首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of hyperoxic conditions on survival, gonad growth, feed intake, and food conversion of adult and somatic growth and survival of juvenile green sea urchin, Strongylocentrotus droebachiensis, were examined. Juvenile and adult sea urchins with initial diameters of 11.5 and 75 mm, respectively, were reared in water with constant oxygen saturations of 100 (control), 115 and 130% for 42 d (juvenile) and 51 d (adult sea urchin) at 8 C and 33‰ salinity. During the experiment the gonad indices of the adults tripled from 7.3% (±1.5) to 21.4% (±4.3), 19.4% (±4.7), and 22.0% (±4.4) for the groups kept at 100, 115, and 130% oxygen saturation, respectively. At the end of the experiment, the differences in gonadal size among the groups were not significant. Neither were there any significant differences in food intake or food conversion ratio among the groups. Only one animal died during the experiment. The juvenile sea urchin kept at 100, 115, and 130% oxygen saturation doubled their test diameter from initially 11.5 mm (±1.5) to 19.9 mm (±1.4), 21.4 mm (±2.1) and 20.6 mm (1.0), respectively, but there were no significant differences in growth among these groups. There was no mortality during the experiments in these groups. Overall, the findings suggest that juvenile and adult S. droebachiensis are unable to utilize hypersaturation of oxygen to increase somatic or gonad growth, but can be reared at hyperoxygenated water for prolonged periods of time without harmful effects.  相似文献   

2.
Juvenile green sea urchins, Strongylocentrotus droebachiensis, with an initial mean test diameter of 9.5 mm (±1.2 SD) were held in the laboratory, in individual compartments and at constant temperatures (8.5 C) (n = 90) for a period of 99 wk. The animals were supplied with flow‐through sea water, and fed the Nofima sea urchin manufactured feed ad libitum. Growth, survival, feed intake, feed conversion ratio (FCR), and gonad index (GI) of the sea urchins were monitored during this period. The mortality was 11% throughout the experimental period. The test diameter (TD) increased significantly with time, best described by a polynomial equation (TD = 0.8756 + 0.584Time − 0.002Time2, R2 = 0.995). Sex was included as dummy variable, but did not contribute significantly; hence, there were no differences in growth trajectories between males and females. The study showed there were no significant differences in body wet weight or FCR between males and females. However at the end of the experiment the female urchins had a significantly higher GI of 31.1% (±4.4), compared with the male urchins which had an average GI of 26.8% (±5.4). In conclusion, the present study showed that male and female green sea urchins have the same growth capacity and feed convention ratio but by the end of the experiment the gonad index was significantly higher in female than male urchins.  相似文献   

3.
The influence of incubation light intensity on development and hatching success of the lingcod (Ophiodon elongatus Girard) was studied by determining time to hatch, per cent hatch (total and viable) and per cent of deformities for embryos incubated at three different light intensities: ~0, 1, and 563 lux. Photoperiod for the last two treatments was 16 h dark: 8 h light. Chemical parameters throughout incubation remained within acceptable ranges. Hatching in all treatments began 43 days post fertilization (353 °C days) and was complete on day 46 (377 °C days), with peak hatch for all treatments on day 44 (361 °C days). Per cent viable hatch for eggs incubated in the 1 lux treatment (88.6 ± 2.1%; mean ± SEM) was significantly greater than eggs incubated in the ~0 lux (59.6 ± 11.3%) and 563 lux (61.4 ± 9.2%) treatments. A significantly greater per cent of deformed embryos with curled bodies occurred at 563 lux (9.5 ± 2.6%) compared with the 1‐lux treatment (2.5 ± 0.6%). No significant differences for the other categories of deformities (ball, short, distended gut) were detected among treatments. Total deformities (all categories combined) for ~0 lux (16.0 ± 4.2%) and 563 lux (17.2 ± 3.3%) were significantly greater than total deformities for 1 lux (5.0 ± 1.4%).  相似文献   

