首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Data from a 49-year-long organic–mineral fertilization field experiment with a potato–maize–maize–wheat–wheat crop rotation were used to analyse the impact of different fertilizer variations on yield ability, soil organic carbon content (SOC), N and C balances, as well as on some characteristic energy balance parameters. Among the treatments, the fertilization variant with 87 kg ha?1 year?1 N proved to be economically optimal (94% of the maximum). Approximately 40 years after initiation of the experiment, supposed steady-state SOC content has been reached, with a value of 0.81% in the upper soil layer of the unfertilized control plot. Farmyard manure (FYM) treatments resulted in 10% higher SOC content compared with equivalent NPK fertilizer doses. The best C balances were obtained with exclusive mineral fertilization variants (?3.8 and ?3.7 t ha?1 year?1, respectively). N uptake in the unfertilized control plot suggested an airborne N input of 48 kg ha?1 year?1. The optimum fertilizer variant (70 t ha?1 FYM-equivalent NPK) proved favourable with a view to energy. The energy gain by exclusive FYM treatments was lower than with sole NPK fertilization. Best energy intensity values were obtained with lower mineral fertilization and FYM variants. The order of energy conversion according to the different crops was maize, wheat and potato.  相似文献   

2.
Enrichment of soil organic carbon (SOC) stocks through sequestration of atmospheric CO2 in agricultural soils is important because of its impacts on adaptation to and mitigation of climate change while also improving crop productivity and sustainability. In a long‐term fertility experiment carried out over 27 y under semiarid climatic condition, we evaluated the impact of crop‐residue C inputs through rainfed fingermillet (Eleusine coracana [L.] Gaertn.) cropping, fertilization, and manuring on crop yield sustainability and SOC sequestration in a Alfisol soil profile up to a depth of 1 m and also derived the critical value of C inputs for maintenance of SOC. Five treatments, viz., control, farmyard manure (FYM) 10 Mg ha–1, recommended dose of NPK (50 : 50 : 25 kg N, P2O5, K2O ha–1), FYM 10 Mg ha–1 + 50% recommended dose of NPK, and FYM 10 Mg ha–1 + 100% recommended dose of NPK imposed in a randomized block design replicated four times. Application of FYM alone or together with mineral fertilizer resulted in a higher C input and consequently built up a higher C stock. After 27 y, higher profile SOC stock (85.7 Mg ha–1), C build up (35.0%), and C sequestration (15.4 Mg C ha–1) was observed with the application of 10 Mg FYM ha–1 along with recommended dose of mineral fertilizer and these were positively correlated with cumulative C input and well reflected in sustainable yield index (SYI). For sustenance of SOC level (zero change due to cropping) a minimum quantity of 1.13 Mg C is required to be added per hectare per annum as inputs. While the control lost C, the application of mineral fertilizer served to maintain the priori C stock. Thus, the application of FYM increased the C stock, an effect which was even enhanced by additional amendment of mineral fertilizer. We conclude that organic amendments contribute to C sequestration counteracting climate change and at the same time improve soil fertility in the semiarid regions of India resulting in higher and more stable yields.  相似文献   

3.
Nitrogen balances and total N and C accumulation in soil were studied in reseeded grazed grassland swards receiving different fertilizer N inputs (100–500 kg N ha?1 year?1) from March 1989 to February 1999, at an experimental site in Northern Ireland. Soil N and C accumulated linearly at rates of 102–152 kg N ha?1 year?1 and 1125–1454 kg C ha?1 year?1, respectively, in the top 15 cm soil during the 10 year period. Fertilizer N had a highly significant effect on the rate of N and C accumulation. In the sward receiving 500 kg fertilizer N ha?1 year?1 the input (wet deposition + fertilizer N applied) minus output (drainflow + animal product) averaged 417 kg N ha?1 year?1. Total N accumulation in the top 15 cm of soil was 152 kg N ha?1 year?1. The predicted range in NH3 emission from this sward was 36–95 kg N ha?1 year?1. Evidence suggested that the remaining large imbalance was either caused by denitrification and/or other unknown loss processes. In the sward receiving 100 kg fertilizer N ha?1 year?1, it was apparent that N accumulation in the top 15 cm soil was greater than the input minus output balance, even before allowing for gaseous emissions. This suggested that there was an additional input source, possibly resulting from a redistribution of N from lower down the soil profile. This is an important factor to take into account in constructing N balances, as not all the N accumulating in the top 15 cm soil may be directly caused by N input. N redistribution within the soil profile would exacerbate the N deficit in budget studies.  相似文献   

