首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cassava is an important subsidiary food in the tropics. In Tamil Nadu, India, microbial cultures were used to eradicate the tuberous root rot of cassava. Hence, an experiment was conducted for two consecutive years to test the effects of coinoculation of microbes on soil properties. The surface soil from the experimental site was analysed for soil available nutrients, soil enzyme activities and microbial biomass carbon. The treatment of Azospirillum with Trichoderma at the 50% recommended N:P2O5:K2O (NPK) rate (50:25:50 kg ha?1) significantly increased soil available nitrogen (142.81 kg ha?1) by 72.66% over uninoculated control. There was a significant increase in available phosphorus in soil by the inoculation of AM (arbuscular mycorrhizal) fungi with Trichoderma at the 50% recommended NPK rate (41.04 kg ha?1) compared to other treatments. The application of Pseudomonas fluorescens with Trichoderma at the 50% recommended NPK rate significantly increased available iron (19.34 µg g?1) in soil. The treatment of Azospirillum with Trichoderma increased urease enzyme activity at the recommended NPK rate (816.32 μg urea hydrolyzed g?1 soil h?1). Soil application of all cultures at the 50% recommended NPK rate significantly increased dehydrogenase activity (88.63 μg TPF g?1 soil) and β-glucosidase activity (48.82 μg PNP g?1 soil) in soil. Inoculation of Trichoderma alone at the 50% recommended NPK rate significantly increased microbial biomass carbon (3748.85 μg g?1 soil). Thus, the microbial inoculations significantly increased soil available nutrient contents, enzyme activities such as urease, dehydrogenase and β-glucosidase activity and microbial biomass carbon by reducing the amount of the required fertilizer.  相似文献   

2.
Nutrients play an important role in improving productivity and quality of banana. It has been observed that the nutrient applied alone was less effective in improving banana production as compared to nutrients applied in combination with organic manures and biofertilizers. Keeping in view the conservation of soil health and quality production on a long-term basis, a field experiment was conducted during 2009–2011 to find out the influence of Integrated Nutrient Management of banana on leaf characteristics, growth and nutrient status of tissue cultured banana cv. ‘Grand Naine’. The study indicates that combination of inorganic fertilizers with organic manures, biofertilizers and bioagents significantly increased growth parameters, leaf characteristics, and leaf nutrient status of banana. The leaf characteristics in terms of functional leaves, total number of leaves, phyllochron, leaf area, and leaf area index were significantly influenced by the combination of inorganic fertilizers with different biofertilizers and organic manures. Similarly, leaf nutrient status like nitrogen, phosphorus pentoxide, (P2O5), potassium dioxide (K2O), and leaf relative water content were also influenced greatly by different nutrients. Treatment involving combination of 100% recommended dose of fertilizer (RDF) + arbuscular mycorrhizal fungi (AMF) + Azospirillum+ Trichoderma harzianum showed overall superiority in most of the parameters.  相似文献   

3.
In the present study, the effects of inoculation of biofertilizers (phosphorus-solubilizing arbuscular mycorrhizal (AM) fungi (AMF), Glomus intraradices, and potassium-mobilizing bacterium (KMB), Frateuria aurantia) in combination with chemical fertilizers nitrogen, phosphorus, and potassium (NPK) on growth, yield, nutrient acquisition, and quality of tobacco were observed in pot culture. Factorial combinations of biofertilizers (AMF and KMB) and chemical fertilizer (NPK) alone and in combination were applied to see the effects on growth, biomass, nutrient acquisition, and leaf quality in tobacco. Results showed that bioinocula applied either singly or in combination did not significantly enhance soil availability of P and K, indicating their unsuitability for direct application. Application of chemical fertilizer in combination with both AMF and KMB strains consistently increased availability of P and K in the soil, improved leaf quality parameters, and enhanced plant growth and vigor, suggesting the potential use of AMF and KMB as biofertilizers in sustainable tobacco crop production.  相似文献   

