首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of carbonized chicken manure (CCM) on the growth, nodulation, yield, nitrogen (N) and phosphorus (P) contents of four grain legumes (soybean, cowpea, common bean and adzuki bean) were evaluated in a greenhouse experiment. Carbonized chicken manure produced from chicken manure dried in a furnace at 450°C was used in this experiment. The manure was incorporated into the sandy loam soil of each grain legume at two rates (0 kg N ha?1 and 100 kg N ha?1) three weeks before sowing. Growth, nodulation and total biomass N and P were evaluated at peak flowering stage of growth. The CCM showed positive effects on nodule number and weight of soybean and cowpea while it depressed nodule number in adzuki bean. Biomass total N content of soybean and cowpea increased with CCM supply while it decreased in adzuki bean. Biomass and seed total P content of soybean, cowpea and adzuki bean all increased in response to CCM application. Soybean and cowpea seed yields increased by 27% and 43% respectively in response to CCM supply. There was a strong positive correlation between seed P content and seed yield of soybean which indicates the importance of elemental P to soybean seed yield. No such phenomenon was observed in adzuki bean. A strong positive correlation was also observed between seed total N content and seed yield of the grain legumes. The results indicate that although common bean had the highest biomass total P content at peak flowering stage both vegetative and reproductive growth were poor due to the unsuitably high day/night temperatures in the greenhouse. Application of CCM slightly depressed yield of adzuki bean due to the reduction in the number of pods per pot and the 100 seed weight. This study shows that CCM is a good source of N and P for the growth, nodulation and yield of some grain legumes particularly soybean and cowpea.  相似文献   

2.
Abstract

The effects of P and Zn rates on soybeans were investigated on Njala upland soil. There was a moderate positive linear effect of rates of P upon number of nodules. Also, there was a highly significant linear effect of P upon nodule weight and the quadratic effect was moderately significant. There was a significant negative effect of Zn upon nodule weight. Statistically significant linear and curvilinear trends associated with P rates affected dry matter at 50% flowering.

Seed yield was significantly affected by rate of P and there was a highly significant positive linear effect of P upon seed yield. Percent protein in seed was not affected by either P or Zn rates. Rates of Zn did not significantly affect number of nodules, dry matter, pods per plant and seed yield. There were highly significant correlations among number of nodules, nodule weight, dry matter, pods per plant and seed yield.  相似文献   

3.
新开垦土壤上构建玉米/蚕豆-根瘤菌高效固氮模式   总被引:5,自引:1,他引:4  
为了在新开垦土壤上构建高效种植模式,本文采用温室盆栽和大田试验相结合的方法,选用4种根瘤菌接种方式(保水剂拌种、清水拌种、三叶期灌根和种子丸衣化)接种4种不同蚕豆根瘤菌(NM353、CCBAU、G254和QH258),分析接菌后新开垦土壤上玉米/蚕豆间作体系的生产潜力、地上部氮素吸收和结瘤特性以及生物固氮等方面的优势,拟为该体系筛选出高效的根瘤菌及其接种技术。结果表明:接种NM353后,玉米/蚕豆间作体系中蚕豆籽粒产量比单作平均增加152.84%,而玉米保持相对稳产;以保水剂拌种的方式接种NM353的间作蚕豆地上部氮素积累量最高,蚕豆结瘤数、瘤重、固氮比例和固氮量均高于本试验中其他3种方式接种的根瘤菌。在盛花期和盛花鼓粒期,接种NM353蚕豆的固氮比例比接种CCBAU的分别高19.1%和11.1%,在各个生育时期两者固氮量之间差异均达显著水平;接种NM353与接种其他菌种间固氮量和固氮比例差异更显著。因此,在新开垦土壤上,用保水剂拌种的方式对间作蚕豆接种NM353根瘤菌,构建玉米/蚕豆-根瘤菌高效固氮体系,为新开垦土壤合理开发利用的可持续发展模式。  相似文献   