4.
A field experiment was conducted with the objectives to relate the changes in the physical properties, soil organic carbon (SOC), nutrient availability, and uptake and output input ratios for sustaining sugarcane ratoon growth and yield in an Udic ustochrept. Eight combinations of trash and farmyard manure (FYM) with and without Trichoderma viride and Gluconacetobacter diazotrophicus were applied in two sugarcane ratoon (first and second ratoon in succession) crops. Application of Trichoderma-enriched trash showed the lowest bulk density (1.36 Mg m?3) and the greatest infiltration rate (4.5 mm h?1). Greater rate of increase in SOC was observed under inoculation of Trichoderma with FYM compared to trash mulch. The output/input ratios were greater in plots having trash-based treatments compared to FYM and inorganic fertilizers. Bioagent-inoculated FYM produced greater mean sugar yield (8.89 t ha?1) compared to bioagent-inoculated trash (7.97 t ha?1).  相似文献   

5.
To establish a national inventory of soil organic carbon (SOC) stocks and their change over time, soil was sampled in 1986, 1997 and 2009 in a Danish nation‐wide 7‐km grid and analysed for SOC content. The average SOC stock in 0–100‐cm depth soil was 142 t C ha?1, with 63, 41 and 38 t C ha?1 in the 0–25, 25–50 and 50–100 cm depths, respectively. Changes at 0–25 cm were small. During 1986–97, SOC in the 25–50‐cm layer increased in sandy soils while SOC decreased in loam soils. In the subsequent period (1997–2009), most soils showed significant losses of SOC. From 1986 to 2009, SOC at 0–100 cm decreased in loam soils and tended to increase in sandy soils. This trend is ascribed to dairy farms with grass leys being abundant on sandy soils while cereal cropping dominates on loamy soils. A statistical model including soil type, land use and management was applied separately to 0–25, 25–50 and 50–100 cm depths to pinpoint drivers for SOC change. In the 0–25 cm layer, grass leys added 0.95 t C ha?1 year?1 and autumn‐sown crops with straw incorporation added 0.40 t C ha?1 year?1. Cattle manure added 0.21 t C ha?1 year?1. Most interestingly, grass leys contributed 0.58 t C ha?1 year?1 at 25–50 cm, confirming that inventories based only on top‐soils are incomplete. We found no significant effects in 50–100 cm. Our study indicates a small annual loss of 0.2 t C ha?1 from the 0–100 cm soil layer between 1986 and 2009.  相似文献   

6.
Annual changes in stocks of soil organic carbon may be detected by measurement of heterotrophic respiration, but field studies of heterotrophic respiration in long-term fertilization experiments on sandy soils are scarce. Our objectives were to: (1)investigate the influence of fertilizer type on mineralization of soil organic carbon and crop residue, and (2) show how fertilization treatments affect the annual C balance (net ecosystem carbon balance, NECB; negative values indicate a CO2-source) in the sandy soil of the Darmstadt experiment. Treatments were long-term mineral fertilization with cereal straw incorporation (MSI) and application of rotted farmyard manure (FYM), both treatments receiving 14 g N m?2 year?1. This study used δ13C natural abundance after introduction of a C4 crop to distinguish between different sources of respiration. Mineralization derived from C3 sources was similar for MSI and FYM treatments (~270 g C m?2 year?1). The rate of residue mineralization in MSI treatments was higher, resulting in a mineralization of 49 and 37% of initial residue C in the soil of MSI and FYM treatments, respectively. The NECB (g C m?2 year?1) indicated the MSI treatment (approximately ?190) as a stronger source compared with the FYM treatment (~?30).  相似文献   

7.
The Static Fertilization Experiment Bad Lauchstädt (1902) consists of a crop rotation of sugar beets, spring barley, potatoes and winter wheat. Three farmyard manure (FYM) treatments and six mineral fertilizer treatments are combined orthogonally. Comparing the first and last decades, crop yields nearly doubled. In unfertilized plots, yields and N uptake by crops also increased when comparing first and last decades. On average for the decade 2001–2010, N uptake in unfertilized plots amounted 51.6 kg ha?1. Although soil organic carbon (SOC) levels for unfertilized plots remain almost unchanged, SOC increases slowly in the most highly fertilized treatment, resulting in a gradual widening of differences in SOC between the most extreme treatments to 0.952%. Climate change and increased harvesting and root residues due to rising yields are suggested as an explanation. Except for the plot with the highest application of mineral and organic fertilizer, in all treatments more N was taken up by crops than was applied by fertilizers. Higher FYM input leads to more unfavourable N balances because N release from FYM cannot be controlled. Considering atmospheric N input, only in the exclusively mineral fertilized treatment is N balanced out. Similar results are found for C balances: the exclusively mineral fertilized treatment shows the most favourable C balance.  相似文献   