4.
Abstract

To investigate the effect of biofertilizers on the growth and yield of Eucalyptus grandis seedlings, greenhouse experiments were performed applying fertilizers based on agricultural byproducts, inoculated with nitrogen-fixing bacteria of the genera Azotobacter spp and Azospirillum spp. For the biofertilizers formulation, a nitrogen-fixing bacteria consortium was inoculated, and the experimental design was a 2?×?2 × 2 factorial arrangement, the factors were nitrogen source (NS: chicken manure), source of carbon (CS: eucalyptus leaf litter) and source of micronutrients (RS: rhizospheric soil) with two dose levels, inoculated with a consortium of Azotobacter spp and Azospirillum spp. The optimal time production of the best biofertilizers was 30?days, with the highest density of Azospirillum (9.23 × 106 CFU·g?1) and Azotobacter (19.3 × 106 CFU·g?1), and total nitrogen contents in the range of 2.15-5.64%, released into the biofertilizers with chicken manure and bioaugmented with the bacterium consortium. The treatment with the highest dose of biofertilizer, 500?g, showed the most significant effect on seedling development, increasing growth, stimulating rooting and the highest increase in leaf number. The results show that biofertilizers contributed to Eucalyptus grandis crop yield, and biofertilizers are proposed as an alternative for implementing sustainable soil management in the forest sector.  相似文献   

5.
The study was conducted at the Agricultural Experimental Farm of the Indian Statistical Institute, Giridih, Jharkhand, India, during the winter season of 2007–2008 and 2008–2009. Baby corn cob and green fodder yields were greatest in T15 [100% recommended dose of fertilizers (RDF) + arbuscular mycorrhiza (AM) + Azospirillum]. Soil organic carbon (SOC) and residual soil fertility (NPK) were greatest in T16 (150% RDF + AM + Azospirillum). In contrast, soil microbial load [colony-forming units (CFUs) of bacteria, diazotrophs, fungi, and Azospirillum], AM biomass, soil respiration, microbial biomass carbon, metabolic quotient, microbial quotient, and enzymes (urease and acid phosphatase) were greatest in T13 (absolute control + AM + Azospirillum) followed by T14 (50% RDF + AM + Azospirillum)]. The values of all these parameters declined drastically with the increasing percentages of RDF. Coinoculated plots built up greater soil fertility and SOC.  相似文献   

6.
The impact of arbuscular mycorrhizal fungi (AMF), inorganic phosphorus (P), and irrigation regimes was studied in an okra (Abelmoschus esculentus)–pea (Pisum sativum) cropping system in an acidic Alfisol. Experimentation was carried out at Palampur, India, in a randomized bock design (RBD), replicated three times with fourteen treatments comprising AM fungi (Glomus mosseae), inorganic phosphorus (50, 75, and 100% soil-test-based recommended P dose), irrigation regimes (at 40 and 80% available water capacity), generalized recommended NPK and irrigations (GRD), and farmers’ practice. Effects of AM fungi on plant height, leaf area index (LAI), and dry-matter accumulation (DMA) were nominal at early crop growth stage, i.e., 50 DAS (days after sowing). However, at 100 DAS, AMF imbedded treatments led to higher plant height (4%), LAI (3%), and DMA (6%) in okra, whereas in pea the magnitude of increase in these parameters following AMF inoculation was 6, 5, and 8%, respectively, over non-AMF counterparts. AMF + 75% soil-test-based P dose at either of these irrigation regimes gave statistically similar yields in both okra and pea as that obtained under 100% soil-test-based P dose at either of two irrigation regimes, thus indicating an economy of about 25% in soil-test-based P dose. Regarding nutrient harvest index in okra and pea, statistically similar values were registered with most nutrients under both AMF inoculated and non-AMF counterparts. In the case of okra, P harvest index was registered less by 3% with AMF inoculation; however, its magnitude increased by 3% in pea following AMF inoculation compared to non-AMF counterparts at similar levels of P and irrigation. At completion of two cycles of okra-pea system, AMF imbedded treatments did not alter available soil nutrient status significantly in comparison to non-AMF counterparts. Overall, current study suggests that practice of AMF inoculation has great potential in enhancing growth parameters for better productivity, fertilizer-P economy, and nutrient harvest efficiency in okra-pea production system in Himalayan acidic Alfisol.  相似文献   

7.
Pot experiments were conducted in the greenhouse to determine the combined effects of lime, nitrogen and phosphorus and the relative importance of each of these nutrients in establishing nodulated and mycorrhizal Leucaena leucocephala (Lam.) de Wit Var. K8 in an oxisol subjected to simulated erosion. Leucaena was grown in the soil inoculated or not with the vesicular‐arbuscular mycorrhizal fungus Glomus aggregatum Schenck and Smith emend Koske, with or without a basal nutrient (basal) consisting of K, Mg, S, Zn, Cu, and B plus lime, N, and P (complete) or one of the latter three supplements.

