首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
新开垦土壤上构建玉米/蚕豆-根瘤菌高效固氮模式   总被引:5,自引:1,他引:4  
为了在新开垦土壤上构建高效种植模式,本文采用温室盆栽和大田试验相结合的方法,选用4种根瘤菌接种方式(保水剂拌种、清水拌种、三叶期灌根和种子丸衣化)接种4种不同蚕豆根瘤菌(NM353、CCBAU、G254和QH258),分析接菌后新开垦土壤上玉米/蚕豆间作体系的生产潜力、地上部氮素吸收和结瘤特性以及生物固氮等方面的优势,拟为该体系筛选出高效的根瘤菌及其接种技术。结果表明:接种NM353后,玉米/蚕豆间作体系中蚕豆籽粒产量比单作平均增加152.84%,而玉米保持相对稳产;以保水剂拌种的方式接种NM353的间作蚕豆地上部氮素积累量最高,蚕豆结瘤数、瘤重、固氮比例和固氮量均高于本试验中其他3种方式接种的根瘤菌。在盛花期和盛花鼓粒期,接种NM353蚕豆的固氮比例比接种CCBAU的分别高19.1%和11.1%,在各个生育时期两者固氮量之间差异均达显著水平;接种NM353与接种其他菌种间固氮量和固氮比例差异更显著。因此,在新开垦土壤上,用保水剂拌种的方式对间作蚕豆接种NM353根瘤菌,构建玉米/蚕豆-根瘤菌高效固氮体系,为新开垦土壤合理开发利用的可持续发展模式。  相似文献   

2.
The effects of intercropping with maize and Rhizobium inoculation on the yield of faba bean and rhizosphere bacterial diversity were analyzed by terminal restriction fragment length polymorphism, amplified 16S rDNA restriction analysis (ARDRA), and 16S rDNA sequencing. The results showed that intercropping but not Rhizobium inoculation significantly increased the faba bean yield. Probably the relatively high level of native rhizobia in soil annulled the effect of rhizobia inoculation. ARDRA results showed that intercropping did not affect bacterial diversity whereas Rhizobium inoculation decreased bacterial diversity. The canonical correspondence analysis showed that the composition of bacterial community was changed apparently by intercropping, and there was a positive correlation (P = 0.724) between faba bean yields and intercropping and an apparent correlation (P = 0.648) between intercropping and total N. The available content of K and P had a lower effect on the bacterial community composition than did the total N content, Rhizobium inoculation, and microbial biomass C. Rhizobium inoculation negatively correlated with microbial biomass C (P = −0.827). These results revealed a complex interaction among the intercropped crops, inoculation with rhizobia, and indigenous bacteria and implied that the increase of faba bean production in intercropping might be related to the modification of rhizosphere bacterial community.  相似文献   

3.
Plant‐growth promoting rhizobacteria (PGPR), in conjuction with efficient Rhizobium, can affect the growth and nitrogen fixation in pigeonpea by inducing the occupancy of introduced Rhizobium in the nodules of the legume. This study assessed the effect of different plant‐growth promoting rhizobacteria (Azotobacter chroococcum , Azospirillum brasilense, Pseudomonas fluorescens, Pseudomonas putida and Bacillus cereus) on pigeonpea (Cajanus cajan (L) Milsp.) cv. P‐921 inoculated with Rhizobium sp. (AR‐2–2 k). A glasshouse experiment was carried out with a sandy‐loam soil in which the seeds were treated with Rhizobium alone or in combination with several PGPR isolates. It was monitored on the basis of nodulation, N2 fixation, shoot biomass, total N content in shoot and legume grain yield. The competitive ability of the introduced Rhizobium strain was assessed by calculating nodule occupancy. The PGPR isolates used did not antagonize the introduced Rhizobium strain and the dual inoculation with either Pseudomonas putida, P. fluorescens or Bacillus cereus resulted in a significant increase in plant growth, nodulation and enzyme activity over Rhizobium‐inoculated and uninoculated control plants. The nodule occupancy of the introduced Rhizobium strain increased from 50% (with Rhizobium alone) to 85% in the presence of Pseudomonas putida. This study enabled us to select an ideal combination of efficient Rhizobium strain and PGPR for pigeonpea grown in the semiarid tropics.  相似文献   