8.
Information on the combined use of organic and inorganic fertilizers on wheat (Triticum aestivum L.) productivity is lacking under moisture stress conditions of Northwest Pakistan. The present experiment was designed to ascertain the combined effect of organic and inorganic fertilizer management on rainfed wheat. Four levels of farm yard manure, FYM, (0, 10, 20, and 30 Mg FYM ha?1) and nitrogen (0, 30, 60, 90, and 120 kg N ha?1) were used. The experiment was conducted at the Agriculture Research Farm of NWFP Agricultural University Peshawar, Pakistan during crop season of 2003–04. The experiment was laid out in randomized complete block design with four replications. Plant height, productive tillers m?2, grains spike?1, grain yield, straw yield, and harvest index were significantly higher in plots which received 30 Mg FYM ha?1. In the case of nitrogen (N) no distinctive differences between the effect of 90 and 120 kg ha?1 was observed for most of the parameters. Nitrogen application at 90 kg ha?1 had significantly higher; plant height, grains spike?1, grain yield, straw yield, and harvest index as compared with the lower levels, i.e., 0, 30, and 60 kg N ha?1 but were at par with 120 N kg ha?1. Significantly higher numbers of productive tillers m?2, grains spike?1, grain yield, straw yield and harvest index were recorded with application of 30 Mg FYM ha?1 + 90 kg N ha?1. The present study suggested that application of 30 Mg FYM ha?1 + 90 kg N ha?1 are promising levels for higher production of wheat under moisture stress conditions. Further research work is needed to ascertain the effect of N above 90 kg ha?1 under different moisture regimes.  相似文献   

9.
Effects of fertilisation and cropland management on soil organic carbon (SOC) dynamics can be assessed best in long-term experiments. Using data from the long-term fertilisation experiment in Puch, Germany (part of the series “Internationale Organische Stickstoff Dauerversuche”, IOSDV), we tested the performance of the Rothamsted Carbon Model 26.3 (RothC). The objectives of this work were: (i) quantify the C-input and the efficiency of SOC stabilisation, (ii) test the performance of different input estimates on predictive power of the RothC and (iii) test implementations of residue quality and C-saturation on model predictions. The experiment is a full-factorial strip design, the factors being “organic amendment” and “level of N-fertiliser”. Each treatment was replicated three times. The crop rotation is silage maize–winter wheat–winter barley. Five levels of the factor “organic amendment” were considered: (i) CON: no organic amendment; (ii) SLU: slurry application (on average 0.8 Mg C ha? 1 year? 1); (iii) FYM: application of farmyard manure (30 to 40 Mg ha? 1 fresh mass every third year to maize, on average 1.0 Mg C ha? 1 year? 1); (iv) STR: straw incorporation after harvest of wheat and barley (depending on straw yield on average 0.7 to 2.2 Mg C ha? 1 year? 1); (v) STSL: slurry application plus straw incorporation (on average 1.1 to 2.4 Mg C ha? 1 year? 1). All treatments (including CON) were combined with five different levels of N-fertilisation (N0 to N4), whereas N0 was nil N application and N4 averaged 177 kg N ha? 1 year? 1. N-rates increased gradually and differed depending on the crop. Starting values for SOC stocks (Mg ha? 1) were measured in 1983 as a mean among N-rates for organic amendment treatments (CON: 42; SLU: 39.8; FYM: 40.5; STR 39.8; STSL: 40.5). SOC stocks (0–25 cm) in 2004 (35.5 to 46.6 Mg C ha? 1) were in the order STSL > FYM = SLU > STR = CON (p  0.001). However, slightly different starting values indicated a higher loss of SOC after 21 years in the CON (11–14%) compared to the STR treatments (1–10%). Effect of N-rate was not significant. The observed relation between change of SOC and C-input was quadratic (YO = ? 13.4 + 7.5x ? 0.9x2; R2 = 0.74, p  0.001), which contrasted the linear relationship predicted by RothC (YP = ? 12.9 + 5.5x; R2 = 0.97, p  0.0001). Serious deviation between observed and predicted relationship occurred above C-inputs of 2.5 Mg C ha? 1 year? 1. Mechanistic explanation (e.g. C-saturation or increased mineralisation by N-fertilisation) for the observation needs further exploration, but implication on regional estimates for C-accumulation for different cropland management scenarios is obvious: potential gain in SOC storage by increasing C-inputs may be overestimated, at least under conditions of the Puch site. Independent model predictions (i.e. no parameter adjustment and independent estimation and measurement of C-input) were successful for treatments without straw incorporation (CON, SLU, FYM). Using a regression between crop yields and crop residue input yielded better results than using a constant belowground-to-aboveground biomass ratio. SOC stocks of treatments STR and STSL were seriously overestimated by the model. Using a higher decomposability of crop residue improved result only marginally and required the change of a standard parameter. Using a simple implementation of C-saturation improved predictions for STR and STSL but failed to simulate dynamics in all other treatments. Overall, our results showed that it is important to recognise that relation between SOC change and C-input is not necessarily linear. However, the RothC model predicted SOC dynamics well at lower input levels. Observation that a regression equation for input estimation is superior to a constant biomass ratio for modelling purposes has to be tested further. An implementation of residue quality or saturation capacity in the RothC model may be promising for a better mechanistic understanding of SOC dynamics. However, this requires careful calibration and will increase the number of parameters to be fitted.  相似文献   