The extent of mycorrhizal colonization of roots as well as mycorrhizal effectiveness, as measured by pinnule P content increased when the eroded soil was amended with combinations of all the nutrients and inoculated with G. aggregatum. Similar trends were observed when symbiotic effectiveness was measured in terms of shoot P, Cu, and Zn status and dry matter yield. Nodule dry matter was also responsive to amendment of the soil with the complete nutrients and to vesicular‐arbuscular mycorrhizal inoculation. Phosphorus was found to be the most important nutrient limiting mycorrhizal effectiveness in the eroded soil, followed by N and lime. It is concluded that lost nutrients, particularly P, need to be replaced before legumes can be established successfully on highly weathered eroded soils inoculated with vesicular‐arbuscular mycorrhizal fungi.  相似文献   

8.
A field experiment was conducted in a phosphorus (P)–deficient acidic alfisol of the northwestern Himalayas using three vesicular arbuscular mycorrhizal (VAM) cultures: a local culture developed by CSK Himachal Pradesh Agricultural University, Palampur (Glomus mosseae), VAM culture from Indian Agricultural Research Institute (IARI), New Delhi (Glomus mosseae), and a culture from the Centre for Mycorrhizal Research, The Energy Research Institute (TERI), New Delhi (Glomus intraradices). These were applied alone or in combination with 25 to 75% of recommended P2O5 and recommended nitrogen (N) and potassium (K) based on soil-test crop response (STCR) precision model with an absolute control, farmers’ practice, and 100% of recommended P2O5 dose based on the STCR model. The results revealed that sole application of either of the three VAM cultures have produced 2.68 to 9.81% and 25.06 to 28.62% greater grain yield than the control in soybean and wheat crops, respectively. Besides greater straw yield, NPK uptake as well as soil nutrient buildup increased. Increase in P fertilization from 25 to 75% of recommended P2O5 dose coupled with VAM inoculation with either of the three VAM cultures resulted in consistent and significant improvement in crop productivity (grain and straw yields), NPK uptake, and improved soil nutrient status, though significantly greatest magnitude was obtained with sole application of 100% of the recommended P2O5 dose. The targeted grain yields of soybean (25 q ha?1) and wheat (30 q ha?1) were achievable with 75% of recommended P2O5 dose along with mycorrhizal biofertilizers, thereby indicating that application of efficient VAM fungi with 75% of recommended P2O5 dose can economize the STCR precision model fertilizer P dose by about 25% without impairing crop yield targets or soil fertility in a soybean-based cropping system in an acidic alfisol.  相似文献   

9.
The present study investigates the performance of recommended doses of chemical fertilizer (RDF) and locally isolated strains of Azotobacter, Azospirillum, and arbuscular mycorrhizal fungi (AMF) inoculated either solely or in combination with seedlings of Red Delicious and Lal Ambri cultivars. The RDF (T7) treatment recorded significantly greater vegetative growth and leaf nitrogen (N), phosphorus (P), and potassium (K) contents over multi-inoculation of Azotobacter + Azospirillum + AMF (T6) but root colonization and microbial counts decreased significantly. Inoculation of Azotobacter + Azospirillum + AMF (T6) was superior over sole and dual inoculation with respect to vegetative growth and nutrient contents in leaves and soil but had significant greater counts of Azotobacter, Azospirillum, and Pseudomonas than RDF. Greatest root colonization (34.0 and 35.1%) was recorded in Azotobacter + Azospirillum + AMF (T6) followed by AMF (T4) treatment (29.3 and 32.0%) in Red Delicious and Lal Ambri seedlings, respectively. Overall, it can be inferred that multiinoculation of synergistically interacting bioinoculants may be helpful in the establishment of healthy organic apple orchards.  相似文献   