4.
Abstract

The increasing cost and imbalanced use of chemical fertilizers in wheat (Triticum aestivum L.) stressed the need to explore the potential of bioinoculants of Azotobacter and PSB for saving fertilizer N and P. Field experiments conducted for two years in a Mollisol at Pantnagar revealed maximum plant height, grain and straw yields and nutrient uptake by wheat with application of 100% NP. However, soil application of carrier-based biofertilizer at 10?kg?ha?1 and liquid-based biofertilizers at 625 and 1250?mL?ha?1 rates in combination of 75% NP were at par with 100% NP by recording significantly more mean plant height at different intervals, grain yield, by 10.9, 10.5 and 10.8%, and straw yield, by 8.6, 8.2 and 9.1%, over 75% NP, respectively. These treatments also accumulated significantly more N, P and K in plant at different age and; grain and straw. An application of liquid biofertilizer at 1250?mL?ha?1 with 75% NP gave maximum population of Azotobacter and PSB, microbial biomass C and activities of acid and alkaline phosphatase in soil at different crop age. The carrier and liquid formulations of the biofertilizers were comparable in their performance. Irrespective of formulation and doses, application of biofertilizers in soil was found better than seed treatment for different recorded parameters. An application of 625?mL?ha?1 liquid biofertilizers in soil with 75% NP was found optimum for the growth, yield and nutrients uptake and soil biological properties.  相似文献   

5.
Greenhouse studies were conducted to evaluate the influence of nitrogen (N) sources [urea + ?N-(n-butyl) thiophosphoric triamide, NBPT (urease inhibitor) and polymer-coated urea (PCU)] and rates on soybean root characteristics, nodule formation, and biomass production on two soil types (silt loam and clay) commonly cropped to soybean in Mississippi. About 15% less belowground biomass was produced in clay soil than in silt loam soil directly corresponding to all other root parameters including root length, root area, root diameter, and nodule number. Pooled across N rates, N additions resulted in 19% and 52% decrease in belowground biomass and number of nodules, respectively, across soils compared to soybean receiving no N. The N rate was the most critical factor as it influenced all root growth parameters. Number of nodules were 24% greater with PCU than urea + NBPT. Nitrogen additions and clay soil negatively impacted soybean root growth, nodulation, and belowground biomass production.

Abbreviations: Polymer-coated urea, PCU; N-(n-butyl) thiophosphoric triamide, NBPT  相似文献   

6.
Genetic and environmental factors lead to a variation in yield and protein content of dry pea (Pisum sativum L.) seeds. The quality of seed, particularly seed vigor, also influences the establishment of crop and thus final grain yield. The area and production for dry peas are increasing in the Northern Great Plains but knowledge is lacking on how the pea lines/varieties differ in the seed vigor at seven leaf stage. This field and greenhouse study evaluated the eight dry pea lines/varieties for seedling vigor indices and correlated them with grain yield and protein concentrations. Significant differences were observed among the lines/varieties for nodule number plant?1 in greenhouse, and grain yield in field conditions. The highest number of nodules plant?1 was obtained with the line MT632, which were at par with lines MT457, and MT190. The highest Vigor Index I was achieved with line MT632 associated with their more shoot lengths as compared to other lines/varieties. The highest Vigor Index II was obtained by variety Majoret and line MT632. The variety DS Admiral yielded 5205 kg ha?1, which was 17.4 and 33.3% higher than lines MT460 and MT190, respectively. The highest seed protein content was obtained with variety Majoret (23.4%) having highest Vigor Index II and seed yield (4940 kg ha?1) at par with variety DS Admiral. The lowest seed protein was found with variety DS Admiral (20.3%). The line named MT190 showed lowest yield potential along with the lower protein contents also. Studies show a positive and significant correlation between biomass and Vigor Index I only. Plant nitrogen uptake was positively and significantly correlated with biomass and Vigor Index I in greenhouse only. The results also indicated that seed vigor indices did not reveal any significant correlations with dry peas yield and protein content, so more efforts are needed to evaluate varieties for higher yield and protein content during initial stages of growth in order to maximize their acreage and productivity.  相似文献   