10.
A field experiment was conducted for 3 crop years (July‐June) at the Indian Agricultural Research Institute, New Delhi to study the effects of Sesbania and cowpea green manuring (GM) and incorporation of mungbean residues after harvesting grain, Leucaena loppings, FYM and wheat straw incorporation before planting rice and application of 0,40,80 and 120 kg N ha?1 to rice on the soil organic carbon (SOC), alkaline permanganate oxidizable N (APO‐N), 0.5 M sodium bicarbonate extractable P (SBC‐P) and 1N ammonium acetate exchangeable K (AAE‐K) in surface 0–15 cm soil after the harvest of rice and wheat grown in sequence. Green manuring and addition of organic residues prevented the decline in SOC. On the other hand addition of N fertilizer tended to decrease SOC after rice harvest. On the contrary application of green manures, organic residues, FYM and fertilizer N increased APO‐N, which indicates the benefit of these treatments to a more labile soil organic N pool. Also application of green manures, organic residues, FYM and fertilizer N increased SBC‐P. Not much change was observed in AAE‐K by the treatments applied.  相似文献   

11.
Biochar amendments offer promising potential to improve soil fertility, soil organic carbon (SOC) and crop yields; however, a limited research has explored these benefits of biochar in the arid and semi‐arid regions. This two‐year field study investigated the effects of Acacia tree biomass‐derived biochar, applied at 0 and 10 t ha?1 rates with farmyard manure (FYM) or poultry manure (PM) and mineral phosphorus (P) fertilizer combinations (100 kg P ha‐1), on maize (Zea mays L.) productivity, P use efficiency (PUE) and farm profitability. The application of biochar with organic–inorganic P fertilizers significantly increased soil P and SOC contents than the sole organic or inorganic P fertilizers. Addition of biochar and PM as 100% P source resulted in the highest soil P (104% increase over control) and SOC contents (203% higher than control). However, maize productivity and PUE were significantly higher under balanced P fertilizer (50% organic + 50% mineral fertilizer) with biochar and the increase was 110%, 94% and 170% than 100%‐FYM, 100%‐PM and 100% mineral fertilizer, respectively. Maize productivity and yield correlated significantly positively with soil P and SOC contents These positive effects were possibly due to the ability of biochar to improve soil properties, P availability from organic–inorganic fertilizers and SOC which resulted in higher PUE and maize productivity. Despite the significant positive relationship of PUE with net economic returns, biochar incorporation with PM and mineral fertilizer combination was economically profitable, whereas FYM along biochar was not profitable due to short duration of the field experiments.  相似文献   

