首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以云南省玉溪市红塔区坡耕地烤烟土壤为研究对象,选择生物质炭、木质素、聚丙烯酰胺和秸秆4种土壤改良剂,研究施用不同土壤改良剂后土壤各层有机碳及其组分含量的变化特征。结果表明:坡耕地烤烟土壤有机碳及其组分含量不同生育期表现为成熟期<现蕾期<旺长期,不同土层表现为5~10 cm>0~5 cm>10~20 cm,其中以添加高量生物质炭处理(0.6%~47.0%)和高量秸秆处理(1.3%~38.2%)提升效果较为显著;施用4种土壤改良剂在一定程度上均可提高土壤全氮和全磷含量,其中以添加高量秸秆处理最为显著,全氮、全磷含量分别提高15.0%~32.8%、37.6%~40.2%;各处理土壤C︰N在5.07~8.67,C︰P在3.91~6.12,N︰P在0.34~1.00;土壤全氮与全磷、有机碳含量之间分别存在显著(P<0.05)和极显著(P<0.01)正相关关系,有机碳各组分间呈极显著正相关关系(P<0.01);土层深度、生育期和土壤改良剂种类对土壤有机碳组分的影响均极显著(P<0.01)。添加生物质炭和秸秆对滇中红壤丘陵区植烟土壤有机碳及其各组分含量...  相似文献   

2.
Thermally modified organic materials commonly known as biochar have gained popularity of being used as a soil amendment.Little information, however, is available on the role of biochar in alleviating the negative impacts of saline water on soil productivity and plant growth. This study, therefore, was conducted to investigate the effects of Conocarpus biochar(BC) and organic farm residues(FR) at different application rates of 0.0%(control), 4.0% and 8.0%(weight/weight) on yield and quality of tomatoes grown on a sandy soil under drip irrigation with saline or non-saline water. The availability of P, K, Fe, Mn, Zn and Cu to plants was also investigated. The results demonstrated clearly that addition of BC or FR increased the vegetative growth, yield and quality parameters in all irrigation treatments. It was found that salt stress adversely affected soil productivity, as indicated by the lower vegetative growth and yield components of tomato plants. However, this suppressing effect on the vegetative growth and yield tended to decline with application of FR or BC, especially at the high application rate and in the presence of biochar. Under saline irrigation system, for instance, the total tomato yield increased over the control by 14.0%–43.3% with BC and by 3.9%–35.6% with FR. These could be attributed to enhancement effects of FR or BC on soil properties, as indicated by increases in soil organic matter content and nutrient availability. Therefore, biochar may be effectively used as a soil amendment for enhancing the productivity of salt-affected sandy soils under arid conditions.  相似文献   

3.
Abstract

Soil quality and crop productivity can be improved by the combined soil application of organic amendments and synthetic fertilizers. We evaluated the sole and combined effects of sugarcane-bagasse biochar (SBB), farmyard manure (FYM) and nitrogen (N) fertilizer on soil properties and corn yield traits. Three N fertilizer rates (0, 50 and 100% of recommended) were used with or without the organic amendments. We observed significant increases in soil nitrate-N (at vegetative and reproductive phases), ammonical-N and microbial-biomass-N contents in responses to a co-application of 0.5% SBB, 0.5% FYM and 100% N fertilizer (p?≤?0.05). While the same co-application also resulted in the most significant soil organic carbon value, the maximum soil microbial biomass carbon was observed when 0.5% SBB and 0.5% FYM combination was applied along with 50% N fertilizer (p?≤?0.05). Plant growth indices—shoot length and, fresh and dry weights of shoot and root were also recorded to be the highest where the same organic amendments were applied in addition to a 50% or 100% mineral N fertilizer (p?≤?0.05). Combined application of the organic amendments effectively improved soil CEC compared to those in responses to individual applications of SBB and FYM (p?≤?0.05). Conclusively, for increasing the corn yield and improving the soil quality, the co-application of 0.5% SBB and 0.5% FYM was more effective than any of the individual 1% applications; Additions of 50% and 100% mineral N to the organic combination were equally useful for increasing the grain yield.  相似文献   

