首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Kondo T  Raff M 《Science (New York, N.Y.)》2000,289(5485):1754-1757
During animal development, cells become progressively more restricted in the cell types to which they can give rise. In the central nervous system (CNS), for example, multipotential stem cells produce various kinds of specified precursors that divide a limited number of times before they terminally differentiate into either neurons or glial cells. We show here that certain extracellular signals can induce oligodendrocyte precursor cells to revert to multipotential neural stem cells, which can self-renew and give rise to neurons and astrocytes, as well as to oligodendrocytes. Thus, these precursor cells have greater developmental potential than previously thought.  相似文献   

2.
Control of synapse number by glia   总被引:1,自引:0,他引:1  
Although astrocytes constitute nearly half of the cells in our brain, their function is a long-standing neurobiological mystery. Here we show by quantal analyses, FM1-43 imaging, immunostaining, and electron microscopy that few synapses form in the absence of glial cells and that the few synapses that do form are functionally immature. Astrocytes increase the number of mature, functional synapses on central nervous system (CNS) neurons by sevenfold and are required for synaptic maintenance in vitro. We also show that most synapses are generated concurrently with the development of glia in vivo. These data demonstrate a previously unknown function for glia in inducing and stabilizing CNS synapses, show that CNS synapse number can be profoundly regulated by nonneuronal signals, and raise the possibility that glia may actively participate in synaptic plasticity.  相似文献   

3.
Nodes of Ranvier are regularly placed, nonmyelinated axon segments along myelinated nerves. Here we show that nodal membranes isolated from the central nervous system (CNS) of mammals restricted neurite outgrowth of cultured neurons. Proteomic analysis of these membranes revealed several inhibitors of neurite outgrowth, including the oligodendrocyte myelin glycoprotein (OMgp). In rat spinal cord, OMgp was not localized to compact myelin, as previously thought, but to oligodendroglia-like cells, whose processes converge to form a ring that completely encircles the nodes. In OMgp-null mice, CNS nodes were abnormally wide and collateral sprouting was observed. Nodal ensheathment in the CNS may stabilize the node and prevent axonal sprouting.  相似文献   

4.
Segmentation genes control cell identities during early pattern formation in Drosophila. One of these genes, fushi tarazu (ftz), is now shown also to control cell fate during neurogenesis. Early in development, ftz is expressed in a striped pattern at the blastoderm stage. Later, it is transiently expressed in a specific subset of neuronal precursor cells, neurons (such as aCC, pCC, RP1, and RP2), and glia in the developing central nervous system (CNS). The function of ftz in the CNS was determined by creating ftz mutant embryos that express ftz in the blastoderm stripes but not in the CNS. In the absence of ftz CNS expression, some neurons appear normal (for example, the aCC, pCC, and RP1), whereas the RP2 neuron extends its growth cone along an abnormal pathway, mimicking its sibling (RP1), suggesting a transformation in neuronal identity.  相似文献   

5.
Secretion of neurotoxins by mononuclear phagocytes infected with HIV-1   总被引:50,自引:0,他引:50  
Mononuclear phagocytes (microglia, macrophages, and macrophage-like giant cells) are the principal cellular targets for human immunodeficiency virus-1 (HIV-1) in the central nervous system (CNS). Since HIV-1 does not directly infect neurons, the causes for CNS dysfunction in acquired immunodeficiency syndrome (AIDS) remain uncertain. HIV-1-infected human monocytoid cells, but not infected human lymphoid cells, released toxic agents that destroy chick and rat neurons in culture. These neurotoxins were small, heat-stable, protease-resistant molecules that act by way of N-methyl-D-aspartate receptors. Macrophages and microglia infected with HIV-1 may produce neurologic disease through chronic secretion of neurotoxic factors.  相似文献   

6.
gamma-Aminobutyric acid (GABA) is one of the major inhibitory neurotransmitters in the central nervous system. In the cerebral cortex, GABA-containing cells represent a subpopulation of interneurons. With semithin frozen sections, it is possible to demonstrate that most GABA neurons in the rat somatosensory cortex contain the calcium-binding protein parvalbumin and that parvalbumin is found virtually only in GABA neurons. Parvalbumin seems to influence the electrical properties and enzymatic machinery to modulate neuronal excitability and activity. The specific role of parvalbumin in GABA-containing cortical cells may be related to controlling the effectiveness of their inhibitory action.  相似文献   

