首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Slow immobilization of trace metals in soil, termed ‘fixation’, affects their natural attenuation but it is still unclear which reactions occur. Twenty‐eight soils were selected to assess the role of Fe oxides and carbonates on fixation of Cu, Cd, Zn and Ni. Soils included samples from 2 toposequences (Vietnam, Spain) and 13 European topsoils with different soil characteristics (pH 3.4–7.7). Samples were amended with 250 mg Zn kg−1, 100 mg Cu kg−1, 80 mg Ni kg−1 and 2.5 mg Cd kg−1 as metal salts and incubated for 850 days. Fixation was measured as the increase of the fraction of added metals that were not isotopically exchangeable. Fixation increased with time and was, averaged over all the soils, 43% (Cu), 41% (Zn), 41% (Ni) and 28% (Cd) after 850 days. Metal fixation within samples from each toposequence was generally positively related to total Fe oxide concentration (Fed) for Zn, Ni and Cd. However, the fixation of Cd, Zn and Ni was mainly explained by pH and not by Fed when considering all soils. Fixation of Zn and Cd in soils with pH >7.0 increased with increasing concentrations of carbonates at initial ageing times. Fixed fractions of Zn, Ni and Cd were significantly released when experimentally removing 50% of carbonates by acidification. Fixation of Cu was most poorly related to soil properties. Our data suggest that fixation of Cd, Zn and Ni is related to a pH‐dependent diffusion into oxides and that of Cd and Zn also to diffusion and/or coprecipitation in carbonates. Fixation of Ni at neutral pH may also be related to stabilization of precipitates that form readily in soil.  相似文献   

2.
In a long‐term study of the effects on soil fertility and microbial activity of heavy metals contained in sewage sludges, metal‐amended liquid sludges each with elevated Zn, Cu or Cd concentrations were applied over a 3‐year period (1995–1997) to three sites in England. The experiments were sited adjacent to experimental plots receiving metal‐rich sludge cakes enabling comparisons to be made between the effects of heavy metal additions in metal‐amended liquid sludges and sludge cakes. The liquid sludge additions were regarded as ‘worst case’ treatments in terms of likely metal availability, akin to a long‐term situation following sewage sludge additions where organic matter levels had declined and stabilised. The aim was to establish individual Zn (50–425 mg kg?1), Cu (15–195 mg kg?1) and Cd (0.3–4.0 mg kg?1) metal dose–response treatments at each site, but with significantly smaller levels of organic matter addition than the corresponding sludge cake experiments. There were no differences (P > 0.05) in soil respiration rates, biomass carbon concentrations or most probable numbers of clover Rhizobium between the treatments at any of the sites at the end of the liquid sludge application programme. Soil heavy metal extractability differed between the metal‐amended liquid sludge and metal‐rich sludge cake treatments; Zn and Cd extractabilities were higher from the liquid sludge additions, whereas Cu extractability was higher from the sludge cake application. These differences in metal extractability in the treated soil samples reflected the contrasting NH4NO3 extractable metal contents of the metal‐amended liquid sludges and sludge cakes that were originally applied.  相似文献   

3.
A pot experiment was conducted to study the contribution of reactive phosphate rocks (RPRs) on the accumulation of Cd and Zn in 10 acid upland soils in Indonesia and shoots of Zea mays plants grown on these soils. Two types of RPR were used at a rate of 0.5 g (kg soil)–1: RPRL containing 4 mg Cd kg–1 and 224 mg Zn kg–1, and RPRH containing 69 mg Cd kg–1 and 745 mg Zn kg–1. Zea mays was harvested at 6 weeks after planting. The application of RPRH significantly increased the concentrations of Cd in the shoots. The application of this RPR also increased the amount of Cd which could be extracted by 0.5 M NH4‐acetate + 0.02 M EDTA pH 4.65 from the soils. More than 90% of the added Cd remained in the soil. As Zn is an essential element and the studied acid upland soils are Zn‐deficient, increased plant growth upon RPR application might be partly attributed to Zn present in the phosphate rock. However, more experiments are needed to confirm this hypothesis. The Cd and Zn concentrations and CEC of the soils were important soil factors influencing the concentrations of Cd and Zn in the shoots of maize plants grown on these soils.  相似文献   