4.
利用田间试验,探讨生物炭与强还原处理(RSD)对退化设施蔬菜土壤可溶性有机质(DOM)的影响.处理为对照(CK)、生物炭修复(BC)、淹水(SF)、淹水覆膜(SFF)、强还原修复(RSD)、RSD与生物炭联合修复(RSD+BC),对比研究不同处理对0-20,20-40 cm 土壤DOM含量及光谱特征的影响.结果表明:0...  相似文献   

5.
Like straw, biochar incorporation can influence soil microorganisms and enzyme activities and soil carbon(C) responses; however,few studies have compared the various effects of straw and biochar and the underlying mechanisms. An experiment was performed to study the changes in soil respiration(SR) and soil organic C(SOC) fluxes in response to the incorporation of three kinds of straw(reed, smooth cordgrass, and rice) and their pyrolyzed products(biochars) at Chongming Island, China. In addition, the microbial activity and community structure of some amended soils were also analyzed to clarify the mechanisms of these responses. The results showed that all biochar incorporation(BC) induced lower SR than the corresponding unpyrolyzed straw incorporation(ST), and the average SR in the soils following BC and ST during the experimental periods was 21.69 and 65.32 μmol CO_2 m~(-2)s~(-1), respectively.Furthermore, the average SOC content was 16.97 g kg~(-1) following BC, which was higher than that(13.71 g kg~(-1)) following ST,indicating that compared to ST, BC was a low-C strategy, even after accounting for the C loss during biochar production. Among the BC treatments, reed-BC induced the lowest SR(17.04 μmol CO_2 m~(-2)s~(-1)), whereas smooth cordgrass-BC induced the highest SR(27.02 μmol CO_2 m~(-2)s~(-1)). Furthermore, in contrast with ST, BC significantly increased the abundance of some bacteria with poorer mineralization or better humification ability, which led to lower SR. The lower easily oxidizable C(EOC) and higher total C contents of biochars induced lower SR and higher SOC in the soil following BC compared to that following ST. Among the BC treatments,the higher total nitrogen content of rice biochar led to significantly higher soil microbial biomass, and the lower EOC content of reed biochar led to lower soil microbial activity and SR.  相似文献   

6.
以内蒙古河套灌区苏打碱化土为研究对象开展田间试验,设置常规施肥(CK)、生物炭+常规施肥(BC)、牛粪+常规施肥(CD)、玉米秸秆+常规施肥(SW)和羊粪+常规施肥(GM)5个处理,研究不同有机物料添加对碱化土壤有机碳(SOC)库和化学性质的影响。分别于2019年和2020年收获季采集0—30 cm耕层土壤,分析不同有机物料添加下SOC及其活性碳组分和主要盐碱指标的变化特征及其相关关系。结果表明:与CK相比,2019年和2020年各有机物料添加处理下SOC平均增幅分别为22.7%和17.2%,土壤有机碳储量(SOCs)平均增幅分别为22.9%和18.2%;4种有机物料均提高了碱化土壤活性有机碳组分含量,其中,CD和GM处理下各活性碳组分含量增幅较其他处理更高;2019年各有机物料添加处理下碳库管理指数(CPMI)较CK提高53.8%~108.3%,2020年提高71.3%~144.1%(P<0.05),CD和GM对CPMI的提升作用更明显。土壤化学性质方面,2020年各有机物添加处理下pH均显著下降,BC和CD处理下碱化度(ESP)分别显著下降36.9%和29.3%,CD处理下蔗糖酶活性提高36.7%(P<0.05)。主成分分析(PCA)表明,影响苏打碱化土SOC含量变化的主要因素为活性有机碳组分和ESP。牛粪和羊粪施用对苏打碱化土有机碳库质量提升作用较好,生物炭施用对盐碱化指标改良效果最明显。  相似文献   

