首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The model ORYZA2000 simulates the growth and development of rice under conditions of potential production and water and nitrogen (N) limitations. Crop simulation models could provide an alternative, less time-consuming, and inexpensive means of determining the optimum crop N and irrigation requirements under varied irrigation and nitrogen conditions. Water productivity (WP) is a concept of partial productivity and denotes the amount or value of product over volume or value of water used. For the evaluated ORYZA2000 model in Iran, a study was carried out in a randomized complete block design between 2005 and 2007, with three replications at the Rice Research Institute of Iran, Rasht. Irrigation management (three regimes) was the main plot and N application (four levels) was the subplot. In this study, simulation modeling was used to quantify water productivity and water balance components of water and nitrogen interactions in rice. Evaluation simulated and measured total aboveground biomass and yield, by adjusted coefficient of correlation, T test of means, and absolute and normalized root mean square errors (RMSE). Results showed that with normalized root mean square errors (RMSEn) of 5–28%, ORYZA2000 satisfactorily simulated crop biomass and yield that strongly varied among irrigation and nitrogen fertilizer conditions. Yield was simulated with an RMSE of 237–443 kg ha?1 and a normalized RMSE of 5–11%. Results showed that the significant (28–56%) share of evaporation into evapotranspiration, using the actual yield (measured) and simulated water balance (ORYZA2000), the calculated average WPET was significantly lower than the average WPT: 37%. The average WPI, WPI+R, WPET, WPT, and WPETQ were 1.4, 1.07, 1.07, 1.57, and 0.82 kg m?3. Results also showed that irrigation with 8-day intervals and 60 kg N ha?1, nitrogen level was the optimum irrigation regime and nitrogen level.  相似文献   

2.
The effect of regular and periodic irrigation on the fertility and productivity of an ordinary chernozem cultivated under different conditions within the same cereal-fodder crop rotation is discussed. The investigation object is located in the area of the Azov irrigation system on the second terrace of the Don River in Rostov oblast. Irrigation water for the system is taken from the Veselovsk water reservoir. Its salinity is 1.7–2.1 g/dm3, and the salt composition is sulfate–sodium. The field experiments were performed in 2006–2013 on three experimental plots. Two of them were regularly irrigated; the third plot was periodically irrigated with alternation of 2-year-long periods with and without irrigation. Our study proved that periodic irrigation could be applied in the chernozemic zone. This new irrigation mode contributes to the preservation of the natural soil-forming process and stops the development of unfavorable processes typical of the lands irrigated with water of inadequate quality. In eight years of cultivation of the ordinary chernozem with periodic irrigation, the soil humus content increased by 10% (from 3.80 to 4.15%), and the yield reached 66.0 t/ha of fodder units. This was 9% higher than the yield obtained upon regular irrigation without agroameliorative measures and 12% lower than the yield upon regular irrigation in combination with soil-protective measures. Our data suggest that periodic irrigation is promising for the chernozemic zone, because it ensures lower water loads and preservation of the irrigated chernozems.  相似文献   

3.
Abstract

A field experiment was conducted at Research Farm of ICAR-Directorate of Groundnut Research, Junagadh for consecutive three summer seasons of 2013, 2014, and 2015 with the objectives of identifying optimum plant density and nutrient doses under check basin irrigation and drip fertigation for higher productivity and net returns. The treatments were; three plant densities viz., 3,33,333 plants/ha (100% of recommended plant density; P1); 4,16,666 plants/ha (125% of recommended plant density; P2), and 4,99,999 plants/ha (150% of recommended plant density;P3) in main plots, and three nutrient doses viz., 18.75–37.5–22.5 NPK kg ha?1 (75% of recommended nutrient dose; F1), 25-50-30 NPK kg ha?1 (100% of recommended nutrient dose; F2), and 31.25–62.5–37.5 NPK kg ha?1 (125% of recommended nutrient dose; F3) in sub-plots, and replicated thrice. The same sets of treatments were tested under both check basin irrigation and drip fertigation. The data were analyzed using split plot design. Pod yield, haulm yield, and net returns were significantly higher with P3 as compared to P1 under check basin irrigation but only haulm yield was found significantly higher with P3 under drip fertigation. Under check basin irrigation, NH4–N, NO3–N, and available P and K in soil were found in the order P1?>?P2?>?P3 (p?<?0.05) while in case of drip fertigation, differences were significant only for available K which was significantly higher in P1 over both P2 and P3. Under check basin irrigation, F2 i.e., application of 100 percent of recommended nutrient doses, being at par with F3, significantly improved pod yield, haulm yield and net returns over that with F1 however, differences were not significant under drip fertigation. NH4–N, NO3–N and available P and K in soil under both the irrigation systems were in the order F3?>?F2?>?F1 (p?<?0.05).  相似文献   