10.
 In a newly cultivated sandy soil, sugar beet haulms composted by highly effective cellulose-decomposing microorganisms (Trichoderma viride NRC6 or Streptomyces aureofaciens NRC22) were evaluated as organic manure for tomato plants (Lycopersicon esculentum L. cv. Supermarmment). The treatments were as follows: (1) control with NPK, (2) farmyard manure (FYM), (3) uninoculated compost, (4) compost inoculated with Glomus sp. NRC212, (5) compost produced by T. viride NRC6, (6) compost produced by S. aureofaciens NRC22. The organic amendments differed in their effects on total microbial counts in the rhizosphere of tomato plants. However, the amendment of soil with compost produced by highly effective cellulose-decomposing microorganisms or compost inoculated with arbuscular mycorrhizal (AM) fungi decreased the proliferation of the total bacteria in the rhizosphere of tomato plants compared with FYM or compost. The application of compost produced by T. viride NRC6 or S. aureofaciens NRC22 enriched the rhizosphere with fungi or Streptomyces more than the other manure treatments. FYM and compost enhanced both spore production and the percentage of mycorrhizal root infection of tomato plants as compared with the NPK treatment, while compost produced by T. viride NRC6 or S. aureofaciens NRC22 reduced both the mycorrhizal spore numbers and the percentage of mycorrhizal root infection as compared with the NPK treatment. However, the application of FYM or compost reduced the incidence of root rot by 8% and 32%, respectively, as compared with the NPK treatment. The use of T. viride NRC6 or S. aureofaciens NRC22 as cellulolytic microorganisms and AM fungi as inocula in the applied compost increased plant protection by 80%, 75%, and 73%, as compared with the NPK treatment, respectively. No significant differences in plant dry weight, N, P content and tomato yield were obtained between FYM and the mineral fertilizer treatment. However, different types of compost induced a significant increase in plant dry matter, N and P uptake and fruit yield relative to the FYM and mineral fertilizer treatments. Received: 17 February 1999  相似文献   

11.
A pot culture experiment was undertaken under controlled conditions in the National Phytotron Facility to investigate the interactive effect of microbial inoculants—blue-green algae (BGA), Azospirillum, phosphate-solubilizing bacterium (PSB) Pseudomonas striata, vesicular-arbuscular mycorrhizal fungus (VAMF), and Azolla, individually and in combination with chemical fertilizers and/rock phosphate on the wetland rice (Oryza sativa L.) cultivar ‘PNR 381’. The microbial inoculants—BGA, PSB, VAMF, and Azospirillum—positively interacted with one another, resulting in significant improvement in yield and nutritional parameters. Application of biofertilizers also substantially improved soil (peat) fertility status by increasing the nitrogen (N), phosphorous (P), and organic carbon content. The biofertilizer combination BGA + PSB + VAMF + Azospirillum was best for improved growth and yield traits, nutritional status of rice, and sustained soil (peat) fertility. Azolla, which is a highly competitive organism, suppressed the growth of the other four inoculants. The inclusion of VAMF and PSB was observed to significantly improve the zinc nutrition of the paddy and the P utilization of the applied rock phosphate. A basal dose of nitrogenous fertilizer was essential for deriving maximum benefits from applied inoculants, thereby underlying the supplementary/complementary role of biofertilizers in efficient nutrient management in agriculture.  相似文献   

12.
Plant growth-promoting rhizobacteria and arbuscular mycorrhizal (AM) fungi represent two main groups of beneficial microorganisms of the rhizosphere. The role of different strains of Azospirillum on AM fungi development was evaluated by measuring the percentage of AM colonisation of the root system in durum wheat and maize plants, grown under both greenhouse and field conditions. The effect of wild-type Azospirillum brasilense strain Sp245 and genetically modified (GM) derivatives overproducing indole-3-acetic acid was assessed at greenhouse level in (1) three different cultivars of durum wheat, in the presence of indigenous AM fungi and (2) maize plants artificially inoculated with Glomus mosseae and Glomus macrocarpum. In addition, the establishment of natural AM fungal symbiosis was evaluated using Azospirillum lipoferum CRT1 in maize plants at field level. Despite the stimulatory effect of the different Azospirillum inocula on root growth, no significant differences in AM colonisation were found, independently of the AM fungus involved, either in wheat or in maize plants. Similarly, GM A. brasilense, which strongly stimulates root development, did not affect AM formation. Although these results were obtained in conditions in which the mycorrhization rate was moderate (15–30%), overall considered they indicate that the use of wild-type or GM Azospirillum phytostimulators does not alter mycorrhization.  相似文献   