7.
Fertilization is required for optimum plant growth, particularly in unfertile soils, while optimizing nutrient use efficiency is an alternative to reduce inorganic fertilizer needs and reduce environmental problems caused by nutrient leaching. This study investigated soil properties and cowpea yield responses to biochars (BCs) made from different feedstocks, baby corn peel biochar (BC1), branches of mango tree biochar (BC2), and rice husk biochar (BC3), applied in combination with nitrogen-phosphorus-potassium (NPK) fertilizers. The experiment was conducted in a greenhouse, using an acid sandy soil (Arenosol) that was submitted for 70 d to the following eight treatments:i) control; ii) full dose of NPK (a commercial compound fertilizer (12-24-12 of N-P2O5-K2O) + urea (46% N)); iii) BC1 + half dose of NPK; iv) BC1 + full dose of NPK; v) BC2 + half dose of NPK; vi) BC2 + full dose of NPK; vii) BC3 + half dose of NPK; and viii) BC3 + full dose of NPK. All biochars were applied at a rate of 0.9% (weight/weight), and each type of biochar was combined with half and full doses of NPK fertilizers. Soil pH increased significantly (P < 0.05) in treatments with BC1 and BC2, while cation exchange capacity (CEC) and available P were higher in the treatments with BC1; BC1 and BC2 also induced higher activity of enzymes related to the P cycle and higher cowpea yield. Similar soil properties and cowpea yield parameters were obtained with the full and half doses of NPK fertilizers for each type of biochar used. In conclusion, biochars in the combination with NPK fertilizers improved soil chemistry and enzymatic activities, allowing reduced fertilizer application and food production costs in the acid soil studied.  相似文献   

8.
Abstract

Enrichment of soils with organic amendments could increase the content of available nutrients, improve soil chemical characteristics and increase plant growth. In the current pots experiment, the influences of biochar (BC), humic acid (HA), and compost (CO) on barely growth were investigated under saline conditions. Barely plants grown on a clay loam soil and irrigated with saline water concentration of (EC?=?13.8 dS m?1) were amended with BC, HA and CO at a rate of 1 or 3% of soil weight. The results showed that BC, HA and CO treatments had significant effects on the soil salinity, pH, organic matter (SOM), and plant nutrients. The results showed that the high rate application of BC, HA and CO increased the SOM by 14, 75 and 58% respectively, above the control. Consequently, the total chlorophyll as affected by the treatments can be arranged in descending order: BC3 > CO1 > CO3 > HA3 > HA1 > BC1 > C. The high rates of BC, HA and CO increased the dry biomass by 28.0, 21.6 and 39.7% respectively, above the control %, respectively, above the control. The investigated organic amendments increased the nutrients availability and uptake and enhanced the synthesis of chlorophyll in the plant tissues and this may be the reason of increasing the ability of barley to tolerate salinity.  相似文献   

9.
为了评价不同改良剂对盐渍化土壤的改良效果,以葵花为研究对象,采用大田裂区试验方法,设置生物炭(DC,22.5 t/hm~2)、脱硫石膏(DS,37.5 t/hm~2)、脱硫石膏加有机肥(DSF,各37.5 t/hm~2)、对照(DCK)4种处理。结果表明:施加改良剂均降低了土壤容重,增加了土壤孔隙度,生物炭效果最明显,在耕层(0—20 cm)收获后较播种前土壤容重降低6.11%,是DCK的4倍,孔隙度增加12.89%,是DCK的5倍;脱硫石膏降低土壤pH和电导率效果最优,最大降幅分别为10.09%和28.51%;3种改良剂对盐渍化土壤的肥力效应不同,与对照相比,在收获后生物炭处理显著提高土壤耕层有机质、碱解氮、速效磷含量,脱硫石膏显著提高速效钾含量;各改良剂处理能显著增加葵花株高、茎粗、干物质积累量和百粒重,且生物炭处理的葵花产量最高,为4 539.60 kg/hm~2,较对照增产32.28%。综上所述,在河套灌区盐渍化土壤中施入不同改良剂后,土壤性状得到明显改善,促进葵花的正常生长,提高了产量。其中施入生物炭22.5 t/hm~2对盐渍土壤改良效果最佳,其次是施入脱硫石膏37.5 t/hm~2,能有效地提高土壤肥力和葵花产量。  相似文献   

