首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bovine respiratory syncytial virus (BRSV) is a respiratory pathogen of cattle that causes severe disease in calves alone and as one of several viruses and bacteria that cause bovine respiratory disease complex. Like human RSV this virus modulates the immune response to avoid stimulation of a vibrant CD8+ T cytotoxic cell response and instead promotes a Th2 response. The Th2 skew sometimes results in the production of IgE antibodies and depresses production of the Th1 cytokine interferon γ. Innate immune cells have a pivotal role in guiding the adaptive response to BRSV, with selective secretion of cytokines by pulmonary dendritic cells. Here we review some of the pertinent observations on immune responses to BRSV infection and vaccination and illustrate how experimental infection models have been used to elucidate the immunopathogenesis of BRSV infection. Recent experiments using intranasal vaccination and/or immune modulation with DNA based adjuvants show promise for effective vaccination by the stimulation of Th1 T cell responses.  相似文献   

2.
Bovine respiratory disease complex (BRDC) is the major cause of serious respiratory tract infections in calves. The disease is multifactorial, with either stress or reduced immunity allowing several pathogens to emerge. We investigated the susceptibility of bovine airway epithelial cells (BAEC) to infection by the three major viruses associated with the BRDC: bovine respiratory syncytial virus (BRSV), bovine herpesvirus type 1 (BHV-1) and bovine parainfluenza virus type 3 (BPIV3). For this purpose, two culture systems for well-differentiated BAEC were used: the air-liquid interface (ALI) system, where filter-grown BAEC differentiate into a pseudostratified respiratory epithelium and precision-cut lung slices (PCLS) where BAEC are maintained in the original tissue organisation. Comparative infection studies demonstrated that entry and release of BPIV3 occurred specifically via the apical membrane with ciliated cells being the major target cells. By contrast, airway epithelial cells were largely resistant to infection by BHV-1. When the epithelial barrier was abolished by opening tight junctions or by injuring the cell monolayer, BHV-1 infected mainly basal cells. Respiratory epithelial cells were also refractory to infection by BRSV. However, this virus infected neither differentiated epithelial cells nor basal cells when the integrity of the epithelial barrier was destroyed. In contrast to cells of the airway epithelium, subepithelial cells were susceptible to infection by BRSV. Altogether, these results indicate that the three viruses of the same disease complex follow different strategies to interact with the airway epithelium. Possible entry mechanisms are discussed.  相似文献   

3.
4.
Human and bovine respiratory syncytial virus: immunopathologic mechanisms   总被引:2,自引:0,他引:2  
Human respiratory syncytial virus (HRSV) is the major respiratory tract pathogen of infants and young children. Bovine respiratory syncytial virus (BRSV) is recognised as an important cause of respiratory tract disease in calves. Both of these viruses and their respective diseases share many similarities. Immunopathologic mechanisms have been proposed to be involved in the pathogenesis of respiratory syncytial virus (RSV) infections. This review examines the current understanding of the role of immunopathologic mechanisms in RSV infections. The role of vaccines in inducing hypersensitivity is also examined. Additionally, non-immunopathogenic mechanisms involved in RSV infections are discussed.  相似文献   

5.
The morphogenesis and repair of airway and alveolar injury induced by bovine respiratory syncytial virus (BRSV) was studied ultrastructurally in conventional calves to characterize pulmonary cell types susceptible to viral infection and cytopathologic changes associated with infection. Viral nucleocapsids and budding virions were present in tracheal and bronchial ciliated and nonciliated epithelial cells and mucous cells 3, 5, and 7 days after inoculation and in bronchiolar ciliated and nonciliated epithelial cells 5 days after inoculation. Mild interstitial pneumonia was observed 5 days after inoculation and was characterized by swelling of type 1 and type 2 alveolar epithelial cells, interstitial edema, and infiltration by lymphocytes and macrophages. Viral assembly and release in tracheal and bronchial epithelial cells was associated with loss of cilia from ciliated cells, formation of syncytial epithelial cells, swelling of mitochondria and endoplasmic reticulum, and cell necrosis. Neutrophils, lymphocytes, and macrophages were present in close association with the viral-infected and damaged epithelial cells. There was intercurrent hyperplasia of basal epithelial cells that, in association with other epithelial lesions, resulted in the loss of normal ciliated epithelium in these airways 5 and 7 days after inoculation. Regeneration of airway epithelium was largely completed by 10 days after inoculation, except in 1 of 4 calves that had failure of epithelial repair and that developed secondary bacterial pneumonia. Pulmonary ultrastructure in BRSV-inoculated calves 30 days after inoculation was indistinguishable from that in controls. The results demonstrated that BRSV can induce reversible alterations in airway epithelium, which may cause depression of mucociliary clearance and thereby enhance susceptibility to bacterial infection.  相似文献   