4.
We assessed cadmium (Cd) and zinc (Zn) availability when applying reactive phosphate rock (RPR) in combination with lime and chicken manure on Indonesian acidic upland soils. Maize plants were grown on unamended soil and soils treated with several combinations of 2 tons dolomite ha–1, 2 tons of chicken manure ha–1, 1 ton ha–1 of RPRL (reactive phosphate rock containing 4 mg Cd kg–1 and 224 mg Zn kg–1), and 1 ton ha–1 of RPRH (RPR containing 69 mg Cd kg–1 and 745 mg Zn kg–1). In addition to its positive effect on plant yield, application of RPR in combination with chicken manure did not result in toxic Cd concentrations. Although liming is effective to reduce plant Cd concentrations, it results in more soil Cd accumulation and more plant Zn deficiency. Cadmium and Zn concentrations in shoots and grains can be predicted well from amounts extracted from the soil by 0.5 M ammonium (NH4) acetate + 0.02 M ethylenediaminetetraacetic acid (EDTA) at pH 4.65.  相似文献   

5.
In the present study, a laboratory experiment was designed to compare the 0.01 M calcium chloride (CaCl2) and diethylenetriaminepentaacetic acid (DTPA) extraction methods for their ability to predict cadmium (Cd), copper (Cu), iron (Fe), Manganese (Mn), nickel (Ni), and zinc (Zn) availability and mobility in five calcareous soils. The soils were spiked with different amounts of metals (0, 50, 100, 200, and 400 mg kg?1) both in binary (Cu and Zn; Ni and Cd; Fe and Mn) and in multi-systems (Cd, Cu, Fe, Mn, Ni, and Zn) and incubated for 1 months at field capacity. In metal-spiked soils, both extraction methods showed a linear relationship of extractable to total metals for all soils. The fraction of total metals extracted by DTPA was much higher than the fraction extracted by CaCl2, which was attributed to the formation of soluble metal-complexes in the complexing extracts calculated by the Visual Minteq program. DTPA extraction method showed higher selectivity for Cu over other metals both in binary and in multi-systems. Different order of metals extractability was found in binary and multi-systems for both extraction methods. Solid/solution distribution coefficient (Kd) was calculated by the ratio of the solid phase to soil solution concentration of metals extracted by CaCl2 or DTPA extraction methods. Both in binary and in multi-systems, the average Kd (l kg?1) of metals by soils were in the order of Mn (5398) > Fe (4413) > Zn (3376) > Cu (2520) > Ni (969) > Cd (350) in the CaCl2-extractable metals and Fe (35) ≥ Ni (34) > Zn (18) > Mn (11.2) > Cu (6.3) > Cd (4) in the DTPA-extractable metals. Results showed that among the six studied metals, Cd had the lowest Kd, implying a relative higher mobility in these calcareous soils. The Visual Minteq indicated that in the CaCl2-extraction method and in both binary and multi-systems the dominant species for Cu, Mn, Ni, and Zn were Cu2+, Mn2+, Ni2+ and Zn2+, respectively, while for Cd and Fe, the dominant species were CdCl+ and Fe(OH)2+, respectively.  相似文献   

6.
Selection of appropriate plant species and rhizosphere manipulation to enhance metal uptake are considered key factors in the development of phytoextraction technologies. A pot trial was conducted with two contaminated soils to investigate the effect of EDTA and ammonium sulfate on the accumulation of heavy metals into shoots of the low‐biomass hyperaccumlator Thlaspi goesingense Hálácsy (Brassicaceae) and the high‐biomass non‐hyperaccumulating plant Amaranthus hybridus (Amaranthaceae). Upon application of 1 g EDTA (kg soil)—1 metal extractability with 1 M NH4NO3 increased substantially, whereas the application of (NH4)2SO4 was less effective. The EDTA treatment increased the heavy metal concentrations in both plant species, however, the difference to the control was larger for A. hybridus. EDTA enhanced shoot concentrations in A. hybridus grown on soil Arnoldstein from 32.7 mg kg—1 to 1140 mg kg—1 for Pb and from 3.80 mg kg—1 to 10.3 mg kg—1 for Cd. Cd concentrations in shoots of T. goesingense were also increased by EDTA application, however, a slight decrease was observed for Pb. T. goesingense accumulated 2840 mg Pb kg—1 without any treatment. This is the first report of Pb hyperacumulation by T. goesingense. A decrease of shoot Pb concentration was observed in T. goesingense upon treatment with ammonium sulfate. Although metal concentrations in the shoots were rather large and significantly increased upon application of EDTA, plant growth and heavy metal removal were still too small to obtain reasonable extraction rates in soils heavily polluted by metals. It should be also noted that metal lability largely increased in EDTA‐treated soils and this lability persisted for several weeks after the application of the chelating agent, which is likely to be associated with the risk of groundwater contamination.  相似文献   