4.
Field experiments were conducted in 2002–03 and 2003–04 growing seasons to determine wheat response to four irrigation regimes applied at different growth stages and four nitrogen levels of 0, 50, 100, and 150 kg nitrogen (N) ha?1. The experiment was conducted at the research area of the Department of Crop Physiology, University of Agriculture, Faisalabad, Pakistan. Recommended wheat variety “Inqlab-91” was used as the experimental crop. Both irrigation and nitrogen application have positive effects on grain yield increase. The grain crude protein decreased with increasing number of irrigations whereas in contrast, nitrogen application significantly improved grain crude protein at all irrigation levels. Grain phosphorus (P) and potassium (K) percentage increased with the application of irrigation and nitrogen. Grain yield, number of spikes m?2, grains spike?1 and grain weight responses were greater at the higher N rates. Mean grain yield in four, three and two irrigation treatments compared with that in one irrigation treatment increased 47, 23, and 9% during 2002–03 and 91, 84, and 23% in 2003–04, respectively. Water deficit reduced spikes m?2. In both years, the average reduction in spikes m?2 at maximum irrigation deficit (one irrigation) at all N levels was 24%. Similar reduction occurred in grains spike?1 where water deficit decreased this component on an average of 36%.  相似文献   

5.
为探究省力化栽培模式下库尔勒香梨园适宜的灌溉制度,依据4种灌溉定额(3 750,5 250,6 750,8 250 m3/hm2)条件下2年香梨的田间试验数据,通过冠层覆盖度、土壤含水量和蒸散强度(ETa)和产量指标,确定AquaCrop模型参数。设置不同灌水场景,综合考虑产量、水分利用效率和灌溉水利用效率,利用AquaCrop模型优化香梨灌溉制度。结果表明:Y2W3处理产量高出其余处理3.87%~16.86%,Y2W1处理水分利用效率高出其余处理2.88%~27.20%;AquaCrop模型模拟与试验地实测结果的决定系数(R2)、均方根误差(RMSE)、标准均方根误差(NRMSE)、拟合度指数(d)和Nash效率系数(NSE)评价指标表明,冠层覆盖度R2变化范围为0.89~0.93,土壤含水量d为0.92~0.98,ETa的RMSE为1.06~1.61 mm/d; AquaCrop模型预测15种不同场景,灌溉定额7 200 m3/h...  相似文献   

6.
A two-year (2008–2009) field experiment was conducted to determine the effect of irrigation management and weed control on yield and yield components of safflower. The experiment was conducted as a split-split plot arranged in a randomized blocks design with three replications. There were two treatments (weedy and weed free) and four irrigation interval water managements (7 days for all stages, 15, 22 and 28 days after six-leaf stages). The results indicated that grain yield was 29% higher in weed-free plots than in weedy plots. Weed competition reduced yield components such as primary branches, petal weight and number of capitulum per plant. Increasing the irrigation interval to 15 days at the six-leaf stage had no significant effects on grain yield, but grain yield decreased by 18 and 29.8% with increases in the irrigation interval to 22 and 28 days, respectively. An increased irrigation interval >15 days had negative effects on yield components like number of capitulum per plant, petal weight and number of primary branches. The highest grain yield (3703 kg ha?1) was obtained in the weed-free plot, and there was no significant difference between 7- and 15-day irrigation intervals.  相似文献   