6.
Bovine respiratory syncytial virus (BRSV) is a major cause of respiratory disease in calves. BRSV infection is associated with epithelial cell death and inflammation. Over the past few years, a growing number of viruses have been found to induce apoptosis. In order to determine the ability of BRSV to induce apoptosis, we studied the effect of BRSV infection in cultured MDBK cells. We used ligation-mediated PCR assay to detect specific blunt-end cellular DNA fragments produced by cellular endonucleases cleaving the genomic DNA between the nucleosomes during apoptosis. We found that BRSV infection resulted in apoptosis in MDBK cells. This data demonstrates for the first time that BRSV can induce apoptosis. This data also may contribute to delineate the mechanisms that regulate tissue injury and potential lung repair following BRSV infection.  相似文献   

7.
8.
Bovine respiratory syncytial virus (BRSV) causes severe respiratory disease in young cattle. Much like the human respiratory syncytial virus, BRSV induces immunomodulation in the infected host, favoring a Th2 response. Several groups have demonstrated IgE responses to BRSV proteins during infection and particularly in response to vaccination with formalin-inactivated vaccine in the field and experimentally. Newer vaccine modalities that favor a shift to Th1 cytokine production have provided promising results. Infection with BRSV is a major contributor to the multi-pathogen disease, bovine respiratory disease complex. This review stresses the unique immunomodulatory aspects of BRSV infection, vaccination and its interaction with the host's immune system.  相似文献   

9.
Bovine respiratory syncytial virus (BRSV) has been recognised as an important pathogen in calf pneumonia for 30 years, but surprisingly few effective infection models for studies of the immune response and the pathogenesis in the natural host have been established. We present a reproducible experimental infection model for BRSV in 2-5-month-old, conventionally reared Jersey calves. Thirty-four colostrum-fed calves were inoculated once by aerosol and intratracheal injection with BRSV. Respiratory disease was recorded in 91% of the BRSV-inoculated calves, 72% had an accompanying rise in rectal temperature and 83% exhibited >5% consolidation of the lung tissue. The disease closely resembled natural outbreaks of BRSV-related pneumonia, and detection of BRSV in nasal secretions and lung tissues confirmed the primary role of BRSV. Nine mock-inoculated control calves failed to develop respiratory disease. This model is a valuable tool for the study of the pathogenesis of BRSV and for vaccine efficacy studies.  相似文献   

10.
Bovine respiratory syncytial virus (BRSV) infection is the major cause of respiratory disease in calves during the first year of life. The study of the virus has been difficult because of its lability and very poor growth in cell culture. However, during the last decade, the introduction of new immunological and biotechnological techniques has facilitated a more extensive study of BRSV as illustrated by the increasing number of papers published. Despite this growing focus, many aspects of the pathogenesis, epidemiology, immunology etc. remain obscure. The course and outcome of the infection is very complex and unpredictable which makes the diagnosis and subsequent therapy very difficult. BRSV is closely related to human respiratory syncytial virus (HRSV) which is an important cause of respiratory disease in young children. In contrast to BRSV, the recent knowledge of HRSV is regularly extensively reviewed in several books and journals. The present paper contains an updated review on BRSV covering most aspects of the structure, molecular biology, pathogenesis, pathology, clinical features, epidemiology, diagnosis and immunology based on approximately 140 references from international research journals.  相似文献   