12.
The experiment was conducted in a 22nd cycle of rice-wheat rotation established in the eastern India with a randomized block designed with various combinations of inorganic and organic sources of nutrients like farm yard manure (FYM), paddy straw (PS), and green manure in rice crop only. Application of nitrogen, phosphorus, and potassium (NPK) and its combination with FYM, PS, and green manuring increased the grain yield of rice significantly. Rice yield declined only in control plots (?0.003 t ha?1 year?1), whereas positive yield trend was maintained in all the treatments. All organically amended plots showed a better uptake as well as use efficiencies of applied phosphorus (P) inputs over control. The apparent P balance showed positive value in control treatment over the years ranging from ?4.8 to 24.8 kg ha?1 year?1. The positive yield trend of rice was maintained due to buildup of P from various organic inputs.  相似文献   

13.
The aim of this study was to assess the changes in soil organic carbon (SOC) stock in relation to the carbon (C) input from nine wheat-based cropping systems and untilled grass. The SOC pool ranged from 32.1 to 49.4 Mg ha?1 at 0–20 cm and from 94 to 171 Mg ha?1 at 0–100 cm for the arable soil, while in untilled grassland, it was higher (54 and 185 Mg C ha?1, respectively). SOC stock was observed to be lower at the unfertilized 2-year rotation and higher at the 4-year rotation with manure and mineral fertilization. The study showed a winter wheat yield decrease of 176.8 kg ha?1 for a 1- Mg ha?1 SOC stock change in the 0–20-cm soil depth. The estimated C input for SOC stock maintenance was from 266 to 340 g C m?2 year?1 for winter wheat and rotations, respectively. Additional C input did not increase the SOC pool, suggesting that arable plots had a limited ability to increase SOC. These results provide guidance for the selection of management practices to improve C sequestration.  相似文献   

14.
Nitrate leaching, overall N balance, and organic‐C build‐up in a semi‐arid agro‐ecosystem in NW India was estimated from the results of a long‐term manurial trial with farmyard manure (FYM) and mineral‐N fertilizer in operation since 1967 at the Research Farm of CCS Haryana Agricultural University, Hisar, India. The model LEACHN was calibrated for the wheat‐growing period November 2000 to April 2001 and the leaching of nitrate during this period was predicted to 48 kg N ha–1 without mineral‐N fertilization and 59 kg N ha–1 with addition of 120 kg mineral‐N fertilizer, both with the addition of 15 t ha–1 FYM. The N balance for the simulation period showed that the 120 kg N ha–1–mineral N fertilization compared to zero mineral N, both plus FYM, resulted in only slightly higher crop uptake, leaching losses, and NH3 volatilization, and a negligible increase of N in organic matter. The largest amount remains as an additional build‐up of mineral N in the profile (84.3 kg N ha–1) which is prone to losses as ammonia or nitrate. The model was used to simulate organic‐C build‐up with FYM and a decrease of organic C without FYM for a period of 33 y (1967–2000). The simulated C build‐up to about 0.1 g kg–1 agreed very well with the measured values and showed that additional mineral‐N fertilization will not have any significant effect on organic‐C content. Simulations with the assumption of no FYM application showed a gradual decrease of organic C from its starting value of 0.046 g kg–1 in 1967 down to almost half of this. This agreed well with the observed organic‐C values of 0.028 g kg–1 as measured for unmanured plots.  相似文献   

15.
The effects of atmospheric nitrogen (N) deposition on carbon (C) sequestration in terrestrial ecosystems are controversial. Therefore, it is important to evaluate accurately the effects of applied N levels and forms on the amount and stability of soil organic carbon (SOC) in terrestrial ecosystems. In this study, a multi‐form, small‐input N addition experiment was conducted at the Haibei Alpine Meadow Ecosystem Research Station from 2007 to 2011. Three N fertilizers, NH4Cl, (NH4)2SO4 and KNO3, were applied at four rates: 0, 10, 20 and 40 kg N ha?1 year?1. One hundred and eight soil samples were collected at 10‐cm intervals to a depth of 30 cm in 2011. Contents and δ13C values of bulk SOC were measured, as well as three particle‐size fractions: macroparticulate organic C (MacroPOC, > 250 µm), microparticulate organic C (MicroPOC, 53–250 µm) and mineral‐associated organic C (MAOC, < 53 µm). The results show that 5 years of N addition changed SOC contents, δ13C values of the bulk soils and various particle‐size fractions in the surface 10‐cm layer, and that they were dependent on the amounts and forms of N application. Ammonium‐N addition had more significant effects on SOC content than nitrate‐N addition. For the entire soil profile, small additions of N increased SOC stock by 4.5% (0.43 kg C m?2), while medium and large inputs of N decreased SOC stock by 5.4% (0.52 kg C m?2) and 8.8% (0.85 kg C m?2), respectively. The critical load of N deposition appears to be about 20 kg N ha?1 year?1. The newly formed C in the small‐input N treatment remained mostly in the > 250 µm soil MacroPOC, and the C lost in the medium or large N treatments was from the > 53 µm POC fraction. Five years of ammonium‐N addition increased significantly the surface soil POC:MAOC ratio and increased the instability of soil organic matter (SOM). These results suggest that exogenous N input within the critical load level will benefit C sequestration in the alpine meadow soils on the Qinghai–Tibetan Plateau over the short term.  相似文献   