7.
Abstract

The effect of sewage sludge applications on extractability and uptake by chard and lettuce of soil cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), leaf (Pb), and zinc (Zn) was investigated. Ten different treatments (0, 150, 300, and 500 kg N ha‐1) as mineral fertilizer, and 400, 800, and 1,200 kg N ha‐1 of aerobically and anaerobically‐digested sewage sludges were applied annually to a sandy‐loam soil since 1984. Seven years after the start of the treatments, higher levels of heavy metals were detected in the soil, depending on the type of metal, depth of sampling, type of sludge used, and, especially, rate of application. Following a sequential extraction procedure incorporating 0.1M CaCl2, 0.5M NaOH, and 0.05M Na2EDTA, most of the heavy metals in soil were detected in the Na2EDTA solution and the residual fractions. Large amounts of Cd appeared to be extracted by CaCl2, whereas substantial amounts of Cu and Ni were isolated by NaOH. The effect of treatments on the percentages of the metals found in each fraction depended on the type of metal, sampling depth, sludge used, and application rate. No significant increases were found in the heavy metal contents of chard and lettuce leaves, but some of the treatments resulted in a significant decrease of Cd and Cr levels in lettuce leaves.  相似文献   

8.
The effect of red mud (10 g kg–1), a by‐product of the alumina industry, zeolite (20 g kg–1), a naturally‐occurring hydrous aluminosilicate, and lime (3 g kg–1) on metal lability in soil and uptake by fescue (Festuca rubra L.) (FEST) and amaranthus (Amaranthus hybridus L.) (AMA) was investigated in four different soils from Austria. The soil collection locations were Untertiefenbach (UNT), Weyersdorf (WEY), Reisenberg (REI), and Arnoldstein (ARN). The latter was collected in the vicinity of a former Pb‐Zn smelter and was highly polluted with Pb (12300 mg kg–1), Zn (2713 mg kg–1), and Cd (19.7 mg kg–1) by long‐term deposition. The other soils were spiked with Zn (700 mg kg–1), Cu (250 mg kg–1), Ni (100 mg kg–1), V (100 mg kg–1), and Cd (7 mg kg–1) salts in 1987. The two plant species were cultivated for 15 months. Ammonium nitrate (1 M) extraction was used in a soil : solution ratio of 1:2.5 to assess the influence of the amendments on the labile metal pools. The reduction of metal extractability due to red mud was 70 % (Cd), 89 % (Zn), and 74 % (Ni) in the sandy soil (WEY). Plant uptake in this treatment was reduced by 38 to 87 % (Cd), 50 to 81 % (Zn), and 66 to 87 % (Ni) when compared to the control. Sequential extraction revealed relative enrichments of Fe‐oxide‐associated metal fractions at the expense of exchangeable metal fractions. Red mud was the only amendment that decreased lability in soil and plant uptake of Zn, Cd, and Ni consistently. Possible drawbacks of red mud application (e.g., As and Cr concentration) remain to be evaluated.  相似文献   

9.
This paper questions whether the presence of biosolids amendment in metal‐spiked soils alters the outcome of soil‐based assays of metal bioavailability. The effects of biosolids amendment on the efficacies of six soil metal bioavailability assays (total recoverable, EDTA, Ca(NO3)2, soil solution, diffusive gradient in thin films and free ion activity) were assessed against metal concentrations in wheat shoots (Triticum aestivum) germinated in three contrasting soils, each previously incubated for either 2 weeks or 6 months following treatment with Cd, Cu, Ni and Zn +/? biosolids amendment. Overall, Ca(NO3)2 was the most accurate method to predict Cd (r2 = 0.62), Ni (r2 = 0.73) and Zn (r2 = 0.55) bioavailability in soils and therefore was used to compare variations in responses between biosolids and nonbiosolids‐amended soils. Comparisons between these two groups revealed no significant differences in linear relationships for all four metals and soil types assessed. These findings not only support Ca(NO3)2 as a robust and valid method for determining soil metal bioavailability across metal matrices and soil types, but also that the presence of biosolids does not compromise the predictive power of this assay or any of the others examined.  相似文献   