10.
为对比研究植物根际促生菌(枯草芽孢杆菌、胶质芽孢杆菌)和苹果树枝生物炭的施加对黄土丘陵区山地苹果园粉质壤土团聚体含量、稳定性以及土壤水分的影响,采用田间定位试验,设置4个处理:施加65 t/hm2生物炭(BC)、20 t/hm2枯草芽孢杆菌(PGBS)、20 t/hm2胶质芽孢杆菌(PGBM)和对照(CK)。湿筛法获得土壤各粒径团聚体含量,并计算水稳性团聚体的平均重量直径(MWD)、几何平均直径(GMD)和分形维数(D)。结果表明:BC、PGBS和PGBM处理有机碳含量(SOC)较CK提升18.04%~206.91%,全氮(TN)含量较CK提升6.11%~66.56%。分析表明,BC、PGBS和PGBM处理0—60 cm土层>0.25 mm团聚体含量显著增加;各处理分形维数D较CK均降低,MWD、GMD均高于对照CK,大小顺序为PGBS>PGBM>BC,施加改良剂可以增加土壤团聚体的稳定性。各处理0—60 cm土层土壤饱和导水率和土壤含水量均得到提升。施加生物炭和植物根际促生菌可以显著提升土壤有机碳和全氮含量,增强土壤结构稳定性,提升土壤含水量,生物炭处理对于土壤有机碳和全氮含量的提升优于植物根际促生菌,但植物根际促生菌施用对土壤结构稳定性的提升更佳。  相似文献   

11.
The aim of this study was to identify effects of carbonized organic material (“biochar”) on soybean growth, root nodulation and biological nitrogen fixation, and to elucidate possible underlying mechanisms. Soybean (Glycine max L.) was grown in four arable soils amended with carbonized organic material produced from wood or maize as feedstocks, by pyrolysis (“pyrochar”) or hydrothermal carbonization (“hydrochar”). Nodulation by Bradyrhizobium , biological nitrogen fixation (BNF) assessed by 15N techniques, plant growth, nutrient uptake and changes in chemical soil properties after soil amendment were determined. Data were analyzed by means of a three way ANOVA on the factors soil, carbonization technique and feedstock. It turned out that soybean root nodulation and BNF was influenced by the carbonization technique used to prepare the soil amendment. Hydrochar, in average and across all soils, increased nodule dry matter and BNF by factors of 3.4 and 2.3, respectively, considerably more than pyrochar, which led to 1.8 and 1.2 fold increases, respectively. Nodule dry matter and BNF correlated positively with available soil sulfur and negatively with available soil nitrogen. Hydrochars provided more available sulfur than pyrochars, and hydrochars caused a decrease in nitrogen availability in the soil solution, thereby exerting a positive influence on nodulation and BNF. Pyrochar amendment increased soil pH but had no effect on nodulation and BNF. Plant growth was affected by the soil and by the feedstock used for the “biochar”, and increased slightly more in treatments with pyrochar and hydrochar made from maize, which was richer in nitrogen and potassium. The results show that carbonized organic materials, and specifically hydrochar, have the capacity to increase BNF in soils. We suggest that this enhancement in BNF in response to soil amendments with carbonized organic materials is due to an increase in available sulfur and a reduction of available soil nitrogen.  相似文献   

12.
生物碳对灰漠土有机碳及其组分的影响   总被引:15,自引:1,他引:15  
土壤有机碳是影响土壤肥力和作物产量高低的决定性因子。以棉花秸秆为原料,在高温厌氧条件下热解制备生物碳,通过盆栽试验探讨了生物碳对新疆灰漠土有机碳及其组分的影响。试验设置3种生物碳:棉花秸秆分别在450℃、600℃和750℃下热解制备(以BC450、BC600和BC750表示);每种生物碳的施用量分别为5 g·kg-1、10 g·kg-1和20 g·kg-1(占土壤重量的比例);同时,以空白土壤为对照(CK)。结果表明:施用生物碳可促进小麦生长,两茬小麦的地上部干物质重均显著高于对照。施用生物碳可显著提高土壤总有机碳,且生物碳热解温度越高,施用量越大,提高作用越明显。各生物碳处理土壤易氧化碳含量均显著高于对照;生物碳低、中施用量处理(5 g·kg-1、10 g·kg-1)土壤水溶性有机碳含量显著高于对照,但高施用量处理(20 g·kg-1)与对照无显著差异;除BC750低施用量处理(5 g·kg1)外,其余各生物碳处理土壤微生物量碳含量也均显著高于对照。生物碳不同热解温度对土壤易氧化碳和微生物量碳含量的影响表现为BC450>BC600>BC750;但对土壤水溶性有机碳含量无显著影响。生物碳不同施用量对土壤易氧化碳的影响表现为10 g·kg-1≈20 g·kg-1>5 g·kg-1,水溶性有机碳含量为5 g·kg1≈10 g·kg-1>20 g·kg-1。生物碳对土壤微生物商的影响总体表现为:生物碳的热解温度越高,施用量越大,土壤微生物商越低。因此,合理的施用棉花秸秆生物碳可显著增加灰漠土有机碳储量,改变土壤有机碳组分,提高土壤生产力。  相似文献   