7.
In India, the production of turmeric is not even half compared to its potential. To analyze the possibilities for higher production in turmeric, this study was conducted at the BCKV, Gayeshpur, West Bengal, during 2011 and 2012, to evaluate the effect of irrigation scheduling (0.6, 0.9, and 1.2 irrigation water (IW)/cumulative pan evaporation (CPE) and rainfed) in main plots and nutrient management [100% inorganic, 75% inorganic + 25% FYM (Farm yard manure), and 50% inorganic + 25% FYM + 25% vermicompost] in subplots on soil moisture depletion and productivity of turmeric. The highest value of fresh rhizome yield (23.90 kg ha?1) and qualitative indices were obtained with irrigation schedule at 0.9 IW/CPE ratio water regimes and 50% inorganic + 25% FYM + 25% vermicompost. The correlation coefficients of water use and yield of turmeric were found at 0.943. The combination of 0.9 IW/CPE and 50% inorganic + 25% FYM + 25% vermicompost improved the overall performance of turmeric crop.  相似文献   

8.
Abstract

The Agricultural Production Systems simulator (APSIM) model was calibrated and evaluated using two improved sorghum varieties conducted in an experiment designed in a randomized complete block, 2014–2016 at two research stations in Nigeria. The results show that the model replicated the observed yield accounting for yield differences and variations in phenological development between the two sorghum cultivars. For early-maturing cultivar (ICSV-400), the model indicated by low accuracy with root means square error (RMSE) for biomass and grain yields of 20.3% and 23.7%. Meanwhile, Improved-Deko (medium-maturing) cultivar shows the model was calibrated with low RMSE (11.1% for biomass and 13.9% for grain). Also, the model captured yield response to varying Nitrogen (N) fertilizer applications in the three agroecological zones simulated. The N-fertilizer increased simulated grain yield by 26–52% for ICSV-400 and 19–50% for Improved-Deko compared to unfertilized treatment in Sudano-Sahelian zone. The insignificant yield differences between N-fertilizer rates of 60 and 100 kgha?1 suggests 60 kgNha?1 as the optimal rate for Sudano-Sahelian zone. Similarly, grain yield increased by 23–57% for ICSV-400 and 19–59% for Improved Deko compared to unfertilized N-treatment while the optimal mean grain yield was simulated at 80 kgNha?1 in the Sudan savanna zone. In the northern Guinea savanna, mean simulated grain yield increased by 8–20% for ICSV-400 and 12–23% for Improved-Deko when N-fertilizer was applied compared to unfertilized treatment. Optimum grain yield was obtained at 40 kgha?1. Our study suggests a review of blanket recommended fertilizer rates across semi-arid environments for sorghum to maximize productivity and eliminate fertilizer losses, means of adaptation strategies to climate variability.  相似文献   

9.
ABSTRACT

There is a growing concern about excessive use of nitrogen (N) and water in agricultural system with unscientific management in Indian and developing countries of the world. Field experiments were conducted on the lateritic sandy loam soils of Kharagpur, West Bengal, India, during spring–summer (February-June) seasons for three years (2015–2017) to evaluate okra crop response under subsurface drip and conventional furrow irrigation with varying amount of nitrogen treatments. Irrigation treatments had three levels of soil water depletion from field capacity (i.e., 20%, 35%, and 50%) under subsurface drip system. There was no soil water depletion under conventional furrow irrigation system. There were four levels of nitrogen fertilizer treatments (i.e., 0, 80, 100, and 120 kg ha?1). This was supplied using urea as a nitrogenous fertilizer. The yield response of okra crop under subsurface drip was found to be 56.4% higher than that of the furrow irrigation treatment. Best yield response and maximum water use efficiency and nitrogen use efficiency were recorded under 20% soil water depletion with 100 kg ha?1 of nitrogen fertigation. Among the various soil moisture depletions, subsurface drip at 20% soil water depletion treatment responded least quantity of water lost through deep drainage and nitrogen loss beyond the root zone as compared to other irrigation treatments. The water loss through subsurface drainage was observed as 33.11 mm lesser under subsurface drip as compared to that of the furrow irrigation, and this may due to low-volume and frequent irrigation water application with subsurface drip. Hence, irrigation through subsurface drip should be used for improving water and nitrogen fertilizer use efficiency of okra crop cultivation.  相似文献   