10.
Abstract

The distribution of DTPA-extractable Cd, Ni and Zn in four profile samples collected from areas contaminated with wastes from tannery, city sewage, pharmaceutical and paper mills located at different places in Bangladesh was investigated. Soil samples were analysed for the total and their DTPA-extractable metal contents. The total concentration of metals in the soil horizons ranged from 0.07 to 0.62 mg kg?1 for Cd, 31 to 54 mg kg?1 for Ni and 59 to 838 mg kg?1 for Zn, respectively. These metal concentrations were highest in the surface and lowest in the subsurface horizons. This trend was also observed for the DTPA-extractable amounts of these metals. The relative extractability, expressed as the ratio of DTPA to total contents (aqua regia-extractable) was 33 to 46% for Cd, 2 to 10% for Ni and 3 to 28% for Zn, respectively, in the A1 horizon, while in the B and C horizons the ratios decreased gradually as did total concentration, indicating that metal contamination was primarily limited to the surface horizon. For all three metals, the above mentioned ratio was highest in the city sewage soil and the lowest in the paper mill soil. In general, the extent of contamination among the profiles investigated was in the following order: city sewage>tannery>pharmaceutical>paper mill soil. Higher ratios of DTPA-extractable Cd, Ni and Zn in the city sewage soil than the other soils may create a risk for the contamination of agricultural products and ground water.  相似文献   

11.
The success of risk assessment of metal contaminated soils depends on how precisely one can predict the bio-availability of metals in soil and transfer to the human food chain. In the present investigation, we tested several formulations of the ‘free-ion activity model (FIAM)’ to predict uptake of Cd, Zn and Cu by perpetual spinach (Beta vulgaris, Cicla) grown on a range of soils amended with sewage sludge. The model was parameterised using data measured on samples of pore water extracted by centrifugation and with porous Rhizon samplers installed within the rhizosphere of the growing plants. Free ion activities (M2+) were estimated following speciation of solution data using version 6 of the ‘Windermere Humic Aqueous Model (WHAM-VI). For all three metals, the best formulation of the FIAM appeared to require only one hypothetical root sorption site without competition from protons. Values of (M2+) could also be predicted satisfactorily from a pH-dependent Freundlich relation. Thus, from a combined FIAM–Freundlich relation and population dietary information, it was possible to estimate risk (hazard quotients) to consumers from very simple soil measurements: extractable metal content (0.05 M EDTA (Zn and Cu) or 1 M CaCl2 (Cd)), soil humus content and pH. The role of increased soil organic matter content and soil pH, in reducing risk to consumers, is illustrated for Cd in a hypothetical soil at the current UK statutory Cd limit for sludge application to agricultural land.  相似文献   

12.
Land disposal of organic waste materials may alter the heavy-metal status of the soil by affecting metal solubility or dissociation kinetics. The aim of this investigation was to study the influences of poultry manure and pistachio compost (at the rate of 300 g kg?1) on release behavior and extractability of copper (Cu) and cadmium (Cd) in two soils of Iran. For release studies, samples after incubation were extracted with ethylenediaminetetraacetic acid (EDTA) at pH 7.0 with shaker for periods of 5 to 2880 min. Results showed that during the reaction periods, Cu and Cd release rates were rapid at first and then became slower until equilibrium was achieved. In the two soils, extractability of Cu increased with poultry manure treatment and decreased with pistachio compost treatment as compared to the control soil, and extractability of Cd decreased with both pistachio compost and poultry manure treatments as compared to the control soil.  相似文献   