7.
Neurons in the human central nervous system (CNS) are unable to regenerate, as a result of both an inhibitory environment and their inherent inability to regrow. In contrast, the CNS environment in fish is permissive for growth, yet some neurons still cannot regenerate. Fish thus offer an opportunity to study molecules that might surmount the intrinsic limitations they share with mammals, without the complication of an inhibitory environment. We show by in vivo imaging in zebrafish that post-injury application of cyclic adenosine monophosphate can transform severed CNS neurons into ones that regenerate and restore function, thus overcoming intrinsic limitations to regeneration in a vertebrate.  相似文献   

8.
Axonal regeneration in the adult central nervous system (CNS) is limited by two proteins in myelin, Nogo and myelin-associated glycoprotein (MAG). The receptor for Nogo (NgR) has been identified as an axonal glycosyl-phosphatidyl-inositol (GPI)-anchored protein, whereas the MAG receptor has remained elusive. Here, we show that MAG binds directly, with high affinity, to NgR. Cleavage of GPI-linked proteins from axons protects growth cones from MAG-induced collapse, and dominant-negative NgR eliminates MAG inhibition of neurite outgrowth. MAG-resistant embryonic neurons are rendered MAG-sensitive by expression of NgR. MAG and Nogo-66 activate NgR independently and serve as redundant NgR ligands that may limit axonal regeneration after CNS injury.  相似文献   

9.
Grasshopper neurons accurately project axons across long distances between peripheral structures and the central nervous system. Nerve-trunk pathways followed by these axons are established early in embryogenesis by pioneer neurons. Growth cones from the first pioneers navigate along a chain of cells to the CNS. The placement of these cells may constitute the initial guidance mechanism underlying long-distance pathfinding.  相似文献   

10.
Class I major histocompatibility complex (class I MHC) molecules, known to be important for immune responses to antigen, are expressed also by neurons that undergo activity-dependent, long-term structural and synaptic modifications. Here, we show that in mice genetically deficient for cell surface class I MHC or for a class I MHC receptor component, CD3zeta, refinement of connections between retina and central targets during development is incomplete. In the hippocampus of adult mutants, N-methyl-D-aspartate receptor-dependent long-term potentiation (LTP) is enhanced, and long-term depression (LTD) is absent. Specific class I MHC messenger RNAs are expressed by distinct mosaics of neurons, reflecting a potential for diverse neuronal functions. These results demonstrate an important role for these molecules in the activity-dependent remodeling and plasticity of connections in the developing and mature mammalian central nervous system (CNS).  相似文献   

11.
NMDA antagonist neurotoxicity: mechanism and prevention.   总被引:49,自引:0,他引:49  
Antagonists of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor, including phencyclidine (PCP) and ketamine, protect against brain damage in neurological disorders such as stroke. However, these agents have psychotomimetic properties in humans and morphologically damage neurons in the cerebral cortex of rats. It is now shown that the morphological damage can be prevented by certain anticholinergic drugs or by diazepam and barbiturates, which act at the gamma-aminobutyric acid (GABA) receptor-channel complex and are known to suppress the psychotomimetic symptoms caused by ketamine. Thus, it may be possible to prevent the unwanted side effects of NMDA antagonists, thereby enhancing their utility as neuroprotective drugs.  相似文献   

12.
The presence and function of CB2 receptors in central nervous system (CNS) neurons are controversial. We report the expression of CB2 receptor messenger RNA and protein localization on brainstem neurons. These functional CB2 receptors in the brainstem were activated by a CB2 receptor agonist, 2-arachidonoylglycerol, and by elevated endogenous levels of endocannabinoids, which also act at CB1 receptors. CB2 receptors represent an alternative site of action of endocannabinoids that opens the possibility of nonpsychotropic therapeutic interventions using enhanced endocannabinoid levels in localized brain areas.  相似文献   

13.
Neurons containing the enzyme aromatic-L-amino-acid decarboxylase (AADC) but lacking either tyrosine hydroxylase or serotonin were found in the spinal cord of neonatal and adult rats by light and electron microscopic immunocytochemistry. The majority of these neurons localized to area X of Rexed contact ependyma. Thus, spinal AADC neurons have the enzymatic capacity to catalyze directly the conversion of the amino acids tyrosine, tryptophan, or phenylalanine to their respective amines tyramine, tryptamine, or phenylethylamine. These amines normally present in the central nervous system may be of potential clinical significance as endogenous psychotomimetics.  相似文献   