11.
Bovine respiratory syncytial virus (BRSV), a member of the subfamily Pneumovirinae, family Paramyxoviridae, is a major cause of respiratory disorders in young cattle. A number of studies were conducted to validate a reliable animal model for the infection, since BRSV inoculation on the natural host is costly and often unsuccessful. Unfortunately, after inoculation of BRSV in Balb/C mice, viral replication may be detected; however, evident pathological alterations are absent on the experimentally infected animals. In order to establish a mice model that could be used further for preliminary studies of pathological and immunological aspects of BRSV infection, three mice inbred lineages (Balb/C, A/J and C57BL6), possessing different genetic backgrounds, were tested about its susceptibility to the inoculation with BRSV. Animals were inoculated through the nasal and ocular routes and were observed after inoculation. At 7 days post-inoculation (dpi) animals were necropsied and virological (virus isolation and viral nucleic acid amplification) as well as histopathological examinations were performed. A/J and C57BL6 showed interstitial pneumonia, when compared to the Balb/C group. These findings shows that mice may constitute a suitable model for the study of BRSV infections, depending on the mice strain used for experimental inoculations.  相似文献   

12.
In a group of 60 Belgian White Blue calves less than 8 months old still housed in barns, a bovine respiratory syncytial virus (BRSV) outbreak was revealed on the basis of a direct diagnosis (immunofluorescence and virus isolation) performed on the lungs of dead animals, and the kinetics of BRSV neutralizing antibodies. Clinical signs, macroscopical and microscopical pulmonary lesions were also compatible with a BRSV infection. This outbreak is peculiar because the 35 oldest calves (204 +/- 29 days old) had been vaccinated 3-4 months before with an inactivated BRSV vaccine and 30% of these animals had died of respiratory distress. While they experienced a mild respiratory symptomatology, no death was recorded among the 25 youngest calves (69 +/- 29 days old) which had been left unvaccinated. Another peculiarity was found at the histological level where a massive infiltration of eosinophils was demonstrated in the pulmonary tissues of the dead animals. Together these data parallel the dramatic story described 30 years ago in children previously vaccinated with a formalin-inactivated human RSV (HRSV) vaccine upon a natural HRSV challenge. This illustrates that an immunopathological phenomenon also takes place after BRSV vaccination in cattle.  相似文献   

13.
Severe respiratory disease associated with bovine respiratory syncytial virus (BRSV) infection has been identified in dairy cattle in New York State. The cases identified occurred in dairy calves and heifers. The disease was characterized in 4 animals by pathologic changes including interstitial pneumonia, necrotizing bronchiolitis with multinucleated syncytial epithelial cells and interstitial emphysema. BRSV antigen was demonstrated in lung samples or was isolated in tissue culture in all 4 cases. A retrospective survey of 6279 bovine diagnostic accessions between 1977 and 1982 revealed 66 cases of interstitial pneumonia, often with concurrent bronchiolitis. In this 5 year period, only 1 case in 1981 had interstitial pneumonia and bronchiolitis with pathologic features consistent with BRSV infection. It is concluded that pathogenic BRSV has entered New York State and that it is contributing to clinical respiratory disease in dairy cattle.  相似文献   

14.
Respiratory syncytial virus (RSV) causes severe lower respiratory tract infection in children and calves. Antibodies to ovine RSV (ORSV) are common in sheep, but the clinical disease is not well defined. There is no report of ORSV infection in Australian sheep although respiratory distress syndrome has been described. This discrepancy may be due to the lack of a suitable diagnostic test. In this report, we have characterised the ORSV G protein in an attempt to study its relatedness to human and bovine RSV (HRSV, BRSV) and for use in the development of a suitable diagnostic assay. Full length and a truncated variant of ORSV G protein were expressed in mammalian cells and the expressed proteins characterised by indirect immunofluorescence and radioimmunoprecipitation assays. Our results indicate that like HRSV, the ORSV G protein is heavily glycosylated. The expressed protein was membrane bound as well as secreted and could be purified from culture supernatants and may be suitable for use in development of a diagnostic assay.  相似文献   

15.
Bovine respiratory syncytial virus (BRSV) is a major cause of respiratory disease in calves resulting in a substantial economic loss for the cattle industry worldwide. In order to determine the presence of BRSV in Uruguay, an immunoenzymatic test was set up, using a recombinant BRSV nucleocapsid (N) protein as the antigen. The N protein was produced in Sf9 insect cells by a recombinant baculovirus expressing the N protein. Serum samples collected from one hundred cattle from four different geographic regions of Uruguay were analyzed. Antibodies against the N protein of BRSV were detected in 95% of the serum samples analyzed. These results show for the first time the presence of BRSV antibodies and suggest a widespread BRSV infection in the cattle population of Uruguay.  相似文献   