13.
Although Ni is officially recognized as an essential micronutrient for all higher plants, the majority of the published research on soil availability of Ni focuses on its hazardous role as a heavy metal. The objective of the study was to evaluate certain Ni soil tests in uncontaminated soils for an initial estimation of its sufficiency critical levels. Nickel was extracted from 30 cultivated soils employing the following extraction methods: DTPA, AB‐DTPA, AAAc‐EDTA, Mehlich‐3, 0.1 M HCl, and 0.1 M HNO3. Ryegrass (Lolium perenne L.) was grown in pots containing the soils, harvested five times, certain plant parameters were determined, and the Cate–Nelson procedures were used for Ni critical levels determination. Among the six methods, HCl was the least reliable extractant for the evaluation of soil available Ni, whereas the most significant (p ≤ 5%) relationships between Ni concentration or Ni uptake by ryegrass and Ni soil tests were consistently obtained for AAAc‐EDTA or Mehlich‐3 extractable Ni. In many cases, > 80% of the variability of Ni concentration or uptake by ryegrass was explained by these two soil tests without the inclusion of other soil properties that affect Ni bioavailability. Sufficiency critical levels of Ni in soil were ≈ 2 mg kg–1 for both methods. Consequently, as an initial approach, concentrations of AAAc‐EDTA or Mehlich‐3 extractable Ni < 2 mg kg–1 are probably a good guide to indicate soils that will respond to Ni fertilization.  相似文献   

14.
The influence of a humic deposit (Gyttja, G) alone (applied at 25 kg ha−1) and in combination with mineral fertilizer (G + NP) on soil organic matter content, pH, electrical conductivity, total N content, calcium carbonate content, enzyme activities (urease, β-glucosidase, arylsulphatase, and alkaline phosphatase), microbial biomass C, soil respiration, and availability of Cd, Pb, Ni, and Zn was examined through a 180-day incubation period and compared with the behavior of no treatment (control) and NP treatment. A significant increase in organic matter content was observed in soils treated with G + NP. Compared with G and NP alone, the G + NP-amended soils showed higher values of the selected microbiological properties.Diethylenetriaminepentaacetic-acid-extractable Cd, Pb, Ni, Cu, and Zn increased significantly with increasing rates of NP, but the addition of G + NP resulted in a considerable decrease in the amount of extractable metals during the incubation period (P<0.05). Based on these results, it can be concluded that the organic matter applied in the gyttja led to an increase in the metal adsorption capacity of the amended soils. This material can be used to reduce the availability and mobility of heavy metals in the soils intensively amended with mineral fertilizers. A combination of G with NP can, therefore, be considered as an alternative approach in the applications of organomineral fertilization.  相似文献   

15.
High Cd and Ni concentrations in sandy soils were built up in a field experiment, receiving an unusually metal-polluted sewage sludge between 1976 and 1980, at Bordeaux, France. The study evaluates the availability of metals and their after effects on maize at one point in time, the 8th year following termination of sludge application (1988). Plant parts (leaves, stalks, roots, grains) and soil samples were collected from plots which received 0 (Control), 50 (S1) and 300 Mg sludge DW ha?1 (S2) as cumulative inputs. Dry-matter yield, plant metal concentrations, total, and extractable metals in soils were determined. Metal inputs resulted in a marked increase in total and extractable metals in soils, except for extractable Mn and Cu with either 0.1 N Ca(NO3)2 or 0.1 N CaCl2. Total metal contents in the metal-loaded topsoils (0–20 cm depth) were very often lower, especially for Cd, Zn, and Ni, than the expected values. Explanation was partly given by the increases of metal contents below the plow layer, particularly for Cd at the low metal loading rate, and for Cd, Ni, and Cu at the high one (Gomez et al., 1992). In a control plot beside a highly metal- polluted plot, Cd, Zn, and Ni concentration in soil increased whereas the concentration of other metals was unchanged; lateral movement, especially with soil water, is plausible. Yield of leaves for plants from the S2 plot was reduced by 27%, but no toxicity symptoms developed on shoots. Yields of stalks for plants in both sludge-treated plots numerically were less than the controls but the decrease was not statistically significant. Cd and Ni concentrations increased in all plant parts with metal loading rate while Mn concentrations decreased. Leaf Cd concentration in plants from sludge-treated plots (i.e. 44 and 69 mg Cd kg?1 DM for S1 and S2) was above its upper critical level (i.e. dry matter yield reduced by 10%: 25μg Cd g?1 DM in corn leaves, Macnicol and Beckett, 1985). Yield reduction at the high metal-loading rate was probably due to 3 main factors: Mn deficiency in leaves, the accumulation of Ni especially in roots, and the increase of Cd in leaves. The amount of metal taken up by plants from the control plot ranked in the following order (mole ha?1): Fe(22)? Mn(7)>Zn (5.6)?Cu (0.7), Ni (0.6), Cd (0.4). For sludge-treated plots, the order was (values for S1 and S2 in mole ha ?1): Fe (16, 15)>Zn (7.9, 7.7)>Ni (4.3, 4.7)>Cd (1.9, 2.1)>Cu (1.0,1.2), Mn (1.5, 1.1). Zn and Cd had the greatest offtake percent from the soil to the above ground plant parts. Cd or Ni uptake by maize were correlated with extractable metals by unbuffered salts (i.e. 0.1 N Ca(NO3)2 and 0.1 N CaCl2). It is concluded that part of the sludge-borne Cd and Ni can remain bioavailable in this sandy soil for a long period of time (e.g. 8 yr) after the termination of metal-polluted sludge application.  相似文献   

