2 degrees , at trot only, P<0.05). There were no detectable changes in lateral bending AMPs. The inclination of the pelvis was reduced at trot one hour (1.6 degrees ) and 3 weeks (3 degrees ) after treatment (P<0.05). The mean axial rotation of the pelvis was more symmetrical 3 weeks after the treatment at both gaits (P<0.05). There were no changes in limb angles at walk and almost no changes at trot. CONCLUSIONS: The main overall effect of the chiropractic manipulations was a less extended thoracic back, a reduced inclination of the pelvis and improvement of the symmetry of the pelvic motion pattern. POTENTIAL RELEVANCE: Chiropractic manipulations elicit slight but significant changes in thoracolumbar and pelvic kinematics. Some of the changes are likely to be beneficial, but clinical trials with increased numbers of horses and longer follow-up are needed.  相似文献   

8.
Kinematics of the equine thoracolumbar spine   总被引:2,自引:0,他引:2  
At least three types of movement take place in the joint complexes of the equine thoracolumbar spine: dorsoventral flexion and extension, axial rotation and lateral bending. Using the standard right-handed Cartesian coordinate system, these movements may be defined as rotation about the x, y and z axes respectively. Except in cases of intervertebral fusion, all three types of movement occur in each joint complex of the equine back. The greatest amount of dorsoventral movement takes place at the lumbosacral and the first thoracic intervertebral joints. The greatest amount of axial rotation and lateral bending was measured in the mid-thoracolumbar spine at the level of the 11th or 12th thoracic intervertebral joints. The caudal thoracic and the lumbar spine is the least mobile region of the equine back. In the mid-thoracic spine, lateral bending was always accompanied by a "coupled" axial rotation. The presence of the rib cage stabilised the cranial thoracic vertebrae against axial rotation.  相似文献   

9.
The relationship between spinal biomechanics and pathological changes occurring in functionally normal equine thoracolumbar spines was studied in 23 horses. Ventrolateral vertebral body osteophytes occurred in 36 per cent of the spines. The majority occurred between the 10th and 17th thoracic vertebrae with the largest being found between the 11th and 13th thoracic vertebrae, the region of the thoracic spine where the greatest amount of lateral bending and axial rotation occurs. Impingement of the dorsal spinous processes was detected in 86 per cent of the spines with most lesions occurring between the 13th and 18th thoracic vertebrae. The severity of occurrence of impingement did not appear to be related to regional spinal mobility. Degeneration of intervertebral discs was observed in three of four specimens that were sectioned sagittally. It occurred in the first thoracic and the lumbosacral intervertebral discs and appeared to be related to the increased dorsoventral mobility and the increased disc thickness of these joints. The characteristic distribution of fractures of the thoracolumbar spine is discussed with respect to the biomechanics of the spine.  相似文献   

10.
There is a paucity of evidence on the effect that rider asymmetry has on equine locomotion. The aim of this study was to evaluate the effect of rider asymmetry on equine locomotion by using a novel approach to induce rider asymmetry. Ten nonlame horses were recruited for this study. Joint center markers were used to capture 2D kinematics (Quintic Biomechanics) of the horse and rider and horses were equipped with seven inertial sensors positioned at the fifth (T5) and eighteenth (T18) thoracic vertebrae, third lumbar (L3) vertebra, tubera sacrale (TS), and left and right tubera coxae. Rider asymmetry was induced by shortening the ventral aspect of one stirrup by 5 cm. Kinematic data were compared between conditions using a mixed model with the horse defined as a random factor and stirrup condition (symmetrical stirrups and asymmetrical stirrups) and direction (inside and outside) defined as fixed factors. Data from riders where the right stirrup was shortened were mirrored to reflect a left stirrup being shortened. To determine differences between conditions, a significance of P ≤ .05 was set. On the rein with the shortened stirrup on the outside: an increase in lateral bending range of motion (ROM) at T5 (P = .003), L3 (P = .04), and TS (P = .02), an increase in mediolateral displacement at T5 (P = .04), T18 (P = .04), and L3 (0.03) were found. An increase in maximum fetlock extension was apparent for both the front (P = .01) and hind limb (P = .04) on the contralateral side to the shortened stirrup; for the asymmetrical stirrup condition on the rein with the shortened stirrup on the inside: an increase in flexion-extension ROM at T5 (P = .03) and L3 (P = .04), axial rotation at T5 (P = .05), and lateral bending of T5 (P = .03), L3 (P = .04), and TS (P = .02). Asymmetric rider position appears to have an effect on the kinematics of the thoracolumbar spine. These findings warrant further investigation to understand the long-term impact this may have on equine locomotor health.  相似文献   