4.
蚕豆枯萎病是土传病害,其发生与蚕豆根系分泌物有密切关系。本文以3个枯萎病不同抗性蚕豆品种——‘89-147’(高抗)、‘8363’(中抗)和‘云豆324’(感病)为材料,通过水培试验收集根系分泌物,测定根系分泌物对镰刀菌孢子萌发和菌丝生长的影响,分析对枯萎病表现出不同抗性的蚕豆品种根系分泌物中糖、氨基酸和有机酸的含量,分离鉴定了根系分泌物中氨基酸和有机酸的组分。结果表明,抗病品种的根系分泌物抑制了尖孢镰刀菌的孢子萌发和菌丝生长,在加入5 mL中抗品种根系分泌物时,显著促进尖孢镰刀菌孢子萌发,但对菌丝生长无显著影响;而在加入1 mL感病品种根系分泌物时,就能显著促进尖孢镰刀菌孢子萌发和菌丝生长。不同抗性蚕豆品种根系分泌物中氨基酸总量和总糖含量随抗性的降低而升高,有机酸分泌总量则随蚕豆品种对枯萎病的抗性增加而升高。感病品种和中抗品种中检出15种氨基酸,而高抗品种中检出14种,组氨酸只存在于中抗品种中,脯氨酸仅在感病品种中检出,3个蚕豆品种根系分泌物中均未检出精氨酸。蚕豆根系分泌物中天门冬氨酸、谷氨酸、苯丙氨酸、酪氨酸和亮氨酸含量高,可能会促进枯萎病的发生,而蛋氨酸、赖氨酸和丝氨酸含量高可能抑制枯萎病发生。酒石酸仅在抗病品种中存在,根系分泌物中有机酸种类丰富,有助于提高蚕豆对枯萎病的抗性。蚕豆对枯萎病的抗性不同,根分泌物对镰刀菌孢子萌发和菌丝生长的影响也不同,而这种抗病性差异与蚕豆根系分泌物中糖、氨基酸、有机酸的含量和组分密切相关。  相似文献   

5.
Abstract

Effluent from the baker's yeast industry was experimented on as a culture medium for the growth and biomass production of diazotrophs. The effluent supported good growth of Azotobacter chroococcum, Enterobacter agglomerans and Klebsiella pneuomoniae, Azospirillum brasilense, Bacillus polymyxa and Pseudomonas putida and strongly proposed for biofertilizers production of associative diazotrophs. Slurry preparations containing natural polymers, e.g. Arabic gum (5%), pero-dextrin (20%), starch granules (10%) or gelatine (20%) were impregnated with cells of tested diazotrophs. With storage, entrapped cells of B. polymyxa were viable up to 160 days, while gradual decreases in Azospirillum numbers were recorded. Pero-dextrin, a by-product of the starch industry, was selected as the appropriate biocarrier accommodating diazotroph cells and maintaining prolonged survival rates and nitrogenase activity. Cell cultures of A. brasilense, A. chroococcum, B. polymyxa, E. agglomerans and P. putida were equally mixed and entrapped into pero-dextrin slurry biofertilizer formulation named as “BIOGRAMINA”. Tested diazotrophs successfully survived (ca. 108 cfu ml?1) in such formulation up to 6 months at both ambient and cold temperatures. The response of wheat and barley to “BIOGRAMINA” in the presence or absence of N fertilizers was evaluated in greenhouse and field trials. Highest total biological yields were recorded for inoculated plants simultaneously supplemented with rational N fertilizer dose.  相似文献   