10.
ABSTRACT

The present investigation was carried out to study the effect of irrigation intervals and fertigation on growth, yield, and quality of peanut as well as an account of fertilizer and water savings under drip irrigation combined with fertigation. Pod and haulm yields and economics of peanut with application of irrigation water at I1, i.e. 4 day interval through drip (10 day in surface irrigation) did not differ significantly compared with I2, i.e. 6 day interval through drip (15 day in surface irrigation). However, significantly higher kernel and oil yields were obtained at I1 and also recorded higher partial factor productivity (PFP). Our study showed that drip irrigation saved 37.2% irrigation water over surface method. Fertigation at 75% Nitrogen & potassium (NK) through drip with 75% P in soil (F3) significantly improved pod, haulm, kernel, and oil yields by 14.3%, 11.5%, 13.9%, and 12.3%, respectively, while net returns increased by INR 13,499 ha?1 over 50% NK through drip with 50% P in soil (F2) and at par with others. Fertigation at 50–100% NK with 50?100% P in soil (F2 to F4) could save 36.4–37.3% irrigation water over F1. Maximum PFP was recorded under F2.

Abbreviations: N: Nitrogen; P: phosphorus; K: potassium; M: million  相似文献   

11.
Abstract

Global warming along with the increasing population and fresh water shortages necessitates a specific fertilization programme under water-scarce conditions. This study was conducted to investigate the effects of different irrigation and nitrogen levels on yield, growth components and water use characteristics of cauliflower (Brassica oleracea L. var. Botrytis cv. Tetris-F1) cultivated in a field for three consecutive years from 2005 to 2007 in the Eastern Mediterranean region of Turkey. Four irrigation (Kcp) levels with a drip irrigation system based on adjustment coefficients (0, 0.75, 1.0 and 1.25) of pan evaporation were used. Nitrogen (N) treatments were consisted of four different nitrogen rates (0, 75, 150 and 225 kg N ha–1). The following yield and quality parameters were determined: curd weight, curd diameters, number of leaves per crop, above ground biomass (AGB) and curd/AGB ratio. Fertilizer use efficiency (FUE) and leaf mineral contents were also determined to clarify the productivity of N treatments. According to the results; the amount of irrigation water and/or total received water affects the plant water consumption, consequently, crop yield in a field grown cauliflower. The highest yield was obtained in Kcp1.0 irrigation level which represents full irrigation treatment. The excess water applications had negative effect on yield and AGB of cauliflower. Highest yield was obtained at 225 kg N ha–1.

The water use efficiency and irrigation water use efficiency values increased with decreasing irrigation rate. However, lower Kcp coefficients resulted in lower total yield. The FUE in irrigation treatments showed linear increases from non irrigation to full irrigation plots. However, excessive irrigation caused a decrease in FUE. It can be recommended that the Kcp1.0 crop-pan coefficient with 225 kg ha–1 nitrogen application can be used to achieve the highest yield for field grown cauliflower in the Eastern Mediterranean coastal region of Turkey.  相似文献   

12.
This paper considers the implications of ORYZA2000 model in simulating physiological traits of rice at different nitrogen concentrations. The experiment was conducted over the course of the growing season in 2012 and 2013 in Rice Research Institute, Deputy of Mazandaran, Iran. The variety used was Shiroudi as a high yielding variety. The considered factors were the amount of nitrogen at four levels (40, 80, 120, 160 kg N ha?1 and control) and nitrogen splitting in four levels. We compared simulated and measured grain yield, biomass, grain nitrogen, total plant nitrogen uptake, and leaf area index (LAI) by Student’s t-test of means and by absolute and normalized root mean square errors (RMSE). Results showed that grain yield was simulated with an RMSE of 411–423 kg ha?1 and a normalized RMSE of 6%. RMSE was 671–910 kg ha?1 for biomass on harvesting date. RMSE were 7–11 for grain nitrogen, and 10–13 for total plant nitrogen uptake. LAI was simulated with a normalized RMSE of 17–23%. Generally the model simulated LAI, an exceeded measured value for different nitrogen treatments. The most obvious finding that emerged from this study was that ORYZA2000 model can be applied as a supportive research tool for selecting the most appropriate strategies for rice yield improvement at various nitrogen fertilization concentrations.  相似文献   