7.
ABSTRACT

Co-inoculation of nitrogen-fixing bacteria with plant growth-promoting bacteria has become more popular than single inoculation of rhizobia or plant-growth-promoting bacteria because of the synergy of these bacteria in increasing soybean yield and nitrogen fixation. This study was conducted to investigate the effects of Bradyrhizobium japonicum SAY3-7 and Streptomyces griseoflavus P4 co-inoculation on plant growth, nodulation, nitrogen fixation, nutrient uptake, and seed yield of the ‘Yezin-6’ soybean cultivar. Nitrogen fixation was measured using the acetylene reduction assay and ureide methods. Uptake of major nutrients [nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg)] was also measured. This study showed that single inoculation of SAY3-7 significantly increased shoot biomass; nodulation; Relative Ureide Index (RUI %), percent nitrogen derived from N fixation (% Ndfa); N, P, K, Ca, and Mg uptakes; during the later growth stages (R3.5 and R5.5), compared with control. These observations indicate that SAY3-7 is an effective N-fixing bacterium for the plant growth, nodulation, and nitrogen fixation with an ability to compete with native bradyrhizobia. Co-inoculation of SAY3-7 and P4 significantly improved nodule number; nodule dry weight; shoot and root biomass; N fixation; N, P, K, Ca, and Mg uptake; at various growth stages and seed yield in ‘Yezin-6’ soybean cultivar compared with the control, but not the single inoculation treatments. Significant differences in plant growth, nodulation, N fixation, nutrient uptake, and yield between co-inoculation and control, not between single inoculation and control, suggest that there is a synergetic effect due to co-inoculation of SAY3-7 and P4. Therefore, we conclude that Myanmar Bradyrhizobium strain SAY3-7 and P4 will be useful as effective inoculants in biofertilizer production in the future.  相似文献   

8.
Abstract

The study was carried out in dryfarming areas in Ankara, Turkey, over 2 years (2001 – 2002 and 2002 – 2003). The objective was to determine different soil tillage and weed control methods on weed biomass and yield components, yield of lentil (Lens culinaris). This study compared the effects of two tillage systems (shallow minimum tillage and traditional tillage) and three weed control methods (weedy check, hand weeding and herbicide) on weed biomass, growth characteristics, seed yield and some yield components of lentil. Significant differences were found among weed control methods for weed biomass and yield parameters of lentil. Tillage systems had no significant effect on weed biomass or yield of lentil. The highest yield and lowest weed biomass was found in the hand-weeded treatment compared to the other weed control methods. Results of this research indicate that weeds are a main constraint for lentil growing under dryland conditions. Grain yield of lentil was reduced more than 60% due to uncontrolled weeds.  相似文献   

9.
Abstract

Soil fertility depletion coupled with improper fertilization is one of the major constraints limiting linseed production in Ethiopia. Experiment was conducted in 2014/2015 on Nitisol in southeastern Ethiopian highlands to study the effect of phosphorus (P) fertilizer rate on yield, yield components, and oil content of linseed. It comprised of six levels of P fertilizer (0, 5, 10, 15, 20, and 25?kg?P?ha?1) arranged in randomized complete block design with three replications. Results revealed that P fertilization brought significant effect on biomass yield, harvest index, plant height, number of capsules per plant, and kernel size. However, it didn’t significantly increase seed yield and oil content on linseed. Considering its influence on increasing biomass yield and improving yield components, application of 5?kg?P?ha?1 has been recommended for replenishing the extracted P, maintaining soil fertility and improving linseed production on Nitisols of southeastern Ethiopian highlands and other similar agro-ecologies.  相似文献   

10.
Summary The influence of three inoculum rates on the performance of three chickpea (Cicer arietinum L.) Rhizobium strains was examined in the field on a Mollisol soil. Increasing amounts of inoculum improved the performance of the strains. A normal dose (104 cells per seed) applied at different intervals gave non-significant increases in nodulation, nitrogenase activity (acetylene reduction assay), nitrogen uptake and grain yield. A ten-fold increase in inoculum increased nodule number, shoot dry weight, nitrogenase activity (ARA) and grain yield, but increases over the control were significant only for nodule dry weight and nitrogen uptake by shoot and grain. The highest level of inoculum (100 × normal) significantly increased nodule dry weight, grain yield, total nitrogenase activity (ARA) and nitrogen uptake by shoot and grain. Strain TAL 620 was more effective than the other two. Combined nitrogen (60 kg N ha–1) suppressed nodulation and nitrogenase activity (ARA).Research paper No. 4345 from the Experiment Station, G. B. P. U. A. & T., Pantnagar, Nainital, U. P.  相似文献   