6.
This study was conducted in order to investigate the effects of single, dual, and triple inoculations with Rhizobium, N2-fixing Bacillus subtilis (OSU-142), and P-solubilizing Bacillus megaterium (M-3) on nodulation, plant growth, nutrient uptake and seed yield of common bean (Phaseolus vulgaris L. cv. ‘Elkoca-05’) in comparison to control and mineral fertilizer application under field conditions in 2006 and 2007 in the cold highland in Erzurum plateau (29° 55′ N and 41° 16′ E with an altitude of 1850 m), Turkey. Bacterial inoculations significantly increased all the parameters investigated compared with the control treatment, equal to or higher than nitrogen (N), phosphorus (P), and NP treatments. The lowest shoot dry weight and chlorophyll content values were recorded in the control treatment and the bacterial inoculations increased shoot dry weight by 19.7–54.3% and chlorophyll content by 34.1–59.3% over control. Nodule dry weight significantly increased in Rhizobium alone treatment. Additionally, nodulation by native soil Rhizobium population was increased in single inoculations of OSU-142 and M-3. Significant increases of the seed yield under different inoculation treatments ranged between by 6.6% (Rhizobium + OSU-142 + M-3) and 12.2% (OSU-142 alone) over the control whereas N, P and NP applications corresponded to increases of 5.6%, 4.0% and 7.4%, respectively. All bacterial inoculations, especially triple inoculation, significantly increased uptake of macronutrients and micronutrients by common bean. In conclusion, seed inoculation with Rhizobium, OSU-142 and M-3, especially OSU-142 alone, may substitute partially costly NP fertilizers in common bean production even in cold highland areas such as in Erzurum.  相似文献   

7.
Below‐ground niche complementarity in legume–cereal intercrops may improve resource use efficiency and root adaptability to environmental constraints. However, the effect of water limitation on legume rooting and nodulation patterns in intercropping is poorly understood. To advance our knowledge of mechanisms involved in water‐limitation response, faba bean (Vicia faba L.) and wheat (Triticum aestivum L.) were grown as mono‐ and intercrops in soil‐filled plexiglass rhizoboxes under water sufficiency (80% of water‐holding capacity) and water limitation (30% of water‐holding capacity). We examined whether intercropping facilitates below‐ground niche complementarity under water limitation via interspecific root stratification coupled with modified nodulation patterns. While no significant treatment effects were measured in intercropped wheat growth parameters, water limitation induced a decrease in shoot and root biomass of monocropped wheat. Likewise, shoot biomass and height, and root length of monocropped faba bean significantly decreased under water limitation. Conversely, water limitation stimulated root biomass of intercropped faba bean in the lower soil layer (15–30 cm soil depth). Similarly, total nodule number of faba bean roots as well as nodule number in the lower soil layer increased under intercropping regardless of water availability. Under water limitation, intercropping also led to a significant increased nodule biomass (48%) in the lower soil layer as compared to monocropping. The enhanced nodulation in the lower soil layer and the associated increase in root and shoot growth provides evidence for a shift in niche occupancy when intercropped with wheat, which improves water‐limited faba bean performance.  相似文献   

8.
This study was initiated to evaluate the effect of locally isolated Rhizobium on nodulation and yield of faba bean at Haramaya, Ethiopia for three consecutive years. Ten treatments comprising of eight effective isolates of rhizobia, uninoculated, and N-fertilized (20 kg N ha?1) were laid out in a randomized complete block design with three replications. The result of the experiment indicated that all inoculation treatments increased nodule number and dry weight over the control check in all cropping seasons. The result, however, showed the non-significant effect of Rhizobium inoculation on shoot length, number of tiller per plant and 100 seed weight in all cropping season. Inoculating Haramaya University Faba Bean Rhizobium (HUFBR)-15 in 2011 and National Soil Faba Bean Rhizobium (NSFBR)-30 in 2012 and 2013 gave the highest grain yields (4330, 5267 and 4608 kg ha?1), respectively. These records were 75%, 48%, and 5% over the uninoculated treatment of respective years. Over the season, NSCBR-30 inoculation resulted in the highest nodulation and grain yield production as compared to the other treatments. In general, isolates from central Ethiopia were better than those isolated from eastern Ethiopia and Tropical Agricultural Legume (TAL)-1035 in enhancing faba bean production at Haramaya site. Therefore, NSFBR-30 is recommended as a candidate isolate for faba bean biofertilizer production in eastern Ethiopia soils.  相似文献   

