首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Phosphorus losses in runoff from sugarcane fields can contribute to non-point source pollution of surface and subsurface waters. The objective of this study was to evaluate the effects of three different management practices on P losses in surface runoff and subsurface leaching from sugarcane (Saccharum officinarum L.) fields. Field experiments with treatments including conventional burning (CB), compost application with burning (COMB), and remaining green cane trash blanketing (GCTB) treatments were carried out to assess these management practice effects on P losses from sugarcane fields. In the CB treatment, sugarcane residue was burned after harvest. The COMB treatment consisted of compost applied at ??off bar?? with sugarcane residue burned immediately after harvest. Compost was applied in the amount of 13.4 Mg ha?1 annually, 8 weeks before planting. In the GCTB treatment, sugarcane residue was raked off from the row tops and remained in the wheel furrow after harvest. Surface runoff was collected with automatic refrigerated samplers, and subsurface leachate was collected with pan lysimeters over a period of 3 years. Measured concentrations of total P (TP), dissolved reactive P (DRP), and particulate P (PP) in surface runoff from the COMB treatment were significantly higher than concentrations from the CB and GCTB treatments. The mean losses of P (TP and DRP) after burning (postharvest, years 2 and 3) were significantly greater than the no-burn treatment (preharvest, year 1) in the CB, COMB, and CB/COMB/GCTB combined options. Additionally, the mean losses of total suspended solid and total combustible solids in residue burning were, on average, 2.7 and 2.2 times higher than the no-burn practices, respectively (preharvest and GCTB treatment). Annual P losses from surface runoff in the third year of study were 12.90%, 6.86%, and 10.23% of applied P in CB, COMB, and GCTB treatments, respectively. However, the percent of annual DRP losses from applied P in COMB and GCTB treatments was similar magnitude, and their values were less than 50% compared to the value from CB treatment. In the leaching study, percent of monthly mean TP and DRP losses in the COMB and GCTB treatments were greatly reduced. Based on these results, the COMB and GCTB procedures were equally recommended as sugarcane management practices that improve water quality in both surface runoff and subsurface leachate.  相似文献   

2.
为探究自然降雨下不同堆沤方式秸秆还田对小流域坡耕地径流泥沙及氮素流失的影响,以滇中二龙潭流域坡耕地为研究对象,设置9种不同玉米秸秆堆沤方式,分别为CK及8种处理,各处理包括2种秸秆还田量(0.75,1.5 kg/m^2)、2种秸秆粒度(1,5 cm)、2种秸秆堆沤方式(水或水与尿素堆沤),研究烤烟坡耕地产流产沙及氮素流失特征。结果表明:(1)在4场具有典型产流的降雨中,施用较高秸秆还田量(1.5 kg/m^2)和粗颗粒秸秆(5 cm),均可有效减少坡耕地产流产沙量(10.06%~38.60%和10.07%~38.60%);(2)施用较低秸秆还田量(0.75 kg/m^2)、粗颗粒秸秆(5 cm)及未添加尿素堆沤的秸秆径流TN、NO3--N浓度低于施用高秸秆还田量(1.5 kg/m^2)、细颗粒秸秆(1 cm)及添加尿素堆沤的处理(1.96%~32.79%和3.97%~40.89%);(3)各处理下NO3--N/TN、NH4+-N/TN、PN/TN分别为63.64%~86.18%,5.31%~13.86%和5.33%~25.80%,表明坡耕地地表径流氮素主要流失形式为NO3--N,溶解态氮是径流中的主要氮素污染物;(4)施用较低秸秆还田量(0.75 kg/m^2)、粗颗粒(5 cm)秸秆、未加尿素堆沤的秸秆,泥沙TN流失浓度降低(16.87%~48.15%);(5)施用较高秸秆还田量、粗颗粒秸秆及未添加尿素堆沤可有效降低滇中坡耕地氮素的流失风险(0.32%~35.05%和54.52%~77.23%)。TN径流和泥沙流失中,以径流输出为主,占TN流失量的50.09%~71.67%。为了减少该流域氮素流失量,可选择施用较高秸秆还田量(1.5 kg/m^2)和粗颗粒(5 cm)秸秆,并依据烤烟不同生长期的吸收情况和土壤养分情况等选择少量或不添加尿素堆沤进行秸秆还田。  相似文献   