11.
“Bioinoculants” have become a useful, environment-friendly tool in agriculture to increase crop yield. Previous work has shown that Cajanus cajan, India's most important pulse, can profit considerably from applications of the three bioinoculants, viz. Bacillus megaterium MTCC 453, Pseudomonas fluorescens LPK2 and Trichoderma harzianum MTCC 801. For careful “risk assessment”, it is of interest to investigate the effect of application of such bioinoculants not only on the target crop, but also on the indigenous rhizospheric microbial community of that particular plant. To do so C. cajan treated with bioinoculants, individually as well as in combinations, was grown in pots under field conditions. Fingerprinting, using automated ribosomal spacer analysis showed distinct, highly diverse bacterial and fungal rhizospheric communities, which were differently influenced by the applied bioinoculants. Two important groups of soil microbes, actinomycetes and β-proteobacteria, were quantified using qPCR and shown to be little affected by the bioinoculants. Additionally, rhizosphere populations of groups to which the inoculants belonged were enumerated on selective media. An increase in abundance of phosphate solubilizing Bacillus sp. (73%), Pseudomonas sp. (42%), and fungi (53%) was observed with triple inoculation at maturity, as compared to control plants. Thus, there was no negative impact of the bioinoculants used in the study on specific groups of indigenous microbial community.  相似文献   

12.
A relationship among Cu, N, and Rhizobium japonicum was hypothesized because previous research had shown that (a) 35% or more legumes in the Atlantic Coastal Plain have Cu concentrations of 6 mg kg‐1 or less, (b) Cu influences N fixation in some legumes, and (c) irrigated soybean (Glycine max L. Merr.) can accumulate most of its N through fixation. Soybean were grown on a Cu‐deficient Norfolk (fine‐loamy, siliceous, thermic Typic Paleudult) loamy sand with 3 fertilizer sources of Cu, 2 strains of R. japonicum, and with or without 336 kg ha‐1 of N fertilizer. Application of Cu significantly increased the number of pods plant‐1 suggesting pod abortion in determinate soybean may be caused by low Cu, but seed yield was not increased. Fertilization with N increased vegetative growth, but not total biomass or seed yield. Inoculation with R. japonicum strain 110 significantly increased seed yield by 0.3 Mg ha‐1 compared to strain 587. The yield increase was similar with or without fertilizer N application indicating strain response was not totally caused by improved N efficiency. There was no relationship between seed yield and nodule occupancy as measured by the ELISA technique.  相似文献   

13.
碱性土壤中生物炭和NPK肥对大豆产量的协同效应   总被引:1,自引:0,他引:1  
Biochar effects on legume growth and biological nitrogen fixation have been studied extensively, mostly in acidic soils with laboratory produced biochar. In the present study, a pot experiment in a full factorial experimental design was performed to examine soybean yield and nodulation of three genotypes grown with or without biochar and NPK fertilizers in an alkaline soil. We observed synergistic effects of biochar and NPK fertilizer applications on biomass and seed yields for all three soybean genotypes. Total biomass production and seed yield increased on average by 67\% and 54\%, respectively, with biochar and by 201\% and 182\% with NPK fertilizer application compared to the control. When applications of biochar and NPK fertilizer were combined, the increases were 391\% and 367\%, respectively. However, the biomass production in the control was very low (692 kg ha$^{-1}$) due to a high soil pH (8.80).~The nodulation increased with biochar and NPK fertilizer applications, and was largest with the combined application. A correlation was found between leaf chlorophyll content (single photon avalanche diode value) and nodule number. We suggested that the synergistic increase in yield was due to a decrease in soil pH caused by biochar and NPK fertilizer applications thereby increasing P availability in this alkaline soil.  相似文献   

14.
ABSTRACT

In arid zones, farmers are obligated to reduce water amounts used in irrigating their lands. Consequently, reduction in final yields is realized. Thus, dealing with such a case became a decisive act. We tried to investigate the acceptable degree of lowering irrigation water with sustaining the productivity of groundnut as a way for managing drought conditions. Therefore, in summer seasons of 2016 and 2017 at the Experimental Research and Production Station, National Research Centre, Egypt, field trials were conducted with growing groundnut plants under three irrigation levels, i.e., 50%, 75%, and 100% of crop evapotranspiration (ETc), denoted as I50, I75, and I100, respectively. N, P, and K contents in seed and shoot and their yields in addition to harvest and partitioning indices were estimated. In spite of irrigating groundnut plants by normal water amounts, I100, caused the maximum weight of seed biomass yield ha?1 and seed N and P contents, I75 was similar to I100 for producing shoot biomass yield ha?1 and seed K content. Moreover, N and P yields (for shoots and seeds) and k yield (for seeds) showed the maximum values with I100. Differences in all nutrient harvest indices (NHI, PHI, and KHI) between I100 and I75 were not significant. Furthermore, I75 statistically leveled with I100 in nutrient partitioning indices, viz., NPI, PPI, and KPI. In conclusion, groundnut straw residues produced by 25% less water supply than normal may share in managing drought stress by releasing nutrients and saving irrigation water in arid areas.  相似文献   