11.
At least three types of movement, dorsoventral flexion and extension, axial rotation and lateral bending, were shown to occur at each of the intervertebral joints in the cervical spine. Between the first two cervical vertebrae the mean axial rotation was 107.5 degrees, which was 73 per cent of the total axial rotation of the cervical spine. The atlantooccipital joint rotated through a mean of 27 degrees, whereas the remaining cervical joints each had less than 3 degrees of rotatory movement. Dorsoventral flexion and extension were maximal at the atlantooccipital joint, which had an amplitude of 86.4 degrees and accounted for 32 per cent of the total dorsoventral movement of the cervical spine. Lateral bending was relatively more uniform along the length of the neck, with mean values ranging from 25 to 45 degrees for each joint except that between the first two cervical vertebrae, which had a mean of only 3.9 degrees of lateral bending.  相似文献   

12.
Ataxia caused by a focal compression of the cervical spinal cord was diagnosed in four young standardbred trotting horses. Diagnosis was verified by myelography. Changes in the cervical vertebral column were studied using microradiographic and histologic methods. In the vertebrae involved, there was irregularity of the cartilaginous growth zone, cracks with a loose fragment and disturbance in the enchondral ossification. These changes resemble osteochondrosis. Porous appearance in lateral and ventral funiculi as well as mural calcified plaques in the small vessels of the white matter were found in the spinal cord.  相似文献   

13.
REASONS FOR PERFORMING STUDY: Earlier studies have developed a clinical tool to evaluate objectively the function of the equine back. The ability to differentiate horses with back pain from asymptomatic, fully functioning horses using kinematic measures from this tool has not been evaluated. OBJECTIVES: To compare the kinematics of the back at walk and trot in riding horses with back dysfunction to the same parameters in asymptomatic sport horses. METHODS: The kinematics of the back in 12 horses with impaired performance and back pain were studied at walk and trot on a treadmill. Data were captured for 10 sees at 240 Hz. Range of movement (ROM) and intravertebral pattern symmetry of movement for flexion and extension (FE), lateral bending (LB) and axial rotation (AR) were derived from angular motion pattern data and the results compared to an earlier established database on asymptomatic riding horses. RESULTS: At walk, horses with back dysfunction had a ROM smaller for dorsoventral FE in the caudal thoracic region (T13 = 7.50 degrees, T17 = 7.71 degrees; P<0.05), greater for LB at T13 (8.13 degrees; P<0.001) and smaller for AR of the pelvis (10.97 degrees; P<0.05) compared to asymptomatic horses (FE-T13 = 8.28 degrees, FE-T17 = 8.49 degrees, LB-T13 = 6.34 degrees, AR-pelvis = 12.77 degrees). At trot, dysfunctional horses had a smaller (P<0.05) ROM for FE at the thoracic lumbar junction (T17 = 2.46 degrees, L1 = 2.60 degrees) compared to asymptomatic horses (FE-T17 = 3.07 degrees, FE-L1 = 3.12 degrees). CONCLUSIONS: The objective measurement technique can detect differences between back kinematics in riding horses with signs of back dysfunction and asymptomatic horses. The clinical manifestation of back pain results in diminished flexion/extension movement at or near the thoracic lumbar junction. However, before applying the method more extensively in practice it is necessary to evaluate it further, including measurements of patients whose diagnoses can be confirmed and long-term follow-ups of back patients after treatment. POTENTIAL RELEVANCE: Since the objective measurement technique can detect small movement differences in back kinematics, it should help to clinically describe and, importantly, objectively detect horses with back pain and dysfunction.  相似文献   

14.
REASON FOR PERFORMING STUDY: There are no detailed studies describing a relationship between hindlimb lameness and altered motion of the back. OBJECTIVES: To quantify the effect of induced subtle hindlimb lameness on thoracolumbar kinematics in the horse. METHODS: Kinematics of 6 riding horses were measured during walk and trot on a treadmill before and during application of pressure on the sole of the left hindlimb using a well-established sole pressure model. Reflective markers were located at anatomical landmarks on the limbs, back, head and neck for kinematic recordings. Ground reaction forces (GRF) in individual limbs were calculated from kinematics to detect changes in loading of the limbs. RESULTS: When pressure on the sole of the hindlimb was present, horses were judged as lame (grade 2 on the AAEP scale 1-5) by an experienced clinician. No significant unloading of this limb was found in the group of horses (unloading was observed in 4 animals, but was not detectable in the other 2), but statistically significant effects on back kinematics were detected. The overall flexion-extension (FE) range of motion (ROM) of the vertebral column was increased at walk, especially in the thoracic segments. Axial rotation (AR) ROM of the pelvis was also increased. At trot, the FE ROM was decreased only in the segment L3-L5-S3. During the stance phase of the lame limb, the segment T6-T10-T13 was more flexed and the neck was lowered at both gaits; the thoracolumbar segments were more extended at walk and trot. There were no significant changes in the stride length or protraction-retraction angles in any of the limbs. CONCLUSIONS: Subtle hindlimb lameness provoked slight but detectable changes in thoracolumbar kinematics. The subtle lameness induced in this study resulted in hyperextension and increased ROM of the thoracolumbar back, but also in decreased ROM of the lumbosacral segment and rotational motion changes of the pelvis. POTENTIAL RELEVANCE: Even subtle lameness can result in changes in back kinematics, which emphasises the intricate link between limb function and thoracolumbar motion. It may be surmised that, when chronically present, subtle lameness induces back dysfunction.  相似文献   