13.
碳氮添加对雨养农田土壤全氮、有机碳及其组分的影响   总被引:2,自引:1,他引:1  
江晶  武均  张仁陟  董博  蔡立群 《水土保持学报》2019,33(3):215-220,227
为探明碳氮添加4年后,土壤全氮、有机碳及其组分(可溶性有机碳、微生物量碳、轻组和重组有机碳)的变化特征,依托布设于甘肃省定西市安定区李家堡镇的不同碳源配施氮素田间定位试验,涉及秸秆、生物质炭、氮素3个因素,秸秆设置为不施、施用秸秆2水平;生物质炭为不施和施用生物质炭2个水平;氮素设置为不施氮、施纯氮50 kg/hm^2、施纯氮100 kg/hm^2 3个水平,共9个处理。结果表明:不同处理下土壤全氮、有机碳及其组分的含量均随土层的加深而降低。添加生物质炭对土壤全氮、有机碳及其组分均具有不同程度的提升效应。添加秸秆对土壤全氮、有机碳和可溶性有机碳、微生物量碳、轻组有机碳均具有显著提升效应,仅在0-5 cm土层对重组有机碳有显著提高。添加氮素可显著提升土壤全氮、有机碳和可溶性有机碳、微生物量碳、轻组有机碳含量。较其他处理,添加生物质炭对土壤全氮、有机碳和重组有机碳的提升效应最高,添加秸秆对可溶性有机碳、微生物量碳、轻组有机碳的提升效果最优。从提升土壤质量的角度出发,推荐秸秆配施氮素模式,该模式下土壤碳素有效性高、易于被微生物利用,有利于作物生长。从提高土壤固碳角度考虑,推荐生物质炭配施氮素模式,该模式有利于碳的封存。  相似文献   

14.
土壤有机碳氮是土壤肥力的关键因素,有机物料施用是提高土壤有机碳氮的有效措施。研究和比较了不同有机物料输入对土耕层(0—20 cm)土壤有机碳、全氮、可溶性有碳氮及0—200 cm剖面土壤硝态氮和含水量分布变化的后效作用。结果表明,停止施入有机物料两年后,与对照(CK)相比,秸秆与氮磷肥配施(SNP)和生物炭与氮磷肥配施(BNP)的表层(0—20 cm)土壤有机碳(SOC)分别提高了29.5%和29.8%(p<0.05);氮磷肥(NP)、有机肥与氮磷肥配施(MNP)、秸秆与氮磷肥配施(SNP)和生物炭与氮磷肥配施(BNP)的表层土壤全氮含量较CK分别提高了22.0%,14.3%,24.2%和26.4%(p<0.05)。BNP处理的土壤可溶性有机碳(DOC)显著高于其他处理(p<0.05),分别比CK,NP,MNP和SNP提高了23.4%,10.9%,21.3%,20.5%;所有施肥处理的土壤可溶性有机氮(DON)均显著高于CK(p<0.05),分别提高了39.3%,29.3%,34.5%和52.3%。与CK相比,各施肥处理显著提高了表层土壤硝态氮含量(p<0.05),增加了0—100 cm土层的硝态氮累积量。与NP处理相比,MNP和SNP显著提高了0—200 cm土层的硝态氮累积量(p<0.05),而BNP则差异不显著。相比CK,施肥处理(NP,MNP,SNP,BNP)可显著提高0—20 cm土层的含水量,增加0—40 cm土层的储水量,且BNP处理显著高于SNP和MNP。总体而言,生物炭在提高和维持表层土壤肥力以及降低剖面硝态氮淋溶风险等方面的后效作用显著优于秸秆和有机肥,是陕西关中地区旱地土上一种较好的有机物料施用方式。  相似文献   