9.
棉花黄萎病拮抗菌的筛选及其生物防治效果   总被引:7,自引:0,他引:7  
筛选到2株拮抗菌ZJ6和ZJ1并对其进行了鉴定,研究了其在盆钵试验中防治棉花黄萎病的效果,通过PCR的方法扩增了其含有的抗生素合成基因.结果如下:1)根据生理生化特性和16S rDNA序列分析,菌株ZJ6和ZJ1均鉴定为Bacillus subtilis.2)拮抗菌ZJ6和ZJ1与复合有机肥(氨基酸肥料:猪粪堆肥=1:...  相似文献   

10.
连作障碍是限制蚕豆生产的重要因素,利用植物间化感作用的间作栽培模式是解决连作障碍的有效手段。为了探究对羟基苯甲酸胁迫下蚕豆与小麦间作对蚕豆生长和枯萎病发生的影响及其生理响应,通过盆栽土培试验研究不同浓度[C0(0 mmol·L~(-1))、C1(0.36 mmol·L~(-1))、C2(0.72 mmol·L~(-1))和C3(1.45 mmol·L~(-1))]对羟基苯甲酸处理下,小麦与蚕豆间作蚕豆生长、枯萎病发生、抗氧化酶(POD和CAT)活性和膜质过氧化程度(MDA含量)的影响,从生理抗性角度探讨小麦与蚕豆间作缓解对羟基苯甲酸自毒效应的机制。结果表明,随着对羟基苯甲酸处理浓度提高,蚕豆生物量呈先增加后降低的趋势;C1和C2提高了蚕豆根系POD和CAT活性,降低了镰刀菌的数量,减轻了枯萎病的发生;C3降低了根系POD和CAT活性,增加了镰刀菌的数量,促进了枯萎病发生;随对羟基苯甲酸处理浓度增加,MDA含量显著增加,证实了对羟基苯甲酸是导致蚕豆连作障碍形成的主要自毒物质。与单作相比,对羟基苯甲酸胁迫下间作显著提高了根系POD活性(4.17%~22.22%)和CAT活性(10.53%~11.11%),显著降低了MDA含量(11.20%~52.80%);镰刀菌数量降低4.63%~23.65%,病情指数降低13.33%~50.00%,蚕豆干重显著增加15.73%~20.63%。综上,小麦与蚕豆间作通过提高蚕豆的生理抗性而减轻对羟基苯甲酸引起的枯萎病危害,促进蚕豆生长,是缓解对羟基苯甲酸自毒效应的有效措施。本研究结果为间作缓解连作障碍中的自毒效应提供了理论论据。  相似文献   