4.
The effect of water temperature on growth and food intake of juvenile peled Coregonus peled was tested with specimens of initial age 75 days and 230 days posthatching (dph). The 75‐day group (initial body weight 0.6 ± 0.04 g) were reared for 63 days and 230‐day group (initial body weight 13.75 ± 2.93 g) for 42 days at temperatures of 13, 16, 19, 22 and 25°C under 12:12 L:D photoperiod. The optimal temperature range for the 75 dph fish was found to be 19–22°C. The fish reached final mean weight of 9.7 ± 2.5 g at 19°C and 9.0 ± 2.7 g at 22°C. Final mean weight of 230 dph fish did not differ significantly among temperature groups. Mortality increased at higher temperatures, with the critical temperature of 25°C for both age groups. Maximum food intake (19.0 ± 4.7, 18.8 ± 5.2, 18.6 ± 4.6 g kg?1biomass) was observed in groups reared at temperatures of 19, 22 and 25°C with no significant differences among groups.  相似文献   

5.
Natural spawning, early development and larviculture of the ornate goby Istigobius ornatus in captivity were studied for the first time. I. ornatus spawned 46 times from 31 October 2013 to 31 October 2014. Fecundity ranged from 246 to 10,214 eggs per clutch, with an average hatching rate of 77.8% ± 9.9% (M ± SEM). Fertilized eggs (1.31–1.54 × 0.46–0.50 mm in diameter) were adhesive demersal and oval‐shaped. Embryonic development lasted 84 hr at 27.5 ± 0.5°C. Newly hatched larvae [2.12 ± 0.04 mm in total length (TL)] transformed to the juvenile stage completely when TL was 7.79 mm. Effects of different water temperatures (24, 28 and 32°C) and salinities (10, 15, 20, 25, 30, 35 and 40 g/L) on per cent survivals (%) and survival activity indices (SAIs) were tested. Survival was not significantly different under different temperatures; SAIs was significantly higher at 28°C. Larvae showed the significantly higher survival and SAIs at salinities 10–30 g/L than at 35 and 40 g/L. Effect of different prey densities on survival was significantly higher in 7 days post hatch larvae fed 20 and 30 rotifers/ml. These findings could guide future programs in captive breeding technology development and commercial production of other marine ornamental gobies.  相似文献   

6.
Mithraculus forceps (A. Milne Edwards) has demonstrated a great potential for ornamental aquaculture and the present study tests the effects of temperature, stocking density and diet on the survival and growth of M. forceps juveniles. For 28 days post metamorphosis (DPM), the newly metamorphosed juveniles were reared at two temperatures (25±0.5 or 28±0.5°C), stocked at five densities (1, 5, 15, 30 or 60 crabs ring−1; approximately 226, 1132, 3395, 6791 or 13 581 crabs m2 respectively) and fed with commercial pellets (CP), microalgae (Amphora spp.), live newly hatched Artemia nauplii (NHA), frozen Artemia nauplii (FNHA), or combinations of each of these diets with NHA. At the end of the temperature experiment, carapace width of the crabs cultured at 28°C was significantly larger than the crabs reared at 25°C and average intermolt period was significantly shorter. Increased stocking density had a negative effect on survivorship and growth. Survivorship at the end of the diet experiment was significantly different between the crabs not fed, fed with CP and Amphora and the crabs fed with the other diets. Between the diet treatments, the crabs fed with NHA+Amphora were significantly larger than the ones fed with NHA+FNHA, NHA, FNHA and NHA+CP, and these in turn larger than ones fed with Amphora.  相似文献   