15.
杉木凋落物及其生物炭对土壤微生物群落结构的影响   总被引:6,自引:0,他引:6  
以福建建瓯万木林自然保护区内的杉木人工林土壤为研究对象,设置单独添加生物炭、单独添加凋落物以及混合添加凋落物和生物炭处理,进行一年的室内培养实验,研究不同添加物处理对土壤性质及微生物群落结构的影响。结果表明:与对照(S)相比,单独添加凋落物与混合添加凋落物和生物炭均使土壤磷脂脂肪酸(PLFA)总量、真菌丰度以及真菌/细菌比值显著增加;单独添加生物炭与混合添加凋落物和生物炭均使革兰氏阳性细菌/革兰氏阴性细菌比值显著增加。混合添加凋落物和生物炭处理的放线菌丰度显著高于单独添加凋落物处理的。主成分分析表明,不同添加物处理的土壤微生物群落结构存在显著差异;典范对应分析表明,不同添加物处理通过改变土壤p H、全碳、全氮、C/N、可溶性有机碳(DOC)和可溶性有机氮(DON)等性质,进而影响土壤微生物群落结构。  相似文献   

16.
基于室内模拟培养试验,研究改良剂(生物质炭、过氧化钙)对旱地红壤微生物量碳、氮及可溶性有机碳、氮的影响。试验设置4个处理,即CK、Ca(过氧化钙,1.72g/kg)、C(生物质炭,21.46g/kg)、C+Ca。结果表明:各处理土壤微生物量碳、氮以及可溶性有机碳具有相同的变化趋势,即前期(3d内)都增加较快,在第3天达到最大值,随试验进行有所下降,配施效果优于单施。各处理可溶性有机氮在21d内缓慢增加;第21天时,C+Ca、Ca、C相比CK分别显著增加了62.1%,55.5%,40.9%;35d以后,配施(C+Ca)与单施过氧化钙(Ca)的效果显著优于单施生物质炭(C)和对照(CK)。120d培养期内,配施(C+Ca)处理能够明显提高微生物量碳、氮以及可溶性有机碳、氮的平均含量;微生物量碳的平均含量大小顺序为C+CaCCKCa,微生物量氮的平均含量C+Ca处理显著高于其他处理;可溶性有机碳的平均含量大小顺序为C+CaCaCCK,可溶性有机氮的平均含量C+Ca、Ca处理显著高于CK、C处理。微生物量碳、氮以及可溶性有机碳之间互为极显著正相关(P0.01),而微生物量碳与可溶性有机氮之间呈极显著负相关。因此,生物质炭和过氧化钙能有效提高旱地红壤微生物量碳、氮及可溶性有机碳、氮,且生物质炭与过氧化钙配合施用更有助于土壤改良。  相似文献   

17.
ABSTRACT

How to restore the soil fertility and productivity in a damaged and then reclaimed area with extremely low fertility is a big concern worldwide. To explore the method of soil restoration in the coal mining subsidence area, the effects of biochar application coupled with organic fertilizer (animal manures) on the process of organic nitrogen (N) mineralization were studied in a 149 days leaching experiment. Biochar were applied (wt/wt) at the rates of 0%, 1%, and 3%. Two organic fertilizers with different C/N ratio (chicken and sheep manures) were applied at the rate of 200 mg N·kg?1 soil. A vegetable soil with high-fertility was used as the comparison. The results showed that when treated with chicken manure, the reclaimed soil had 11.13% lower mineralization potential and 20.00% lower inorganic nitrogen production from mineralization than the vegetable soil. Compared with the non-biochar treatment, biochar at both application rates decreased N leaching in chicken manure-treated reclaimed soil, i.e., by 21.49% (1% biochar) and 28.31% (3% biochar), respectively, whereas only high rate of biochar application decreased N leaching in chicken manure-treated vegetable soil by 8.10%. However, N leaching in sheep manure-treated reclaimed soil was unaffected by the biochar application. Thus, the effect of the biochar on the organic nitrogen mineralization was affected by both soil and organic fertilizer type.  相似文献   