16.
Irrigation of arable land with contaminated sewage waters leads to the accumulation of trace metals in soils with subsequent phyto‐/zootoxic consequences. In this study, biochar derived from cotton sticks was used to amend an agricultural silt‐loam soil that had been previously irrigated with trace metal contaminated sewage waters. Metal accumulation and toxicity to spinach (Spinacia oleracea) and fenugreek (Trigonella corniculata) was investigated by measuring concentrations of Cd and Ni in plant tissues and various photosynthetic and biochemical activities of plants. Positive impacts of biochar on both spinach and fenugreek were observed in terms of biomass production that increased from 29% to 36% in case of spinach, while for fenugreek this increase was 32% to 36%. In the control treatment there was an increase in malondialdihyde, soluble sugar, and ascorbic acid contents, indicating heavy metal stress. Biochar applications increased soluble proteins and amino acids in plants and reduced the uptake of Cd from 5.42 mg kg?1 at control to 3.45 mg kg?1 at 5% biochar amended soil and Ni (13.8 mg kg?1 to 7.3 mg kg?1 at 5% biochar) by the spinach plants. In fenugreek, the Cd was reduced from 7.72 mg kg?1 to 3.88 mg kg?1 and reduction in Ni was from 15.45 mg kg?1 to 9.46 mg kg?1 at 5% biochar treated soil, reducing the possibility of transfer up the food chain. This study demonstrates that the use of biochar made from cotton‐sticks, as an amendment to arable soils that have received contaminated irrigation water, could improve plant growth and decrease Cd and Ni uptake to crops, alleviating some of the negative impacts of using sewage waters on arable land.  相似文献   

17.
The bioavailability and plant uptake of heavy metals (HM), as well as finding the most reliable methods for the prediction of availability, continues to be one of the most crucial problems in agricultural and environmental studies. In agricultural soils from two regions in Kosovo, known for its metal pollution, we collected 60 soil and plant samples (wheat, corn, potatoes, and grass). Heavy metals were extracted from soil with aqua regia (pseudototal concentration), NH4OAc‐EDTA (potential bioavailable), and NH4NO3 (mobile fraction), plant samples were digested with HNO3/H2O2 (microwave assisted extraction). The pseudo total content of Cd, Pb, and Zn showed high value in Mitrovice (mean: Cd–2.92, Pb–570.15, and Zn–522.86 mg kg?1), whereas in Drenas region Ni and Cr showed high value with a mean 258.54 and 203.22 mg kg?1. Also, the potential bioavailability and mobile form of these metals were increased in Mitrovice (mean: Cd–1.59, Pb–217.05, Zn–522.86 mg kg?1, respectively Cd–0.17, Pb–0.64, and Zn–15.45 mg kg?1), compared to Drenas. Cd and Pb were elevated in potato tubers (mean Cd–0.48 and Pb–0.85 mg kg?1). The TF was higher for micronutrients (Zn and Cu) than for non‐essential metals (Cd and Pb). Multiple regression analysis showed a good model for prediction of Cd, Pb and Zn content in plant with significance 99.9%, whereas this model was not significant for Cu, Cr, and Ni. Soil pH played a significant role in the content of Cd and Zn in wheat and potato plants. Clay content also showed significance in Cd concentration in wheat and potato plants, while carbon content was significant for Cd in grass plants, as well as for Zn in wheat and grass plants.  相似文献   