7.
The goal of this study is to develop a larviculture protocol for Mithraculus forceps, a popular marine aquarium species. Different temperatures (25±0.5°C and 28±0.5°C), stocking densities (10, 20, 40 and 80 larvae L?1), prey densities (newly hatched Artemia of 1, 4, 7 and 12 nauplii mL?1) and metamorphosis to crab conditions (Systems A and B) were tested. The best survivorship and faster development were obtained when the larvae were reared at a density of 40 larvae L?1 for 7 days post hatching (DPH) in System A, at 28°C and fed with 7 mL?1 of newly hatched Artemia nauplii. After 7 DPH all the megalopa were moved to System B and the same temperature and prey density were maintained. At the end of the experiment, 12 DPH, survivorship of 74.1±4.8% was obtained.  相似文献   

8.
The critical thermal maximum of juvenile spotted seatrout (SL range 18–33 mm) was determined using a temperature increase of +0.26°C per hour. The critical thermal maximum (water temperature that was lethal to 50% of the test fish [LT50]) for trial 1 was LT50 = 38.8°C, LT50 = 39.4°C for trial 2, and LT50 = 38.9°C for trial 3. Critical thermal maximums differed significantly (P < 0.05) between trials 2 and 3, whereas trial 1 did not differ among trials. This difference correlated with body size, where fish in trial 2 were significantly larger (P < 0.05) (mean = 27.6 ± 2.0 mm in SL) (mean ± SE) than the fish of trials 1 (mean = 23.1 ± 0.5 mm in SL) and 3 (mean = 21.5 ± 0.7 mm in SL), suggesting positive size dependence in the critical thermal maximum.  相似文献   

9.
The effects of temperature on growth and survival of juvenile blackfoot abalone, Haliotis iris, were investigated. Animals of 10, 30 or 60 mm initial shell length were exposed to ambient (6–10°C), 14, 18, 22 and 26°C for 112 days in a flow‐through culture system. Maximum growth occurred at 22°C for the 10 and 30 mm size classes and at 18°C for the 60 mm size class. Regression analysis identified the optimal temperature for growth (ToptG) at around 21°C for the 10 and 30 mm size classes and at 17–18°C for the largest size class. In a second experiment, the critical thermal maximum of H. iris was determined as a measure of thermal tolerance. Abalone were subjected to increasing water temperatures at a rate of 2°C h?1 until they detached from the substrate. Abalone of 10 mm displayed greater thermal tolerance than abalone of 30 and 60 mm in length. CT50 temperatures were 28.8, 27.7 and 27.8°C, yielding deduced ToptG values of 19.7, 18.3 and 18.4°C for the 10, 30 and 60 mm size classes respectively. The size‐dependent nature of the relationship between growth and temperature could be capitalized upon in recirculating aquaculture systems.  相似文献   

10.
The effect of incubation temperature on embryonic development and yolk‐sac larva of the Pacific red snapper Lutjanus peru were evaluated by testing the effect of 26, 28 and 30°C, as this is the natural thermal interval reported during the spawning season of Pacific red snapper in the Gulf of California, Mexico. Sixteen developmental stages were observed. The incubation temperature affected the rate of development and time to hatching, being shorter at 30 than at 26°C, but no significant effect (P < 0.05) on larval length at hatching was registered. The depletion rate of yolk sac and oil globule was affected by incubation temperature particularly during the first 12 h post hatching (hph). At the end of the experiment (48 hph), significantly (P < 0.05) larger larvae were recorded at 26°C (TL = 3.22 ± 0.01 mm) than at 28° (TL = 3.01 ± 0.02 mm) and 30°C (TL = 2.97 ± 0.05 mm). Incubation of newly fertilized eggs at 26°C produces larger larvae, which may help to improve feeding efficiency and survival during first feeding.  相似文献   

11.
ABSTRACT

To determine the minimum age/size at which Southern Flounder, Paralichthys lethostigma, can safely be moved to outdoor rearing facilities in Texas, we examined survival of simulated temperature drops in two distinct life stages: premetamorphic larvae and two size classes of postmetamorphic juveniles (small = 9.8 ± 0.3 mm in TL; large = 19.7 ± 0.6 mm). Temperature was lowered by ?0.33°C/h to 4°C, 7°C, or 10°C, held for 48 h and then raised at +0.33°C/h back to normal rearing temperature. Fish were monitored daily for survival. Larger postmetamorphic flounder had high survival for all temperature treatments (89%–100% survival), whereas both premetamorphic larvae and smaller postmetamorphic juveniles had low survival (<30%) for all temperature treatments.  相似文献   