18.
为研究生物炭对豫西丘陵地区农田土壤团聚体分布、稳定性及其碳、氮在团聚体中分布的影响,进一步探明生物炭对丘陵区农田土壤结构和养分的长期作用效果。采用田间长期定位试验,生物炭用量为0(C0),20(C20),40(C40)t/hm~2 3个处理,研究生物炭施用5年后对土壤团聚体组成及稳定性的影响,探究土壤团聚体中有机碳和全氮分布特性。结果表明:施加20,40 t/hm~2生物炭可提高0—20,20—40 cm土层的机械性0.5 mm以上粒级和水稳性0.053 mm以上粒级团聚体含量。在0—20 cm土层中,C20和C40处理下0.25 mm的机械性团聚体(DR_(0.25))分别较对照增加3.78%和6.83%,0.25 mm水稳性团聚体(WR_(0.25))分别较对照增加31.0%和49.45%,土壤不稳定团粒指数(E_(LT))分别较对照降低4.30%和6.85%,土壤团聚体破坏率(PAD)分别较对照降低9.71%和14.77%,土壤团聚体平均质量直径(MWD)分别较对照增加28.44%和45.34%,几何平均直径(GMD)分别较对照增加32.04%和54.92%。各粒级的有机碳和全氮含量随生物炭施用量的增加而增加,有机碳和全氮含量都以0.25~0.053 mm粒级最高,且0—20 cm土层的有机碳和全氮含量高于20—40 cm土层的有机碳和全氮含量;随着生物炭施用量的增加,2,2~0.25,0.25~0.053 mm粒级团聚体有机碳和全氮贡献率随之增加,而0.053 mm粒级微团聚体有机碳和全氮贡献率随之降低。总体来说,生物炭能够改善豫西丘陵地区农田土壤的团聚体结构,增加土壤大团聚体的含量,增强团聚体的稳定性,提高土壤团聚体中碳、氮含量,有利于豫西地区农田土壤肥力的保持和持续健康发展。  相似文献   

19.
为探明干旱地区盐碱地膜下滴灌不同灌水下限施用生物炭对玉米产量和水肥利用效率的响应差异及相互影响关系,提出较优的灌溉制度和生物炭用量。连续2年在河套灌区盐渍化农田玉米生长阶段进行小区控制试验,设计3个灌水下限[土壤基质势为-15(W15),-25(W25),-35(W35)kPa,灌水定额为22.5 mm]和3个生物炭用量水平[0(B0),15(B15),30(B30)t/hm2],2因素完全随机试验设计,共9个处理。测定并分析玉米全生育期0—15 cm土壤理化性状、作物生长特征和水氮利用效率。结果表明:不同灌水下限施用生物炭整体提高玉米全生育期土壤含水率、有机质和碱解氮含量,同一灌溉水平下生物炭用量越高,各指标提升的幅度越大。施用生物炭提高玉米地上部干物质积累量和产量,灌溉水利用效率和氮肥偏生产力显著提高,且生物炭施用当年的效果普遍优于翌年。相较于不施用生物炭的对照,W15、W25、W35条件下,B15使玉米产量平均增加12.8%,10.3%,14.2%,灌溉水利用效率提高14.2%,10.4%,12.9%,氮肥偏生产力提升12.8%,10.4%,14.0%,其节...  相似文献   

20.
Salt-affected soil induces detrimental influences on paddy rice (Oryza sativa L.) growth and ameliorating the influences could be done with organic amendments, such as animal manure and biochar. The aims of the current study are: (1) to examine the interactive effects of biochar and cow manure on rice growth and on selected properties of salt-affected soil, and (2) to identify potential mechanisms related to the amendments. Saline-sodic soil was used for a net house experiment with two experimental factors: biochar (no-biochar, rice-husk, and -straw biochar) and cow manure (with and without cow manure). Without the manure, addition of both rice-hush and – straw biochar significantly increased rice growth, whereas a combination of individual biochar with manure did not show a positive synergistic effect. The interactive effect of two factors was not significant on available P and exchangeable K concentrations, but the main effects of the two factors were significant. Biochar addition resulted in higher soil cation exchange capacity (CEC) (28.8 to 29.0 cmolc kg?1) than the control (25.6 cmolc kg?1), but manure addition did not. Improved nutrient availabilities such as P and K, as well as CEC are among the potential mechanisms accounting for the enhanced rice growth with biochar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号