11.
Effects of seed and root exudates obtained from common bean on the proliferation of Rhizobium sp. (Phaseolus) were examined in a combination of three plant cultivars with three Rhizobium strains. In the first experiment, seed or root exudate was mixed with an Andosol soil extract, and bacterial proliferation in the mixture was traced. Seed exudate was prepared from hydroponic solution used in seed imbibition for 24 h, and a series of root exudates was prepared from a hydroponic solution collected every 24 h from the initiation of rooting up to 96 h after rooting. Regardless of the common bean cultivars and Rhizobium strains used, Rhizobium population markedly increased of the 24 h of culture in the mixture containing seed exudates, whereas a negligible increase was detected in the mixture with root exudates. The mixture containing root exudates collected within a period of 72–96 h after initial rooting (96–120 h after seed imbibition) exerted an inhibitory effect on Rhizobium proliferation. The seed exudates contained large amounts of sugars, amino acids, nitrogen, phosphorus, potassium, and magnesium compared to any root exudates. In the second experiment, Rhizobium was inoculated directly to common bean seeds sowed in a vermiculite bed which was sterilized and moistened with a plant nutrient solution. Compared with the control (without seed), a remarkable increase in the number of bacterial cells was observed in all the combinations of plant cultivars and Rhizobium strains 24 h after sowing. These results reveal that seed exudates of common bean have a substantial potential to promote Rhizobium proliferation, and that root exudates in a particular period of culture contain some inhibitory factors.  相似文献   

12.
A two-year irrigated field study was conducted to determine the effects of plant growth-promoting rhizobacteria (PGPR; Bacillus subtilis OSU-142 and Bacillus megaterium M3) as biofertilizer, and in combination with a chemical nitrogen (N) fertilizer, on turf color and clipping yield, and interaction of biofertilizer and chemical N fertilizers in perennial ryegrass (Lolium perenne L.), tall fescue (Festuca arundinacea L. Schreb.), and Kentucky bluegrass (Poa pratensis L.). The three turf species were tested separately in split-plot design experiments with three replications. Three fertilizer sources (ammonium nitrate only, ammonium nitrate + B. megaterium M3, and ammonium nitrate + B. subtilis OSU-142) were the main plots. N applications with monthly applications of 0.0, 2.5, 5.0, and 7.5 g N/m2 were the subplots. Color ratings and clipping yields increased with increasing chemical N fertilizers in all species. Both Bacillus sp. significantly increased color ratings and clipping yields in perennial ryegrass and tall fescue. However, there were no significant differences among the three fertilizer sources in color and clipping yield of Kentucky bluegrass. The experiments showed that there is a small but significant benefit from applying biofertilizers for turf color, and that N fertilization may be reduced in some turf species when biofertilization are made for this purpose.  相似文献   

13.
Abstract

One‐third of all the cultivated land area is used for multiple cropping and half of the total grain yield is produced with multiple cropping in China. There have been numerous studies on nutrient acquisition by crops in legume/non‐legume intercropping systems, but few on nutrient uptake in cereal/cereal intercropping. This paper describes a field experiment in which integrated wheat/maize and maize/faba bean systems were compared with sole wheat and sole faba bean cropping to assess the effects of intercropping on nutrient uptake by wheat, maize, and faba bean under various application rates of nitrogen (N) and phosphorous (P) fertilizers. Results show that both N and P fertilizers and intercropping enhanced N uptake by wheat, while only P fertilizer and intercropping increased P acquisition by wheat. The advantage of N uptake by border rows of wheat intercropped with maize declined with increasing N fertilizer application rate, but that of P acquisition was not affected by P fertilizer. The amounts of both N and P taken up by maize intercropped with faba bean were much higher than those by maize intercropped with wheat throughout the period of intercropping. Both fertilization and intercropping did not influence the N and P uptake by faba bean.  相似文献   