3.
The ability to produce native plants well adapted to the saline conditions without the production of nutrient-rich runoff will be a boon to nurseries hoping to reduce their environmental contamination impact and water use while at the same time producing quality plants to be used in the restoration of saline lands. Sarcocornia fruticosa plants were grown for 8 weeks in plastic containers with a source of sphagnum peat moss and perlite (80:20 v/v) to evaluate the effect of two salinity levels (2.0 (low-salinity treatment) and 7.5 dS m?1 (high-salinity treatment)) on plant growth, nutrient concentration in leachate and water and nutrient uptake efficiency and their losses. Leachate was collected to determine the runoff volume and composition, which included nitrate-nitrogen (NO3N), phosphate-phosphorus (PO43–P) and potassium (K+) concentrations. Plant dry weight (DW) and nutrient content were determined in plants at the beginning and at the end of the experiment to establish the nutrient balance. Increasing salinity levels of irrigation water did not reduce either the plant DW or the water-use efficiency (WUE), but increased the volume of leachate per plant. The nutrient concentrations in leachates without significant differences between salt treatments exceeded the thresholds established by environmental guidelines, leading to a great risk of pollution. Based on nutrient balance, the irrigation with a higher salinity level reduced the plant nutrient uptake efficiency (10%, 18% and 12% for nitrogen (N), phosphorus (P) and potassium (K), respectively) and increased the nutrient losses (6% N, 7% P and 8% K), resulting in the recommendation to grow this species with the low salinity level based on the highest nutrient-use efficiency and the lowest levels of nutrient losses.  相似文献   

4.
Abstract

The present study investigated the nitrogen balance in swine manure composting to evaluate the effect of nitrite (NO? 2) accumulation, which induces nitrogenous emissions, such as N2O, during compost maturation. During active composting, most N losses result from NH3 emission, which was 9.5% of the initial total nitrogen (TNinitial), after which, NO? 2 began to accumulate as only ammonia-oxidizing bacteria proliferated. After active composting, the addition of mature swine compost (MSC), including nitrite-oxidizing bacteria (NOB), could prevent NO? 2 accumulation and reduce N2O emission by 70% compared with the control in which NO? 2 accumulated as a result of delayed growth of indigenous NOB. Total N2O emissions in the control and in the treatment of MSC addition (MA) were 9.3% and 3.0% of TNinitial, respectively, whereas N losses as the sum total of NH3 and N2O over the whole period were 19.0% (control) and 12.8% (MA) of TNinitial, respectively. However, the difference in total N losses was markedly greater than that measured as NH3 and N2O, which were 27.8% (control) and 13.3% (MA) of TNinitial, respectively. These results demonstrated that the magnitude of nitrogen losses induced by NO? 2 accumulation is too large to ignore in the composting of swine manure.  相似文献   

5.
Co-composting of chicken slurry and rice straw with clinoptilolite zeolite and urea as additives was conducted to determine the characteristics of a compost and their effects on controlling ammonium (NH4+) and nitrate (NO3?) losses from urea. Quality of the compost was assessed based on temperature, moisture content, ash, pH, electrical conductivity, carbon/nitrogen (C/N) ratio, NH4+, NO3?, macronutrients, heavy metals, humic acid, microbial population, germination index, and phytotoxicity test. Moisture content and C/N ratio of the compost were 43.83% and 15, respectively. Total N, humic acid, ash, NH4+, NO3?, phosphorus (P), calcium (Ca), magnesium (Mg), potassium (K), and sodium (Na) increased after co-composting rice straw and chicken slurry. Copper, iron (Fe), manganese (Mn), zinc (Zn), and microbial biomass of the compost were low. The germination rate of Zea mays on distilled water and Spinacia oleracea growth on peat-based growing medium (PBGM) and compost were not significantly different. Urea amended with compost reduced N loss by retaining NH4+ and NO3? in the soil.  相似文献   

6.
为探索太湖流域水网地区农田土壤氮素通过地表径流与耕层渗漏的流失特征及其影响因素,在浙江省嘉兴市、上海市的松江县和青浦县,选择稻田、种植年限短的菜地、种植年限长的菜地3种类型农田,采用原位模拟降雨,研究渗漏与地表径流方式下的农田氮素流失量、流失形态特征,以及土壤养分含量对氮素流失的影响。结果表明,3种农田在地表径流方式下农田总氮流失量差异不显著;渗漏方式下种植年限长的菜地和种植年限短的菜地总氮流失量差异也不显著。渗漏方式下总氮流失量显著高于地表径流方式。农田0—5、0—20 cm土壤硝态氮含量分别为31.24~72.9和33.21~71.1 mg/kg时,与渗漏液硝态氮、水溶性总氮、总氮的流失量、流失浓度呈极显著正相关。  相似文献   

7.
In vermicomposting, the main product is the worm casts, but a leachate is generated that contains large amounts of plant nutrients. This leachate is normally diluted to avoid plant damage. We investigated how dilution of vermicompost leachate combined with different concentrations of nitrogen (N) - phosphorus (P) - potassium (K) triple 17 fertilizer, and polyoxyethylene tridecyl alcohol as dispersant and polyethylene nonylphenol as adherent to increase efficiency of fertilizer uptake, affected sugarcane plant development. The vermicomposting leachate with pH 7.8 and electrolytic conductivity 2.6 dS m?1, contained 834 mg potassium (K) l?1, 247 mg nitrate (NO3?) l?1 and 168 mg phosphate (PO43?) l?1, was free of pathogens and resulted in a 65% germination index. Vermicompost leachate did not inhibit sugarcane growth and mixed with 170 g l?1 NPK triple 17 fertilizer resulted in the best plant development. No dispersant or adherent was required to improve plant height and stem development.  相似文献   