13.
A sequential harvest experiment was conducted in the greenhouse to determine relative growth rate (RGR), specific absorption rate (SAR) of P, P utilization rate (PUR) and P utilization efficiency (PUE) of vesicular‐arbuscular mycorrhizal (VAM) and nonmycorrhizal Leucaena leucocephala. Total P content, root length and total dry‐matter yield of mycorrhizal plants were significantly higher than those of nonmycorrhizal plants beginning on 15, 25 and 25 days after planting, respectively. The length of root colonized by Glomus aggregatum increased exponentially with time and leveled off 30 days after planting. In mycorrhizal plants, RGR of roots (based on total root length) was lower than those of RGR of infected roots till 30 days after planting, after which time the trend was reversed. Although, RGR based on dry‐matter yield was higher in mycorrhizal plants than in nonmycorrhizal plants, the differences observed were not statistically significant. SAR of P was higher in mycorrhizal plants than in nonmycorrhizal ones till 30 days after planting. Even though, total P contents and concentrations in mycorrhizal plants were higher than nonmycorrhizal plants, PUR and PUE were higher in nonmycorrhizal plants. These results indicate that, although VAM plants were very efficient in P absorption and accumulation, they were not superior to non‐VAM plants in P utilization. However, plant species forming effective symbiosis with VAM fungi are likely to be successful competitors in nutrient‐poor environments than plants not infected with the fungi.  相似文献   

14.
Abstract

A greenhouse experiment was conducted to determine the combined effects of lime, nitrogen and phosphorus on mycorrhizal activity in an oxisol subjected to imposed erosion using Vigna unquiculata (L.) Walp cv. ‘California Blackeye No. 5’ (cowpea) as a test plant. Cowpea was grown in the soil in the presence or absence of the vesicular‐arbuscular mycorrhizal fungus Glomus aqgregatum (Schenck & Smith emend. Koske) with or without a basal nutrient (basal) consisting of K, Mg, S, Zn, Cu and B; and with basal nutrients plus lime, N and P (complete). The extent of mycorrhizal colonization of roots as well as mycorrhizal effectiveness measured in terms of leaf disc P content increased significantly when the eroded soil was amended with a combination of all of the nutrients and inoculated with Glomus aggregatum. Vesicular‐arbuscular mycorrhizal inoculation and nutrient amendment was also accompanied by significant increase in shoot P, Cu, Zn and N content, and nodule, shoot and root dry matter yield. The findings of this study demonstrate the importance of replacing lost nutrients before legumes could be successfully established on highly weathered eroded soils inoculated with vesicular‐arbuscular mycorrhizal fungi.  相似文献   

15.
The effects of inoculation of three arbuscular mycorrhizal (AM) fungi namely, Glomus mosseae, Glomus sinuosum, and Scutellospora erythropa in addition to Pseudomonas fluorescens and treatment with mustard oil cake on root-rot disease of Cyamopsis tetragonoloba L plants caused by Macrophomina phaseolina were evaluated under polyhouse conditions for 2 years. Inoculations of an arbuscular mycorrhizal fungi (AMF) in combination with P. fluorescens and mustard oil cake showed best supporting biocontrol system against the root-rot disease besides increasing the plant height, weight, and yield. The biocontrolling efficiency of dual inoculation (AMF + P. fluorescens) was the second best combination followed by AM plus mustard oil cake. Among the three AM fungi, G. mosseae inoculations showed the best results. Different combined AMF inoculations also altered the concentrations of total soluble sugars, orthodihydric phenols, flavonols, and epicuticular wax contents in host plants.  相似文献   

16.
The diversity of arbuscular mycorrhizal (AM) fungi in soils under a yam cropping system in four agroecologies of Nigeria was investigated. Soil samples were collected from yam fields at Onne (humid forest, high rainfall area), Ibadan (derived savanna), Abuja (Guinea savanna) and Ubiaja (humid forest, medium rainfall area). Soil characteristics, AM fungi species, spore abundance, Shannon diversity index, species richness and evenness were determined. A total of 31 AM fungi species was isolated from the four agroecologies with a range of 14–20 species found in a single location. Glomus species were the most abundant among AM fungi species with G. geosporum, G. intraradices and G. mosseae occurring in large populations in all locations. Ubiaja, which had a cassava/natural vegetation sequence before yam, had significantly higher spore abundance and species richness than the other locations, which had a yam/legumes or a maize/legume sequence before yam. However, diversity was significantly higher at Abuja, which had a maize/legume sequence with yam, than Ibadan, which had only a yam/legume sequence. The study revealed significant diversity in AM fungal species across agroecologies in yam-growing regions. Further research on the functional consequences of changing composition of AM fungi species across the region is recommended.  相似文献   