14.
Developing Retzius (Rz) neurons in different segments of the central nervous system of the medicinal leech have different peripheral targets: Rz cells in standard segments innervate the body wall, whereas Rz cells in the reproductive segments innervate reproductive tissue. Early removal of reproductive tissue primordia causes reproductive Rz cells to develop morphologically like their standard segmental homologs, suggesting that Rz cells depend on peripheral targets for signals that determine their central and peripheral morphology. Furthermore, after removal of reproductive tissue, reproductive Rz cells also receive synaptic inputs normally appropriate for standard Rz cells. These results suggest that the functional identity of these neurons is specified by the target they contact during embryogenesis.  相似文献   

15.
A crucial question in the study of immunological reactions in the central nervous system (CNS) concerns the identity of the parenchymal cells that function as the antigen-presenting cells in that organ. Rat bone marrow chimeras and encephalitogenic, major histocompatability--restricted T-helper lymphocytes were used to show that a subset of endogenous CNS cells, commonly termed "perivascular microglial cells," is bone marrow-derived. In addition, these perivascular cells are fully competent to present antigen to lymphocytes in an appropriately restricted manner. These findings are important for bone marrow transplantation and for neuroimmunological diseases such as multiple sclerosis.  相似文献   

16.
Most rhythmic behaviors such as respiration, locomotion, and feeding are under the control of networks of neurons in the central nervous system known as central pattern generators (CPGs). The respiratory rhythm of the pond snail Lymnaea stagnalis is a relatively simple, CPG-based behavior for which the underlying neural elements have been identified. A three-neuron network capable of generating the respiratory rhythm of this air-breathing mollusk has been reconstructed in culture. The intrinsic and network properties of this neural ensemble have been studied, and the mechanism of postinhibitory rebound excitation was found to be important for the rhythm generation. This in vitro model system enables a better understanding of the neural basis of rhythm generation.  相似文献   

17.
Regulation of oligodendrocyte differentiation and myelination   总被引:1,自引:0,他引:1  
Emery B 《Science (New York, N.Y.)》2010,330(6005):779-782
  相似文献   

18.
The functional architecture of synaptic circuits is determined to a crucial degree by the patterns of electrical activity that occur during development. Studies with an in vitro preparation of mammalian sensory neurons projecting to ventral spinal cord neurons slow that electrical activity induces competitive processes that regulate synaptic efficacy so as to favor activated pathways over inactive convergent pathways. At the same time, electrical activity initiates noncompetitive processes that increase the number of axonal connections between these sensory and spinal cord neurons.  相似文献   

19.
The failure of axons to regenerate is a major obstacle for functional recovery after central nervous system (CNS) injury. Removing extracellular inhibitory molecules results in limited axon regeneration in vivo. To test for the role of intrinsic impediments to axon regrowth, we analyzed cell growth control genes using a virus-assisted in vivo conditional knockout approach. Deletion of PTEN (phosphatase and tensin homolog), a negative regulator of the mammalian target of rapamycin (mTOR) pathway, in adult retinal ganglion cells (RGCs) promotes robust axon regeneration after optic nerve injury. In wild-type adult mice, the mTOR activity was suppressed and new protein synthesis was impaired in axotomized RGCs, which may contribute to the regeneration failure. Reactivating this pathway by conditional knockout of tuberous sclerosis complex 1, another negative regulator of the mTOR pathway, also leads to axon regeneration. Thus, our results suggest the manipulation of intrinsic growth control pathways as a therapeutic approach to promote axon regeneration after CNS injury.  相似文献   

20.
Systems biology: a brief overview   总被引:1,自引:0,他引:1  
Kitano H 《Science (New York, N.Y.)》2002,295(5560):1662-1664
To understand biology at the system level, we must examine the structure and dynamics of cellular and organismal function, rather than the characteristics of isolated parts of a cell or organism. Properties of systems, such as robustness, emerge as central issues, and understanding these properties may have an impact on the future of medicine. However, many breakthroughs in experimental devices, advanced software, and analytical methods are required before the achievements of systems biology can live up to their much-touted potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号