14.
【目的】接种丛枝菌根 (arbuscular mycorrhizal,AM) 真菌和间作均是防治蚕豆枯萎病的有效方法,从土壤微生物学角度研究两者协同减轻蚕豆枯萎病的机理,对控制蚕豆枯萎病传播具有重要意义。【方法】利用盆栽试验方法,进行了间作和接种AM真菌摩西管柄囊霉 (Funneliformis mosseae,Fm) 和扭形球囊霉 (Glomus tortuosum,Gt) 试验。设蚕豆单作对照 (MF)、蚕豆小麦间作 (IF)、蚕豆单作接种Fm (MFFm)、蚕豆小麦间作接种Fm (IFFm)、蚕豆单作接种Gt (MFGt)、蚕豆小麦间作接种Gt (IFGt) 6个处理。于蚕豆开花期 (生长70天) 取土壤样品,测定蚕豆幼苗生长、枯萎病发生、根际镰刀菌数量和微生物碳代谢活性。【结果】间作显著增加蚕豆幼苗干重93.0%、降低蚕豆枯萎病病情指数71.4%,接菌显著增加蚕豆幼苗干重55.3%、降低病情指数76.6%,其中接种Fm真菌对蚕豆幼苗干重的影响更大,对病情指数的抑制效果更好。间作接菌显著增加蚕豆幼苗干重100%、降低病情指数89.8%。Biolog微平板测试结果显示,间作提高根际微生物碳代谢活性32.3%;接菌提高微生物活性85.4%;间作接菌提高微生物活性122%。主成分分析结果表明,间作和接菌均明显改变了根际微生物的群落结构,并主要改变了对碳水化合物类、氨基酸和羧酸类碳源的利用。相关性分析结果显示,枯萎病发病率和病情指数与根际镰刀菌数量呈极显著正相关关系,与AWCD值、Shannon多样性指数和丰富度指数均呈极显著负相关。【结论】蚕豆与小麦间作和接菌对抑制蚕豆枯萎病和促进蚕豆生长均具有积极效应,间作显著提高了AM真菌的定殖率,二者协同提高了根际微生物活性,改变了微生物群落结构,并抑制了病原菌增殖,进而控制蚕豆枯萎病发生。  相似文献   

15.
Field‐based experiments were conducted to evaluate the promotion abilities of Bacillus subtilis NRRL B‐30408 for growth of lentil (Lens esculenta Moench) at a mountain location of Indian Himalaya in two consecutive years. Observations were recorded for plant growth, yield, nodulation, root colonization by arbuscular mycorrhizal and endophytic fungi, and other related parameters. A positive influence of bacterial inoculation on plant biomass and yield‐related parameters was recorded in both years. The significant increase in growth and nodule numbers as well as leghaemoglobin and protein concentrations of nodules indicated an enhancement in efficiency of the Rhizobium–legume symbiosis due to bacterial inoculation. An increase in protein concentration was also recorded for shoots, leaves, and seeds. Due to bacterial inoculation, there was an increase in colonization by endophytic fungi and a simultaneous decrease in colonization by arbuscular mycorrhizal fungi in roots. Based on the results of this field study, inoculation with suitable plant growth–promoting rhizobacteria instead of dual inoculation is suggested as a better option for improving the yield and related attributes of a primary dietary legume such as lentil.  相似文献   

16.
A commercial cultivar (Alborea) of faba bean (Vicia faba L. var. minor) was inoculated with salt-tolerant Rhizobium leguminosarum biovar. viciae strain GRA19 in solution culture with different salt concentrations (0, 50, 75 and 100 mmoles l−1 NaCl) added immediately at the time of inoculation. The results indicated that Rhizobium leguminosarum strain GRA19 formed an infective and effective symbiosis with faba bean under saline and nonsaline conditions. Salinity significantly decreased shoot and root dry weight, nodule weight and mean nodule weight. Roots were more sensitive than shoots, and N2 fixation was more sensitive to salinity than was plant growth. Analyses of ammonium assimilating enzymes in the nodule showed that glutamine synthetase appeared to be more tolerant to salinity than glutamate synthase, and that it limits ammonium assimilation under saline stress.  相似文献   

17.
《Applied soil ecology》2005,28(2):139-146
The effect of a combined inoculation of Rhizobium, a phosphate solubilizing Bacillus megaterium sub sp. phospaticum strain-PB and a biocontrol fungus Trichoderma spp. on growth, nutrient uptake and yield of chickpea were studied under glasshouse and field conditions. Combined inoculation of these three organisms showed increased germination, nutrient uptake, plant height, number of branches, nodulation, pea yield, and total biomass of chickpea compared to either individual inoculations or an uninoculated control. Increased growth and yield parameters were more pronounced when T. harzianum-PDBCTH 10 was inoculated along with the phosphate solubilizing bacterium and Rhizobium. Studies on population dynamics in the rhizosphere showed, there was no significant inhibition between the introduced organisms.  相似文献   