13.
A field experiment was conducted during two consecutive years of 2010–2011 and 2011–2012 to study the effect of biofertilizers in conjunction with organic and inorganic sources of nutrient management on productivity, quality and soil health on field pea at ICAR RC for NEH Region, Nagaland Centre Jharnapani, Nagaland, India. The experiment was laid out in split plot design with five nutrient sources in main plots and four treatment of biofertilizers with zinc in sub plots. Results indicated that the application of 100% recommended dose of fertilizer (RDF) through inorganic + 50% recommended dose of nitrogen (RDN) through vermicompost significantly improved root nitrogen (N) content, cation exchange capacity (CEC) of roots, NA activates, seed yield (1153 and 1262 kg ha?1), straw yield (2182 and 2332 kg ha?1) in the year of 2010–2011 and 2011–2012, respectively. Nutrients (N, P, K, S and Zn) uptake by seed and straw, protein content, protein harvest, soil organic carbon (SOC), available N, P, K, S, Zn and economics significantly higher with 100% RDF through inorganic + 50% RDN through vermicompost during both the years. Seed inoculation with biofertilizers along with 5 kg Zn ha?1 markedly enhanced the root N content, CEC of roots, nitrogenase activities (NA), seed yield (1080 and 1193 kg ha?1), straw yield (1978 and 2128 kg ha?1), nutrients [N, phosphorus (P), potassium (K), sulfur (S) and zinc (Zn)] uptake, soil organic carbon (SOC) (%), and available N, P, K, S, and Zn of pea in both the years, respectively. These sources also give more income and benefit cost ratio per rupees invested.  相似文献   

14.
【目的】水肥一体化技术为改变我国长期以来设施栽培蔬菜"大水大肥"的传统管理方式,实现资源节约、环境友好发展提供了硬件物质基础和载体,但我国不同地区农业生产条件差异较大,适合当地土壤、气候、作物和栽培季节等特点的水肥一体化灌溉制度和施肥量相对缺乏。本文在陕西关中地区研究了水肥一体化条件下不同水肥处理对土壤水分状况及秋冬茬番茄养分吸收和产量等的影响,旨在制定适宜当地日光温室栽培番茄的科学合理的灌溉施肥制度。【方法】田间试验设常规水肥处理(CK)、植苗后水肥一体化灌水追肥期水肥分别减量20%(S1)及40%(S2)3个处理,其中常规处理灌水量为当季作物冠层水面蒸发量(100%ET),追肥量为当地农户的平均用量;水肥一体化为膜下滴灌+文丘里施肥系统。采用自动连续数采张力计(英国Skye Data Hog2)测定蔬菜生长期间各处理0—20 cm和20—50 cm土层土壤水势,并建立对应的土壤水分特征曲线,将土壤水势动态变化转换为土壤含水率动态变化;用直径20 cm蒸发皿测定当季番茄冠层的水面蒸发量,分析冠层水面蒸发量与土壤有效贮水量损失的关系;测定了不同水肥处理对番茄根、茎、叶、果实生物量及氮、磷、钾吸收量与产量和品质的影响。【结果】1)不同处理番茄生育期内0—50 cm土壤相对含水率均在75%以上,土壤水分供应充足。常规水肥处理灌水后0—20 cm土壤含水率达到或超过田间持水量,20—50 cm土层均超过田间持水量,表明土壤水分可下渗到50 cm以下,进而发生土壤养分的淋溶问题。追施期水肥减量40%处理的土壤水分大部分处在75%~85%的适宜值范围。2)随灌水量的减少,0—50 cm土壤有效贮水量损失降低,平均为番茄冠层水面蒸发量的65.4%,与追肥期水肥减量40%处理的灌水量相近。3)不同水肥处理番茄干物质累积、养分携出量、番茄产量、品质均无显著性差异,而灌水利用率从常规水肥处理的55.1 kg/m3提高到83.2 kg/m3,差异达极显著水平。【结论】从0—50 cm土壤水分状况、土壤有效贮水量损失及番茄冠层水面蒸发关系看,温室全覆膜滴灌条件下,当地适宜灌溉定额为作物冠层水面蒸发量的65%左右。根据番茄生育期内不同水肥处理对土壤水分状况、番茄养分吸收、产量及品质和灌水利用效率的影响,制定出适宜当地秋冬茬番茄的合理灌溉制度为:全生育期总灌溉定额为1057 m3/hm2,8~12月对应的灌水定额分别为168、169、132、105及50 m3/hm2,8~11月灌水周期分别为20~30 d、8~13 d、8~13 d和20~30d,12月份依天气少量补水或不灌水,1月份无需灌水。  相似文献   