12.
In this study, we evaluated protein and carbohydrate levels in cold‐extruded dry diets. Sea urchins (12.6 ± 0.12 SE g wet weight, 29.5 ± 0.11 SE mm diameter) were collected from St. Joseph Bay, Florida (30°N, 85.5°W), and transported to the Texas Agrilife Research Mariculture Laboratory in Port Aransas, Texas. Urchins were held individually in replicated enclosures within a recirculating seawater system (32 ± 2 ppt and 22 ± 2 C). Urchins (n = 16urchins) were fed diets that differed in protein : carbohydrate levels (31:33%, 25:39%, 21:44%, and 17:47% dry weight) for 12‐wk. Survival was 100% in all diet treatments. Urchins fed the 31:33% protein : carbohydrate diet consumed less feed, more dry protein, less dry carbohydrate, less energy, and had lower feed conversion ratios than urchins fed other diets. Urchins fed the 31:33% protein : carbohydrate diet had larger test diameters, total wet weights, production efficiencies, and gonad production efficiencies than urchins in the other diets. Weight gain varied directly and significantly with protein intake. Sufficient energy was available for maximum weight gain as protein was spared. Growth rates and production efficiencies for the urchins in this study were higher than in previous feeding studies with adult Lytechinus variegatus.  相似文献   

13.
Monosex male culture of C. quadricarinatus is proposed for increasing yields because males reach a larger size at harvest than females. An experiment was done to evaluate the effects of androgenic gland extract and temperature on sex reversal and somatic growth in early juvenile females. Females were exposed to the following experimental conditions: C: control food and temperature maintained at 26 ± 1°C; HT (high temperature): control food and temperature maintained at 28.5 ± 1°C; VHT (very high temperature): control food and temperature maintained at 31 ± 1°C; AG: food with enriched with androgenic gland (1/10 dose for each juvenile per day) and temperature maintained at (26 ± 1)°C. The juveniles were weighed, sexed, and growth increment (GI) and growth rate (GR) were calculated twice a month. The HT and AG groups differed from the C group in GI and GR indicating a greater somatic growth. At the end of the experiment, the HT and AG groups had similar weight but only the HT group had enhanced oocyte diameter, with some vitellogenic oocytes compared to the C group. In the HT group, there was significant sex reversal, as indicated by development of male and intersex male characteristics in different individuals. Both temperature and AG diet have a high potential for culture of this species because of their enhancement of somatic growth; higher temperature increases the proportion of males, a desirable characteristic of cultured populations.  相似文献   

14.
Juvenile Strongylocentrotus droebachiensis (average wet weight = 4.0 g) were held at three initial stocking densities (15, 30 and 60 animals per tray, which equates to 0.25, 0.5 and 1 kg sea urchins/m2 surface area, respectively) under constant light and temperature conditions (LD 24:0 and 8.8°C) for 380 days. The somatic growth and survival of the urchins were monitored during this period, and the gonad index (GI) was measured at the conclusion of the experiment. The sea urchins in the two lowest stocking density groups had 100% survival after 380 days in contrast to the highest stocking density group, which only had 67% survival at the conclusion of the experiment. Somatic growth was significantly higher in the lowest density group than in the medium density group, and this in turn was significantly higher than in the high-density group. The injury occurrence was highest in the high-density group (20%), lower in the medium group (7%), and there were no injuries observed (0%) in the low density groups. There were no significant differences in GI between the groups at the end of the experiment. In conclusion, the present study showed that stocking density has significant effects on somatic growth and survival of juvenile green sea urchin, S. droebachiensis and should be taken into consideration when designing sea urchin holding systems.  相似文献   