15.
ABSTRACT

The study aimed to evaluate, in a marginal semi-arid Mediterranean agro-ecosystem (Sicily-Italy), the effects of arbuscular mycorrhizal fungi (AMF) inoculation and raw olive mill wastewater (OMW) (40 and 80 m3 ha?1) on forage (durum wheat-snail medick intercropping) yield, and grain production of broad bean and chickpea. AMF inoculation significantly increased (+13.6%) forage dry biomass and durum wheat nitrogen (+22.8%) and phosphorus (+32.5%) uptake. AMF inoculation, significantly promoted broad bean phosphorus uptake (+11.5%) and root nodule number (+13.9%) in the absence of OMW. OMW spreading reduced weeds in the forage (?31.3%), root nodule number (?29.7%) and dry weight (?22.7%) in broad bean. OMW also significantly increased snail medick dry biomass (+19.3%) as compared to control treatments (0, 40 and 80 m3 H2O ha?1, average production 361 g m?2), and broad bean grain yield with a production of 2.46 ± 0.12 and 1.94 ± 0.09 Mg ha?1 with and without OMW, respectively. During the experiment AMF colonization was not affected by OMW volumes. The results obtained showed that in a marginal Mediterranean agro-ecosystem: 1) OMW, notwithstanding spreading volumes, is a valuable amendment to maximize legume yield while 2) AMF inoculation is a valuable practice to improve biomass production and N and P uptake in wheat.  相似文献   

16.
ABSTRACT

Soybean yields in Ghana are low and stagnant in spite of the trio of recommendations: (1) improved seed, (2) rhizobium inoculant and (3) phosphorous fertilizer application being promoted by government to boost productivity. This study evaluates the response of soybean to Pro-soil biostimulant, triple super phosphate (TSP), and rhizobium inoculant in the interior savanna of Ghana. A treatment structure comprising two mainplot factors (biostimulant and conventional), and four subplots factors; TSP, inoculant, TSP+Inoculant and unamended control arranged in a split-plot design was used for this study. Apart from dry matter which increased by 42%, Pro-soil biostimulant as a stand-alone management practice did not significantly increase agronomic parameters measured in this study. Biostimulant did not have a significant effect on grain yield, nodule weight, nodule number, canopy diameter, and plant height. Application of TSP alone, and in combination with inoculant, significantly increased yield, plant dry matter, nodule weight, nodule number, and dry pod weight. Highest soybean yield was obtained from TSP + Inoculant treatment, averaging 3.6 t ha?1 compared to 1.8 t ha?1 for control. Biostimulant, TSP+Inoculant combination resulted in yields as high as 4 t ha?1. Overall, the results indicate that neither PS-Foundation biostimulant nor rhizobia inoculation can be used as stand-alone management practices to increase soybean yield. However, an integrated application of PS-Foundation biostimulant, TSP, and inoculant could double current soybean yields in Ghana.  相似文献   

17.
Abstract

This study was conducted to determine the effects of honeybee (Apis mellifera L.) and bumblebee (Bombus terrestris L . ) on alfalfa (Medicago sativa L.) seed production in the west Mediterranean region of Turkey, between 2001 and 2003. The experimental plots (4×3 m) were arranged in a randomized complete block design with three replications for spring and autumn seasons. Four pollination treatments (caged with bumblebee (BP), caged with honeybee (HP), open-pollinated (OP) and pollinator excluded (EP)) were applied. The effects of honeybee and bumblebee on alfalfa seed yield, number of pods per raceme, number of seeds per pod, and podding rate were investigated. The results of seed yield indicate that interaction between treatment groups and seasons was significant (p<0.01). The highest seed yield in alfalfa was found in OP (66.19kg/ha) in the spring followed by BP (56.48kg/ha), HP (49.20kg/ha) and EP (2.44kg/ha). With regarding to the autumn season, the highest seed yield was found in BP (26.17kg/ha) treatment followed by HP (22.89kg/ha), OP (18.12kg/ha) and EP (1.96kg/ha). The results of this research show that B. terrestris can be recommended as an alternative pollinator to honeybee for alfalfa seed production.  相似文献   