15.
Oilseed production can be affected in arid and semi-arid regions that are exposed to water shortages. Nevertheless, cultivation of drought-resistant crops such as Indian mustard is a suitable way to gain acceptable yields. Effects of different levels of irrigation and sulfur (S) fertilizer on the quantity and quality parameters of mustard (Brassica juncea) were assessed in a trial at the Indian Agricultural Research Institute, New Delhi, during 2007–2008 and 2008–2009 growing seasons. The experiment was carried out in a split plot as randomized complete block design with three replications. The experiment treatments consisted of three irrigation levels [no irrigation, one irrigation at 45 days after sowing (DAS), and two irrigations at 45 DAS and 90 DAS] in main plots and four sulfur levels (S; 0, 15, 30, and 45 kg S ha?1) in subplots. The results showed that in the two successive years of the experiment, the number of siliquae/plant, length of siliqua, number of seeds/siliqua, and 1000-seed weight increased significantly with increasing the level of irrigation, which resulted in greater seed yield than no irrigation. Also, mustard plants irrigated two times showed the greatest values of nitrogen (N), protein, and oil content of the seeds over no irrigation in both years of this study. The oil yield and S content in the seed of mustard increased significantly with increasing the level of irrigation in both years. Number of siliquae/plant, siliqua length, number of seed/siliqua, and 1000-seed weight increased significantly with increasing the rates of S up to 45 kg S ha?1 in both years of experimentation; however, in 2008–2009 the difference between application of 30 and 45 kg ha?1 S was not statically significant. Also, the seed yield, N, protein, oil, and S contents in seeds of mustard increased significantly with increase in the level of applied S in both years.  相似文献   

16.
ABSTRACT

The present study was conducted to assess the ability of AquaCrop model in predicting of grain and biological yield of rice genotypes in water management. A two-year field experiment was conducted at the experimental farm of the Iranian Rice Research Institute in Rasht, Iran from 2016 to 2017. The experiment was established in a split-plot design with two irrigation management (continuous submergence and end season water stress) as the main plot, fourth rice genotypes as the sub-plot and three replications. The goodness-of-fit between observed and simulated grain yield and final biomass was assessed by means of the coefficient of determination (R 2), the absolute and normalized root mean square errors (RMSE). The RMSEn of predicting grain yield at calibration and evaluation stages was in the range of 6–12% and 6–8% for biological yield. The results indicated that AquaCrop model is suitable to predict grain yield and biological yield of rice genotypes in northern Iran. AquaCrop model can be used to determine optimization strategies to improve the water consumption of rice genotypes.  相似文献   

17.
Lack of appropriate agronomic practices is one of the major causes for soil erosion and low yields in teff (Eragrostis tef [Zucc.]) production in Ethiopia. A 3-yr study was conducted at the Aba Gerima watershed in northwestern Ethiopia, to investigate the effects of two tillage practices (reduced tillage [RT] and conventional tillage [CT]), two planting methods (row planting [RP] and broadcast planting [BP]), and two compaction options (with [+T] and without [–T] trampling) on soil loss and teff yields in a split-split plot arrangement. Sediment concentration ranged from 0.01 to 5.37 g L?1 (mean, 0.25 g L?1) in our study. Accordingly, the estimated total (August–October) soil loss ranged from 0.2 to 0.5 t ha–1 (mean, 0.3 t ha–1). The sediment concentration and total soil loss were significantly influenced (P < 0.05) by tillage, planting methods, and trampling only in the third monitoring year. RT reduced soil loss by 19% relative to that of CT, whereas RP resulted in a 13% reduction in soil loss over BP. The ?T plots showed a 15% reduction in soil loss as compared to + T plots. Results revealed significant increase in soil total carbon and nitrogen in RT and –T. Less soil loss and greater teff grain yield were obtained in plots with improved agronomic practices (RT and RP) compared to conventional ones (CT and BP). Based on our findings we conclude that the use of RT, RP, and –T practices can effectively minimize soil loss without any crop yield penalty.  相似文献   