16.
Mycoplasma ovipneumoniae (M. ovipneumoniae) is a bacterium that specifically infects sheep and goat and causes ovine infectious pleuropneumonia. In an effort to understand the pathogen–host interaction between the M. ovipneumoniae and airway epithelial cells, we investigated the host inflammatory response using a primary air–liquid interface (ALI) epithelial culture model generated from bronchial epithelial cells of Ningxia Tan sheep (Ovis aries). The ALI culture of sheep bronchial epithelial cells showed a fully differentiated epithelium comprising distinct epithelial types, including the basal, ciliated and goblet cells. Exposure of ALI cultures to M. ovipneumoniae led to increased expression of Toll-like receptors (TLRs), and components of the myeloid differentiation factor 88 (MyD88)-dependent TLR signaling pathway, including the MyD88, TNF receptor-associated factor 6 (TRAF6), IL-1 receptor-associated kinases (IRAKs) and nuclear factor-kappa B (NF-κB), as well as subsequent pro-inflammatory cytokines in the epithelial cells. Of interest, infection with M. ovipneumoniae failed to induce the expression of TANK-binding kinase 1 (TBK1), TRAF3 and interferon regulatory factor 3 (IRF3), key components of the MyD88-independent signaling pathway. These results suggest that the MyD88-dependent TLR pathway may play a crucial role in sheep airway epithelial cells in response to M. ovipneumoniae infection, which also indicate that the ALI culture system may be a reliable model for investigating pathogen–host interactions between M. ovipneumoniae and airway epithelial cells.  相似文献   

17.
Bovine respiratory syncytial virus (BRSV) and Haemophilus somnus are two bovine respiratory pathogens that cause disease singly or as part of a polymicrobial infection. BRSV infection is often associated with a predisposition towards production of a T helper type 2 (Th2) response and IgE production. In contrast, an IgG2 response to H. somnus has been shown to be most important for recovery. An experiment was performed to evaluate the hypothesis that infection with H. somnus on day 6 of experimental BRSV infection would result in disease enhancement and potentially an altered immune response when compared with single infection. Three groups of calves were either dually infected or singly infected with H. somnus or BRSV. Serum and bronchoalveolar lavage fluid (BALF) pathogen specific IgG1, IgG2, IgE, and IgA responses were evaluated by ELISA. TaqMan RT-PCR was used to examine cytokine gene expression by PBMC and BAL cells. Clinical signs were evaluated for 28 days after BRSV infection, followed by necropsy and histological examination of the lungs. In dually infected calves, disease was significantly more severe, H. somnus was isolated from the lungs at necropsy, and high IgE and IgG responses were detected to H. somnus antigens. Cytokine profiles on day 27 were elevated in dually infected calves, but did not reflect a skewed profile. These results contrasted with singly infected calves that were essentially normal by day 10 of infection and lacked both lung pathology and the presence of H. somnus in the lung at necropsy. The increase in IgE antibodies specific for antigens of H. somnus presents a possible mechanism for pathogenesis of the disease enhancement.  相似文献   

18.
An experiment was conducted to reproduce respiratory tract disease with bovine respiratory syncytial virus (BRSV) in one-month-old, colostrum-fed calves. The hypothesized role of viral hypersensitivity and persistent infection in the pathogenesis of BRSV pneumonia was also investigated. For BRSV inoculation a field isolate of BRSV, at the fifth passage level in cell culture, was administered by a combined respiratory tract route (intranasal and intratracheal) for four consecutive days. Four groups of calves were utilized as follows: Group I, 6 calves sham inoculated with uninfected tissue culture fluid and necropsied 21 days after the last inoculation; Group II, 6 calves inoculated with BRSV and necropsied at the time of maximal clinical response (4-6 days after the last inoculation); Group III, 6 calves inoculated with BRSV and necropsied at 21 days after the last inoculation; Group IV, 6 calves inoculated with BRSV, rechallenged with BRSV 10 days after initial exposure, and necropsied at 21 days after the initial inoculation. Clinical response was evaluated by daily monitoring of body temperature, heart rate, respiratory rate, arterial blood gas tensions, hematocrit, total protein, white blood cell count, and fibrinogen. Calves were necropsied and pulmonary surface lesions were quantitated by computer digitization. Viral pneumonia was reporduced in each principal group. Lesions were most extensive in Group II. Disease was not apparent in Group I (controls). Significant differences (p less than 0.05) in body temperature, heart rate, respiratory rate, arterial oxygen tension, and pneumonic surface area were demonstrated between control and infected calves. Results indicate that severe disease and lesions can be induced by BRSV in one-month-old calves that were colostrum-fed and seropositive to BRSV. BRSV rechallenge had minimal effect on disease progression. Based on clinical and pathological response, results did not support viral hypersensitivity or persistent infection as pathogenetic mechanisms of BRSV pneumonia.  相似文献   