18.
ABSTRACT

The impact of three auxins indole-3-acetic acid (IAA), 4-chloroindole-3-acetic acid (4-Cl-IAA), and indole-3-butyric acid (IBA) on nitrogen metabolism were investigated in chickpea (Cicer arietinum L.). Plants were raised from seeds soaked in water (control), 10?8 M of IAA, IBA, or 4-Cl-IAA, for 12 hours and were assessed for different parameters at 60 days after sowing. Observations showed that auxins, irrespective of the analogue significantly increased the nodulation, leghemoglobin content, nodule nitrogen content and the enzymes of nitrogen assimilation. Of the three auxins, 4-Cl-IAA was the most effective in increasing these parameters. The increase in seed yield was 27% higher than the water soaked control. The response to auxins followed the trend 4-Cl-IAA > IAA > IBA > control. It may be concluded from the present investigation that auxins, irrespective of the type, significantly improved the nitrogen metabolism, photosynthesis and yield of the chickpea. Of three auxins used, 4-Cl-IAA generated the best response.  相似文献   

19.
Abstract

Experiments were conducted with malting barley (Hordeum vulgare L.) cultivars in 2003 and 2004 in central, western and southern Lithuania to test phosphorus (P) availability at early seedling growth stage with P seed coating. Phosphorus seed coating resulted in alteration to plant stand structure traits. Despite the fact that seedling emergence sometimes decreased, the number of total and productive stems, number of grains per ear and 1000-grain weight increased. The positive effect of P seed coating on grain yield was revealed when the growth conditions during post-anthesis were favourable for exploiting the potential that was obtained during the pre-anthesis phase. In our experiment favourable conditions were considered those that generated a grain yield over 6 t ha?1. According to path coefficients analyses the significant positive effect of P seed coating on malting barley yield increase was related to seed weight increase. Although P seed coating slightly increased single grain N concentration and thus grain protein concentration, grain protein concentration ranged from 8.6% to 10.2% and met the quality standard requirements for malting barley in all trials and treatments.  相似文献   

20.
ABSTRACT

Close relationships usually exist among biomass accumulation, nutrient uptake, and seed yield during the growing season. Field experiments with pea (Pisum sativum L.) and lentil (Lens cultinaris L.) were conducted in 1998 and 1999 at Melfort, Saskatchewan, Canada, to determine relationships of biomass accumulation and nutrient uptake with days after emergence (DAE) or growing degree days (GDD). For both biomass accumulation and nutrient uptake, maximum rates and amounts increased with time at early growth stages and reached a maximum value at late growth stages. The R2 values for cubic polynomial regressions were highly significant, indicating their suitability to estimate the progression of biomass accumulation and nutrient uptake as a function of days after emergence (DAE). Both pulse crops followed a similar pattern in biomass accumulation and nutrient uptake, which increased in the early growth stages and reached a maximum late in the growth cycle. Pulse crops usually reached their maximum biomass accumulation rate and amount at early to late bud formation (42–56 DAE or 390–577 GDD) and at medium pod formation to early seed filling (75–82 DAE or 848–858 GDD) growth stages, respectively. Maximum biomass accumulation rate was 175–215 kg ha? 1d?1 for pea and 109–140 kg ha? 1d? 1 for lentil. Maximum nutrient uptake rate and amount usually occurred at branching to early bud formation (28–49 DAE or 206–498 GDD) and at the flowering to seed filling (66–85 DAE or 672–986 GDD) growth stages, respectively. Maximum uptake rate of nitrogen (N), phosphorus (P), potassium (K), and sulfur (S), respectively, was 4.6–4.9, 0.4–0.5, 5.0–5.3 and 0.3 kg ha? 1d? 1 for pea, and 2.4–3.8, 0.2–0.3, 2.0–3.4 and 0.2 kg ha? 1d? 1 for lentil. In general, maximum nutrient uptake rate and amount occurred earlier than maximum biomass accumulation rate and amount, respectively; and the maximum accumulation rates of both biomass and nutrients occurred earlier than maximum amounts. The findings suggest that adequate supply of nutrients from soil and fertilizers at early growth stages, and translocation of biomass and nutrients to seed at later growth stages are of great importance for high seed yield of pulse crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号