16.
ABSTRACT

Soil organic carbon (SOC) is a key component for sustaining crop production. A field experiment was conducted during 2004–2018 to assess the changes in soil carbon fractions under different fertilization practices in grass-legumes mixture. The result indicates that application of farmyard manure (FYM) at 80 Mg ha–1 has increased SOC concentration leading to carbon sequestration rate of 4.2 Mg ha–1 year–1. Further, it has increased the proportion of labile carbon in the total SOC and have accumulated 126, 60, 83 and 95% higher very labile, labile, less labile and non-labile C stock than that of control plot, respectively, in top 30 cm soil layer. Inorganic fertilization and FYM 20 Mg ha–1 influenced SOC concentration, SOC stock and C sequestration rate similarly. The highest carbon management index (264) was found in the treatment receiving FYM 80 Mg ha–1 and it was positively correlated with SOC (r = 0.84**). The sensitivity index of the SOC varied from 26 to 152% and the differences were greatest in FYM treatments. The result indicates that grass-legumes mixture build-up the SOC in long term and the addition of FYM further increases it.  相似文献   

17.
In an ongoing field experiment, organic and conventional farming (control) were compared for onion bulb yield, biochemical quality, soil organic carbon (SOC), and microbial activity after the sixth cropping cycle. The treatments used for organic production were farmyard manure (FYM, 20,000 kg ha?1), poultry manure (PM, 10,000 kg ha?1), vermicompost (VC, 10,000 kg ha?1), neem cake (NC, 5000 kg ha?1), and a combination of FYM (5000 kg ha?1), PM (2500 kg ha?1), VC (2500 kg ha?1), and NC (1250 kg ha?1); all treatments were compared with the control. Organic treatments produced 24.6–43.6% lower yield consistently for 6 years than the control treatment. No significant difference was observed between PM, FYM, and VC treatments for the bulb yield. Bulb analysis during the sixth year indicated that plants that received FYM, PM, or VC had higher levels of total phenol, total flavonoid, ascorbic acid, and quercetin-3-glucoside than the control plants. All the five organically treated sets had significantly higher values of SOC, microbial population, fungal-to-bacterial ratio, and dehydrogenase activity than the control and the initial values in each treated set. The results indicate that FYM, PM, or VC application enhances biochemical quality and organic farming is more sustainable than conventional farming.  相似文献   

18.
The effect of medium-term (5 years) application of organic and inorganic sources of nutrients (as mineral or inorganic fertilizers) on soil organic carbon (SOC), SOC stock, carbon (C) build-up rate, microbial and enzyme activities in flooded rice soils was tested in west coast of India. Compared to the application of vermicompost, glyricidia (Glyricidia maculate) (fresh) and eupatorium (Chromolaena adenophorum) (fresh) and dhaincha (Sesbania rostrata) (fresh), the application of farmyard manure (FYM) and combined application of paddy straw (dry) and water hyacinth (PsWh) (fresh) improved the SOC content significantly (p < 0.05). The lowest (p < 0.05) SOC content (0.81%) was observed in untreated control. The highest (p < 0.05) SOC stock (23.7 Mg C ha?1) was observed in FYM-treated plots followed by recommended dose of mineral fertilizer (RDF) (23.2 Mg C ha?1) and it was lowest (16.5 Mg C ha?1) in untreated control. Soil microbial biomass carbon (Cmb) (246 µg g?1 soil) and Cmb/SOC (1.92%) were highest (p < 0.05) in FYM-treated plot. The highest (p < 0.05) value of metabolic quotient (qCO2) was recorded under RDF (19.7 µg CO2-C g?1 Cmb h?1) and untreated control (19.6 µg CO2-C g?1 Cmb h?1). Application of organic and inorganic sources of nutrients impacted soil enzyme activities significantly (p < 0.05) with FYM causing highest dehydrogenase (20.5 µg TPF g?1 day?1), phosphatase (659 µg PNP g?1 h?1) and urease (0.29 µg urea g?1 h?1) activities. Application of organic source of nutrients especially FYM improved the microbial and enzyme activities in flooded and transplanted rice soils. Although the grain yield was higher with the application of RDF, but the use of FYM as an organic agricultural practice is more useful when efforts are intended to conserve more SOC and improved microbial activity.  相似文献   