19.
OBJECTIVE: To evaluate the effect of infection with bovine respiratory syncytial virus (BRSV) on clearance of inhaled antigens from the lungs of calves. ANIMALS: Eleven 6- to 8-week-old Holstein bull calves. PROCEDURES: Aerosolized (99m)technetium ((99m)Tc)-labeled diethylene triamine pentacetate (DTPA; 3 calves), commonly used to measure integrity of the pulmonary epithelium, and (99m)Tc-labeled ovalbumin (OA; 8 calves), commonly used as a prototype allergen, were used to evaluate pulmonary clearance before, during, and after experimentally induced infection with BRSV or sham inoculation with BRSV. Uptake in plasma (6 calves) and lung-efferent lymph (1 calf) was examined. RESULTS: Clearance of (99m)Tc-DTPA was significantly increased during BRSV infection; clearance of (99m)Tc-OA was decreased on day 7 after inoculation. Clearance time was correlated with severity of clinical disease, and amounts of (99m)Tc-OA in plasma and lymph were inversely correlated with clearance time. Minimum amounts of (99m)Tc-OA were detected at time points when pulmonary clearance of (99m)Tc-OA was most delayed. CONCLUSIONS AND CLINICAL RELEVANCE: BRSV caused infection of the respiratory tract with peak signs of clinical disease at 7 or 8 days after inoculation. Concurrently, there was a diminished ability to move inhaled protein antigen out of the lungs. Prolonged exposure to inhaled antigens during BRSV infection may enhance antigen presentation with consequent allergic sensitization and development of chronic inflammatory lung disease. IMPACT FOR HUMAN MEDICINE: Infection of humans with respiratory syncytial virus early after birth is associated with subsequent development of allergic asthma. Results for BRSV infection in these calves suggested a supportive mechanism for this scenario.  相似文献   

20.
Cytokines in the pathogenesis of influenza   总被引:6,自引:0,他引:6  
Uncomplicated influenza in humans, horses or swine is characterized by massive virus replication in respiratory epithelial cells, inflammation and an abrupt onset of general and respiratory disease. There is now growing evidence that the so-called early cytokines produced at the site of infection mediate many of the clinical and pathological manifestations. Among these cytokines are interferon-alpha (IFN-alpha), tumour necrosis factor-alpha (TNF-alpha), interleukin-1 (IL-1) alpha and beta, interleukin-6 (IL-6), interleukin-8 (IL-8) and monocyte-attracting chemokines. This paper reviews: (1) in vivo examinations of the cytokine profiles during influenza in mice, humans or swine; (2) in vivo data on the probable role of these cytokines; and (3) selected in vitro data on cytokine induction by the influenza virus. Examination of respiratory secretions of experimentally infected humans or animals revealed a brisk and concurrent rise in several of the cytokines mentioned. Moreover, peak cytokine levels directly correlated with virus replication and disease. In the mouse model, specific anti-cytokine strategies have further confirmed the role of cytokines in body temperature changes, anorexia and lung inflammation. However, cytokines were clearly not the only factor contributing to disease, and they seemed to be essential for resolution of the infection. Though influenza virus was shown to induce cytokines in cell culture, in vitro experiments have also revealed conflicting data. Furthermore, the viral genes or products that are responsible for cytokine induction are unknown. Exactly this information would make important contributions to our understanding of the genetic basis of viral virulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号