18.
Agricultural system models are tools to represent and understand major processes and their interactions in agricultural systems. We used the Root Zone Water Quality Model (RZWQM) with 26 years of data from a study near Nashua, IA to evaluate year to year crop yield, water, and N balances. The model was calibrated using data from one 0.4 ha plot and evaluated by comparing simulated values with data from 29 of the 36 plots at the same research site (six were excluded). The dataset contains measured tile flow that varied considerably from plot to plot so we calibrated total tile flow amount by adjusting a lateral hydraulic gradient term for subsurface lateral flow below tiles for each plot. Keeping all other soil and plant parameters constant, RZWQM correctly simulated year to year variations in tile flow (r2 = 0.74) and N loading in tile flow (r2 = 0.71). Yearly crop yield variation was simulated with less satisfaction (r2 = 0.52 for corn and r2 = 0.37 for soybean) although the average yields were reasonably simulated. Root mean square errors (RMSE) for simulated soil water storage, water table, and annual tile flow were 3.0, 22.1, and 5.6 cm, respectively. These values were close to the average RMSE for the measured data between replicates (3.0, 22.4, and 5.7 cm, respectively). RMSE values for simulated annual N loading and residual soil N were 16.8 and 47.0 kg N ha−1, respectively, which were much higher than the average RMSE for measurements among replicates (7.8 and 38.8 kg N ha−1, respectively). The high RMSE for N simulation might be caused by high simulation errors in plant N uptake. Simulated corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] yields had high RMSE (1386 and 674 kg ha−1) with coefficient of variations (CV) of 0.19 and 0.25, respectively. Further improvements were needed for better simulating plant N uptake and yield, but overall, results for annual tile flow and annual N loading in tile flow were acceptable.  相似文献   

19.
ABSTRACT

To select and introduce the best rapeseed genotypes under withholding irrigation, two field experiments were carried out in seasons 2015–2016 and 2016–2017 in Iran. Factorial arrangement of treatments was set up as RCBD with three replications. The experiment factors were two irrigation treatments (normal irrigation during the growing season and withholding irrigation from silique setting stage until the end of the growing season) and 17 genotypes of rapeseed. Grain yield, oil content and fatty acid contents were measured. The results revealed that oleic acid (62.15%) was the highest followed by linoleic (19.28%), linolenic (5.65%), palmitic (5.24%) and stearic acids (2.44%). ODR (oleic desaturation ratio) and LDR (linoleic desaturation ratio) were significantly affected by genotypes and irrigation treatments. The biosynthetic pathway of fatty acids affected by drought stress. This means that linoleic acid increases under withholding irrigation condition, while linolenic acid decreases in such a water deficit stress condition. The highest performance of qualitative and quantitative was detected in HL3721 genotype due to high values of grain yield (3892.45 kg ha?1), oil content (437.05 g kg?1), unsaturated fatty acids (87.63%) and low values of saturated fatty acids (7.98%), and it could be used under withholding irrigation in arid and semi-arid climates.  相似文献   

20.
Wheat (Triticum aestivum L.) productivity is generally affected by water limitation and inadequate nitrogen supply especially under semi-arid environment. The current study was conducted to determine whether the crop yield and irrigation water use efficiency (IWUE) could be manipulated through alteration of nitrogen and irrigation application. To meet the desired objectives, a two-year field study was carried out in 2013–2014 and 2014–2015, in a split-split plot arrangement with three factors i) irrigation in main plots, ii) nitrogen in sub-plots, and iii) twenty genotypes in sub-sub plots on a sandy loam soil. The analysis of variance revealed that the wheat performance was affected by genotypes and alteration of irrigation and nitrogen application with respect to IWUE and final grain yield. IWUE under water stress conditions was observed 56% higher than normal irrigated. Much higher values of IWUE under water stress indicated that the existing optimum water requirements of the crop needs to be revaluated. The regression model indicated that addition of nitrogen and irrigation patterns along with morphological traits cannot explain variation in yield related traits more than 65% under semi-arid conditions. Therefore, for better crop yields in semi-arid environment, more physiological parameters should be considered in evaluation of yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号