18.
The incorporation of biological control organisms in seeds may help control pathogens and improve seedling performance. The aim of this study was to determine the effects of biopriming bean seeds with Trichoderma spp. and Bacillus subtilis using physiological conditioning, suspensions of biological structures and film coating techniques. Biopriming treatments with suspensions of biological structures were performed using the commercial products Agrotrich plus® and Rhizoliptus®. Water restriction was achieved using a PDA?+?Manitol (?0.7?MPa) medium for both Trichoderma spp. and Bacillus subtilis. Fifty disinfected bean seeds were placed in each petri dish. When the first radicle protrusion appeared in a seed, the other seeds were removed and dried in the laboratory environment for 48?h. Film coating was performed with the addition of the Color Seed® (150?mL kg?1) polymer to a treatment solution containing either the Trichoderma spp. or the Rhizoliptus product. Seeds were dried for 48?h in the laboratory. Seeds were covered and treated with one or both organisms. Biopriming with spore or bacterial cell suspensions promoted bean seedling growth, and the other techniques were not required to potentiate these benefits. Covering the primed bean seeds reduced seed quality. Both Trichoderma spp. and Bacillus subtilis promote bean seedling growth, benefitting the seedling even after it becomes independent of the seed reserves.  相似文献   

19.
Nitrogen (N) fixation by legume-Rhizobium symbiosis is important to agricultural productivity and is therefore of great economic interest. Growing evidence indicates that soil beneficial bacteria can positively affect symbiotic performance of rhizobia. The effect of co-inoculation with plant growth-promoting rhizobacteria (PGPR) and Rhizobium, on nodulation, nitrogen fixation, and yield of common bean (Phaseolus vulgaris L.) cultivars was investigated in two consecutive years under field conditions. The PGPR strains Pseudomonas fluorescens P-93 and Azospirillum lipoferum S-21 as well as two highly effective Rhizobium strains were used in this study. Common bean seeds of three cultivars were inoculated with Rhizobium singly or in a combination with PGPR to evaluate their effect on nodulation and nitrogen fixation. A significant variation of plant growth in response to inoculation with Rhizobium strains was observed. Treatment with PGPR significantly increased nodule number and dry weight, shoot dry weight, amount of nitrogen fixed as well as seed yield and protein content. Co-inoculation with Rhizobium and PGPR demonstrated a significant increase in the proportion of nitrogen derived from atmosphere. These results indicate that PGPR strains have potential to enhance the symbiotic potential of rhizobia.  相似文献   

20.
The response of faba bean to the application of four rates of gypsum (0, 2.5, 5.0, 10.0 t ha−1) to a non-saline, alkaline sodic soil was measured in terms of grain yield, dry matter (DM) production, N accumulation and the proportional dependence of the legume on symbiotic N2 fixation (P atm). A yield-independent, time-integrated 15N-dilution model was used to estimate symbiotic dependence. A significant decrease in the exchangeable sodium percentage and significant increases in exchangeable Ca++ and the Ca++:Mg++ ratio in the 0–10-cm soil layer were measured 30 months after application of 10 t ha−1 gypsum. Despite low and erratic rainfall during crop growth, faba bean DM and N uptake responded positively to gypsum application. The symbiotic dependence of the legume at physiological maturity was little affected by sodicity (P atm = 0.74 at zero gypsum and 0.81–0.82 at 2.5–10 t ha−1 gypsum). The increase in fixed N due to gypsum application was mainly due to increases in legume DM and total N uptake. At 10 t ha−1 of gypsum, faba bean fixed more than 200 kg N ha−1 in above-ground biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号