17.
The study was investigated at Agricultural Experimental Farm, Giridih, India during winter seasons of 2007–2008 and 2008–2009. Plants grown with 100% recommended dose of fertilizer (RDF) [nitrogen (N): phosphorus pentoxide (P2O5): potassium oxide (K2O) = 150:60:60 kg ha?1] + AM + Azospirillum (T15) produced maximum chlorophyll, baby cob, and green fodder yield. Root biomass was highest with application of 150% RDF + arbuscular mycorrhizae (AM) + Azospirillum (T16). Co-inoculated plants produced higher chlorophyll, root biomass resulted higher cob and green fodder yield. Biofertilizers supplied along with chemical fertilizers saved 70, 29, and 33 kg N, P2O5 and K2O per hectare, respectively. Nutrient (NPK) uptake was greatest in T15. Residual soil fertility in terms of NPK was recorded maximum in T16. Although, co-inoculated plots built up higher residual soil fertility as compare to sole inoculation. Nutrients use efficiency and benefit cost ratio were higher due to application of 50% RDF with co-inoculants. T16 was most costly whereas T14 (50% RDF + AM + Azospirillum) was most beneficial.  相似文献   

18.
The aim of the present experiment was to evaluate the effect of commercial Trichoderma and arbuscular mycorrhizal fungi (AMF)-based bio-fertilizers on nectarine root growth, nutrient acquisition and replanting disease. The experiment was performed from 2008 to 2012 in an A. mellea-infected nectarine orchard subjected to the following treatments: 1) untreated control; 2) AMF-biofertilizer applied at planting (120 kg ha?1) and every year in spring and autumn at the rate of 6 kg ha?1; 3) Trichoderma spp applied at planting (5 g plant?1) and every year (in April, May and September) at 2.5 kg ha?1. AMF bio-fertilizers decreased root diameter and increased root survivorship. Leaf phosphorus concentration increased in AMF bio-fertilizers plots, while no significant treatments effects were observed on other leaf nutrient concentration. Although biofertilizer application did not affect soil microbial population, at the end of the trial (2012) the application of Trichoderma alone increased the population of the fungus.  相似文献   

19.
Interactions between the N2-fixing bacterium Azospirillum brasilense and the mycorrhizal fungus Glomus mosseae were studied in relation to their effects on the growth and nutrition of Zea mays (C4) and Lolium perenne (C3) plants. Although roots from plants inoculated with Azospirillum exhibited C2H2 reduction activity no significant effect of inoculation on N concentration in the plant shoots was found. With non-mycorrhizal plants, inoculation with Azospirillum resulted in increased dry matter production at the first harvest compared to the effect achieved by supplying N as fertilizer, but this trend was reversed at the last harvest. However, with mycorrhizal maize plants, Azospirillum, which stimulated the development of VA mycorrhiza, was still effective in improving plant growth and nutrient uptake at the last harvest. Azospirillum and N behaved similarly in enhancing the growth and nutrition of mycorrhizal maize. The dual inoculation of maize by Azospirillum and Glomus produced plants of a similar size, N content, and a higher P content, than those supplied with N and P.  相似文献   

20.
Greenhouse experiments were conducted using potted soil (Fe-deficient Typic Ustochrept) to study the influence of the vesicular-arbuscular mycorrhizal fungi (VAM), Glomus macrocarpum and G. fasciculatum, on the mobilisation of Fe in broccoli (Brassica oleracea L. var. italica Plenck) in the presence of pyrite and farmyard manure (FYM). Individual applications of either VAM or pyrite with NPK fertiliser significantly enhanced both the Fe2+ content in leaf tissue and total uptake of Fe and resulted in increased curd and straw yields of broccoli compared to those observed with NPK alone. Though the application of FYM decreased the Fe2+ content in leaf tissue relative to plants supplied NPK alone, this result was not statistically significant. The available Fe content in soil, after harvest of broccoli, was found to be lower in the presence of VAM than in the control. Received: 18 June 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号