18.
Abstract

In a field experiment conducted during three years in a sandy‐loam, calcareous soil, one aerobically digested sewage sludge (ASL) and another anaerobically digested sewage sludge (ANSL) were applied at rates of 400, 800, and 1,200 kg N/ha/year, and compared with mineral nitrogen fertilizer at rates of 0, 200, 400, and 600 kg N/ha/year in a cropping sequence of potato‐corn, potato‐lettuce, and potato, the first, second, and third year, respectively. Results showed that the highest values of soil extractable metals were obtained with aqua regia, whereas the lowest levels with DTPA. All metal (Zn, Cu, Cd, Ni, Pb, and Cr) gave significant correlations between metal extracted with the different extractants and metal loading applied with the sludges. The metal extractable ion increased over the control for Zn, Cu, Cd, Ni, Pb, and Cr extracted with DTPA, EDTA (pH 8.6) and 0.1 N HC1, for Zn, Cd, Ni, Pb, and Cr extracted with EDTA (pH 4.65) and AB‐DTPA, and for Zn, Cd, Ni, and Cr extracted with aqua regia. The level of metal‐DTPA extractable resulted highly correlated with that obtained by the other methods, except the Ni‐aqua regia extractable. The soil extractable elements which showed significant correlations with metals in plant were: Zn, Cu, Cd, and Ni in potato leaves, Cd, Ni, and Pb in corn grain, and Zn and Cd for lettuce wrapper leaves. In general, all the chelate based extractants (DTPA, EDTA pH 4.6, EDTA pH 8.6, AB‐DTPA) were equally useful as indicator of plant available metals in the soil amended with sludge.  相似文献   

19.
Abstract

This study was carried out to investigate whether an insoluble polyacrylate polymer could be used to remediate a sandy soil contaminated with cadmium (Cd) (30 and 60 mg Cd kg?1 of soil), nickel (Ni) (50 and 100 mg Ni kg?1 of soil), zinc (Zn) (250 and 400 mg Zn kg?1 of soil), or the three elements together (30 mg Cd, 50 mg Ni, and 250 mg Zn kg?1 of soil). Growth of perennial ryegrass was stimulated in the polymer‐amended soil contaminated with the greatest amounts of Ni or Zn, and when the three metals were present, compared with the unamended soil with the same levels of contamination. Shoots of plants cultivated in the amended soil had concentrations of the metals that were 24–67% of those in plants from the unamended contaminated soil. After ryegrass had been growing for 87 days, the amounts of water‐extractable metals present in the amended soil varied from 8 to 53% of those in the unamended soil. The results are consistent with soil remediation being achieved through removal of the metals from soil solution.  相似文献   

20.
A slightly modified three-step sequential extraction procedure proposed by the Community Bureau of Reference (BCR) for analysis of sediments was successfully applied to soil samples. Contaminated soil samples from the lead and zinc mining area in the Mezica valley (Slovenia) and natural soils from a non-industrial area were analysed. The total concentrations of Cd, Pb and Zn and their concentrations in fractions after extraction were determined by flame or electrothermal atomic absorption spectrometry (FAAS, ETAAS). Total metal concentrations in natural soils ranged from 0.3 to 2.6 mg kg-1 for Cd, from 20 to 45 mg kg-1 for Pb and from 70 to 140 mg kg-1 for Zn, while these concentrations ranged from 0.5 to 35 mg kg-1 for Cd, from 200 to 10000 mg kg-1 for Pb and from 140 to 1500 mg kg-1 for Zn in soils from contaminated areas. The results of the partitioning study applying the slightly modified BCR three-step extraction procedure indicate that Cd, Pb and Zn in natural soils prevails mostly in sparingly soluble fractions. Cd in natural soils is bound mainly to Fe and Mn oxides and hydroxides, Pb to organic matter, sulphides and silicates, while Zn is predominantly bound to silicates. In contaminated soils, Cd, Pb and Zn are distributed between the easily and sparingly soluble fractions. Due to the high total Cd, Pb and Zn concentrations in contaminated soil close to the smelter, ! and their high proportions in the easily soluble fraction (80% of Cd, 50% of Pb and 70% of Zn), the soil around smelters represents an environmental hazard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号