19.
ABSTRACT

A meta-analysis of 297 treatment data from the Vezaiciai Branch of the Lithuanian Research Centre for Agriculture and Forestry long-term field experiment published from 2006 to 2015 was used to characterize the changes in SOC under different fertilization treatments and residue management practices in Lithuania’s acid soil. A meta-analysis was performed to quantify the relative annual change (RAC) of SOC content and the average RAC rate of SOC under four fertilization modes (farmyard manure (FYM) (40?t?ha?1)); alternative organic fertilizers (in the manure background (40?t?ha?1)); FYM (60?t?ha?1); alternative organic fertilizers (in the manure background (60?t?ha?1)) in two soil backgrounds (naturally acid and limed soil). The average RAC under four fertilization modes was 1.46 g?kg?1?yr?1, indicating that long-term fertilization had considerable SOC sequestration potential. Incorporation of alternative organic fertilizers in unlimed soil showed negative effects (?0.39 and ?0.66 g?kg?1?yr?1) in the observed long-term experiment. The RAC in the limed soil with incorporated organic fertilizers (FYM and alternative organic fertilizers), compared to the control, and varied from 0.25 g?kg?1?yr?1 in the treatment with incorporated alternative organic fertilizers (in the manure background (40?t?ha?1)) to 0.71 g?kg?1?yr?1 in the soil with FYM (60?t?ha?1). In this study, the average RAC rate of SOC under organic fertilization treatments in limed soil (5.07–6.54%) was longer than organic fertilization in unlimed soil (2.11–3.49%), which might be attributed to the application of organic manure that would result in a slow release of fertilizer efficiency. Our results indicate that the application of manure (40 or 60?t?ha?1) showed the greatest potential for C sequestration in agricultural soil and produced the longest SOC sequestration duration.  相似文献   

20.
A long-term experiment on combined inorganic fertilizers and organic matter in paddy rice (Oryza sativa L.) cultivation began in May 1982 in Yamagata, northeastern Japan. In 2012, after the 31st harvest, soil samples were collected from five fertilizer treatments [(1) PK, (2) NPK, (3) NPK + 6 Mg ha?1 rice straw (RS), (4) NPK + 10 Mg ha?1 rice straw compost (CM1), and (5) NPK + 30 Mg ha?1 rice straw compost (CM3)], at five soil depths (0–5, 5–10, 10–15, 15–20 and 20–25 cm), to assess the changes in soil organic carbon (SOC) content and carbon (C) decomposition potential, total nitrogen (TN) content and nitrogen (N) mineralization potential resulting from long-term organic matter addition. The C decomposition potential was assessed based on the methane (CH4) and carbon dioxide (CO2) produced, while the N mineralization potential was determined from the potassium chloride (KCl)-extractable ammonium-nitrogen (NH4+-N), after 2, 4, 6 and 8 weeks of anaerobic incubation at 30°C in the laboratory. Compared to NPK treatment, SOC in the total 0–25 cm layer increased by 67.3, 21.0 and10.8%, and TN increased by 64.2, 19.7 and 10.6%, in CM3, RS and CM1, respectively, and SOC and TN showed a slight reduction in the PK treatment by 5.2 and 5.7%, respectively. Applying rice straw compost (10 Mg ha?1) instead of rice straw (6 Mg ha?1) to rice paddies reduced methane production by about 19% after the soils were measured under 8 weeks of anaerobic incubation at 30°C. Soil carbon decomposition potential (Co) and nitrogen mineralization potential (No) were highly correlated with the SOC and TN contents. The mean ratio of Co/No was 4.49, lower than the mean ratio of SOC/TN (13.49) for all treatments, which indicated that the easily decomposed organic matter was from soil microbial biomass and soil proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号