15.
The effects of water temperature on pollack (Pollachius pollachius) spawning features were individually assessed. During the spawning period, nine fish sets, each composed of one female and two males (mean body weight: 2.5±1.0 kg), were placed in small-volume tanks (2 m3). Fish sets were held at 8, 10, or 12 °C (n=3 for each temperature).Three females released eggs at 8 and 10 °C, while only two spawned at 12 °C. One hundred thirty-one individual spawns were collected from the eight spawning fish sets. The number of spawns collected per female was significantly lower at 12 °C (3.0±3.6), compared to 10 °C (17.3±10.1) and 8 °C (23.3±2.5). Egg number (eggs kg−1 BW) was significantly lowered at 12 °C (26,068±35,989) compared to 10 °C (323,230±136,796) and 8 °C (599,612±249,545). The number of viable eggs (eggs kg−1 BW) was significantly lower at 12 °C (4,175±7,167) compared to 8 °C (192,034±145,870).When incubated at a common temperature of 10 °C, hatching and malformation percentages were significantly enhanced for breeders maintained at 8 °C (respectively, 35.8±8.5–7.3±1.4%) compared to 10 °C (9.8±8.0–2.3±1.8%). Then, pooling data were recorded at the three temperatures; a significant decrease of egg diameter with time was observed.The individual reproductive activity of pollack experienced by breeders was deeply affected by temperature during the spawning period. A temperature of 12 °C is suggested to be close to the temperature reproduction upper limit in this species.  相似文献   

16.
We evaluated the effect of four densities (940, 1880, 3760, 7520 eggs cm?2 and 0.5, 1, 2, 4 ind mL?1 of embryos and larvae, respectively) and four temperatures (8, 11, 14, 17°C) on early growth and survival of the sea urchin Strongylocentrotus purpuratus. Prism‐stage length was significantly greater in embryos initially held at 940 and 1880 eggs cm?2 than in those held at 3760 and 7520 eggs cm?2. Larvae grew significantly faster and had significantly greater survival when reared at 0.5 or 1 ind mL?1 than when held at 2 or 4 ind mL?1. Embryos had greater survival at 11 and 14°C than at 8 and 17°C, whereas embryo length was significantly smaller at 8°C than at 11, 14 or 17°C. Larvae grew significantly slower at 8°C than at 11, 14 or 17°C, whereas survival was significantly reduced at 8 and 17°C compared with 11 and 14°C. Per cent survival from prism to metamorphic competency in the best treatments was 48.9 ± 2.2% and 50.0 ± 3.6% (mean ± SE) for the 1 ind mL?1 and 11°C treatments, respectively. On the basis of these results, for rearing of S. purpuratus under static conditions, we recommend that fertilized eggs and larvae be held at ≤1880 eggs cm?2 and ≤1 ind mL?1, respectively, and at 11–14°C.  相似文献   

17.
Critical thermal minima (CTMin) were determined for subadults of Penaeus merguiensis acclimated at 15, 18, 21 and 24 °C for 3 weeks. The effect of cooling rate on CTMin was also investigated. The CTMin of prawns from these respective acclimation groups were 5.3, 6.0, 7.4, 9.0 and 4.7, 5.4, 6.0, 7.3 °C at the cooling rate of 1 °C h?1 and 3 °C h?1 respectively. Both acclimation temperature and cooling rate had a significant effect (P < 0.01) on the CTMin. Observation during the acclimation period showed that the growth rate of prawns acclimated at 24 °C was much higher than those acclimated at 21, 18 and 15 °C. The results indicate that P. merguiensis can overwinter in aquaculture ponds in south‐east Queensland, Australia, or other subtropical areas and attain good growth if simple overwintering facilities are available.  相似文献   