15.
OBJECTIVE: To evaluate back movement during walking in horses. ANIMALS: 22 adult horses with no history or signs of back pain. PROCEDURE: 3-dimensional movements of markers on the hooves, head, and back were measured with a motion analysis system while the horses were walking on a treadmill. The positions of markers on the hooves, head, and the skin above the spinous processes of T5, T10, T16, L3, and 2 sacral vertebrae were recorded. From a minimum of 6 walking motion cycles/horse, marker movement and the time of occurrence of minimum and maximum marker positions within the motion cycle were determined. Angles were calculated between the markers on the head, T16, and S4 or S5 and between the markers on T5, T16, and S4 or S5. RESULTS: Lateral back movement was maximal at L3, where it reached (mean +/- SD) 3.5 +/- 0.8% of the horses' height at the withers. Maximum dorsoventral back movement was found at the sacrum, where it reached 4.7 +/- 1.3% of the height at the withers. In the horizontal plane, the angle between T5, T16, and S4 or S5 was altered by 11 +/- 2.5 degrees during the motion cycle. In the sagittal plane, the angle between the head, T16, and S4 or S5 was altered by 7 +/- 3 degrees. CONCLUSIONS AND CLINICAL RELEVANCE: Results of this study may be used as basic kinematic reference data for evaluation of back movement in horses.  相似文献   

16.
A nine‐year‐old intact female domestic shorthair cat was evaluated for paraparesis, ataxia and severe spinal hyperaesthesia. Neurological examination indicated a T3‐L3 spinal cord segment lesion. Computed tomography of the thoracolumbar and lumbosacral vertebral column was performed. This showed contiguous smooth new bone formation ventral and lateral to the vertebrae extending from the cranial thoracic area to the lumbosacral junction and appearing similar to canine diffuse idiopathic skeletal hyperostosis. There was also marked dorsolateral stenosis of the vertebral canal at the level of T4‐T5 because of degenerative changes of the facet joints. To the authors’ knowledge, this is the first published report of feline diffuse idiopathic skeletal hyperostosis.  相似文献   

17.
OBJECTIVE: To use electromyography (EMG) to measure physiologic activity of the longissimus dorsi muscles of horses during trotting on a treadmill. ANIMALS: 15 adult horses (5 to 20 years old that weighed 450 to 700 kg) that did not have clinical signs of back pain. PROCEDURE: Data were recorded for each horse during trotting on a treadmill at speeds of 2.6 to 4.4 m/s. Surface electromyography was recorded bilaterally from the longissimus dorsi muscles at the levels of T12, T16, and L3. RESULTS: In each motion cycle, 2 EMG maxima were found at the end of the diagonal stance phases. The EMG activity peaked slightly later at L3 than at T12 and T16. Maximum EMG amplitudes were highest at T12 and decreased caudally, with mean +/- SD values of 4.51 +/- 1.20 mV at T12, 3.00 +/- 0.83 mV at T16, and 1.78 +/- 0.67 mV at L3. Mean minimum EMG activity was 1.30 +/- 0.63 mV at T12, 0.83 +/- 0.35 mV at T16, and 0.80 +/- 0.39 mV at L3. The relative amplitudes (ie, [maximum - minimum]/maximum) were 67 +/- 11% at T12, 66 +/- 8% at T16, and 71 +/- 8% at L3. CONCLUSIONS AND CLINICAL RELEVANCE: Activity of the longissimus dorsi muscles is mainly responsible for stabilization of the vertebral column against dynamic forces. The difference between minimum and maximum activity may allow application of this method as a clinical tool. Data reported here can serve as reference values for comparison with values from clinically affected horses.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号