18.
To investigate the interactive effects of temperature and photoperiod on the growth performance, feeding parameters and muscle growth dynamics in juvenile Atlantic halibut (Hippoglossus hippoglossus L.), a total of 1212 juvenile halibut, including 383 tagged fish (mean initial weight of tagged individuals: 17.6 ± 0.3 g SE), were reared under a simulated natural light regime for Bergen (60°25′N) or continuous light at 9, 12 and 15 °C from 3 December 2007 until 11 March 2008. The mean weight and growth rate were significantly higher at 12 and 15 °C than at 9 °C. In addition, significantly higher mean weight and growth rate were observed in halibut reared under continuous light at a low temperature, indicating an interactive effect of temperature and photoperiod on growth performance. No effect of temperature or photoperiod was found with respect to feed conversion efficiency, whereas a higher feed consumption at increasing temperature and a higher overall daily feeding rate at continuous light at a low temperature were observed. Indications of continuous light having a stronger effect at low temperatures on muscle growth dynamics were found. A difference in the size class distribution of fibre diameter was found between photoperiod treatments at 9 °C, suggesting that continuous light resulted in elevated hypertrophic growth at low temperature. This may suggest that the increased growth rate found at continuous light at 9 °C may be a result of hypertrophic growth in juvenile halibut.  相似文献   

19.
The interactive effects of salinity and temperature on development and hatching success of lingcod, Ophiodon elongatus Girard, were studied by incubating eggs at four temperatures (6, 9, 12 and 15°C) and five salinities (15, 20, 25, 30 and 35 g L?1). Hatch did not occur in any of the 15°C treatments. Degree days (°C days) to first hatch was not influenced by temperature or salinity, however, calendar days to first hatch differed significantly for temperature (P<0.0001, 61±1, 44±1 and 35±1 days for 6, 9 and 12°C respectively). Degree days to 50% (427.1±4.2) hatch was not significantly influenced by temperature but was by salinity (P=0.0324). Viable hatch (live with no deformities, 74.1±4.0%) was greatest at 9°C and 25 g L?1 but not significantly different in the range of 20–30 g L?1. Larval length (9.4±0.13 mm) was greatest at 9°C and 20–30 g L?1. Temperature and salinity significantly influenced all categories of deformities with treatments at the upper (12°C and 35 g L?1) and lower limits (6°C and 15 g L?1) producing the greatest deformities. The optimal temperature and salinity for incubating Puget Sound lingcod eggs was found to be 9°C and 20–30 g L?1.  相似文献   

20.
Calanoid copepods, including species of the genus Acartia, are commonly used as larval diets for marine finfish. This study aimed to determine the separate effects of water temperature (18, 22, 24, 28° ± 0.5°C) and photoperiod (24L:0D; 18L:6D; 12L:12D; 8L:18D; 0L:24D) on Acartia grani egg production (EP), hatching rate (EHR) and population growth. Egg production rate was not affected by the two abiotic parameters. A. grani eggs incubated at T24°C and T28°C were the first to achieve 50% hatching rate (23–25 hr), with significant differences at the end of the experiment (48 hr) between T28°C treatment (EHR 88 ± 5%) and T18°C treatment (EHR 65 ± 2%). However, different temperature regimes did not affect final number of individuals in population growth experiment. Still, when eggs were excluded from data, population at lower temperatures (18°C) was mainly composed by the nauplii stage (72%), while at higher temperatures (24°C and 28°C) more than 60% of the population was composed by copepodites and adults. A. grani subjected to long‐day photoperiods had significantly lower EHR (16.7% at 24L:0D; 20.8% at 18L:6D) than at short‐day photoperiods (52.6% at 6L:18D; 50.0% at 0L:24D). In population growth experiment, eggs were the most common life stage after 12‐day culture. Lowest population number was found at constant light conditions (665.0 ± 197.1), suggesting higher metabolic rates and depletion of energy reserves in long‐day conditions. This study expanded knowledge on the biological response of A. grani to separate temperature and photoperiod regimes, and provided ground to improve the culture of this potential life feed species for hatcheries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号