8.
Abstract

The relationships between nitrogen (N) and phosphorus (P) concentrations in surface flooding water and those in the leachate of various soil depths were monitored, and temporal variation of leaching losses of N and P from a paddy plot during rice cultivation was estimated under the conditions of southern Korea. Even flooded conditions nitrification in subsurface soil was identified, but nitrate concentrations in leachate were less than 10 mg/L, the standard drinking water nitrate concentration set by the World Health Organization (WHO). The NO3‐N and ortho‐P concentrations in the leachate were generally higher than those in the surface flooding water. Field data implied that leaching losses would not be accurately estimated under the flooded conditions of the paddy field when using the N and P concentrations of surface flooding water and infiltration depth. The leaching losses of NO3‐N from paddy fields were high immediately after fertilization. The study results suggested that proper fertilization and irrigation strategies are required to reduce leaching losses of NO3‐N from paddy fields.  相似文献   

9.
High yield agricultural systems, such as high tunnel (HT) vegetable production, require a large supply of soil nutrients, especially nitrogen (N). Compost is a common amendment used by HT growers both to supply nutrients and to improve physical and biological soil properties. We examined commercially-available composts and their effects on soil N, plant N uptake, and tomato yield in HT cultivation. In addition, a laboratory study examined N and carbon (C) mineralization from the composts, and the usefulness of compost properties as predictors of compost N mineralization was assessed under field and laboratory conditions. The field study used a randomized complete block design with four replications to compare four compost treatments (all added at the rate of 300 kg total N ha?1) with unamended soil and an inorganic N treatment (110 kg N ha?1). Tomatoes were grown in Monmouth, Maine during the summers of 2013 and 2014. Compost NO3?-N and NH4+-N application rates were significantly correlated with soil NO3?-N and NH4+-N concentrations throughout the growing season. Marketable yield was positively correlated with compost total inorganic N and NO3?-N in both years, and with NH4+-N in 2014. There were no significant differences among composts in percentage of organic N mineralized and no correlations were observed with any measured compost property. In the laboratory study, all compost-amended soils had relatively high rates of CO2 release for the initial few days and then the rates declined. The compost-amended soils mineralized 4%–6% of the compost organic N. This study suggested compost inorganic N content controls N availability to plants in the first year after compost application.  相似文献   

10.
Return of high nitrogen (N) content crop residues to soil, particularly in autumn, can result in environmental pollution resulting from gaseous and leaching losses of N. The EU Landfill Directive will require significant reductions in the amounts of biodegradable materials going to landfill. A field experiment was set up to examine the potential of using biodegradable waste materials to manipulate losses of N from high N crop residues in the soil. Leafy residues of sugar beet were co‐incorporated into soil with materials of varying C:N ratios, including molasses, compactor waste, paper waste, green waste compost and cereal straw. The amendment materials were each incorporated to provide approximately 3.7 t C per hectare. The most effective material for reducing nitrous oxide (N2O) production and leaching loss of NO3? was compactor waste, which is the final product from the recycling of cardboard. Adding molasses increased N2O and NO3? leaching losses. Six months following incorporation of residues, the double rate application of compactor waste decreased soil mineral N by 36 kg N per hectare, and the molasses increased soil mineral N by 47 kg N per hectare. Compactor waste reduced spring barley grain yield by 73% in the first of years following incorporation, with smaller losses at the second harvest. At the first harvest, molasses and paper waste increased yields of spring barley by 20 and 10% compared with sugar beet residues alone, and the enhanced yield persisted to the second harvest. The amounts of soil mineral N in the spring and subsequent yields of a first cereal crop were significantly correlated to the lignin and cellulose contents of the amendment materials. Yield was reduced by 0.3–0.4 t/ha for every 100 mg/g increase in cellulose or lignin content. In a second year, cereal yield was still reduced and related to the cellulose content of the amendment materials but with one quarter of the effect. Additional fertilizer applied to this second crop did not relieve this effect. Although amendment materials were promising as tools to reduce N losses, further work is needed to reduce the negative effects on subsequent crops which was not removed by applying 60 kg/ha of fertilizer N.  相似文献   

11.
Compost amendment to agricultural soils has been reported to reduce disease incidence, conserve soil moisture, control weeds, or improve soil fertility. Application rate and placement of compost largely depends on the proposed beneficial effects and the rate may vary from 25 to 250 Mg ha?1 (N content up to 4 percent). Application of high rates of compost with high N or P levels may result in excessive leaching of nitrate, ammonium, and phosphate into the groundwater. Leaching could be a serious concern on the east coast of Florida with its inherent high annual rainfall, sandy soils and shallow water table. In this study, five composts (sugarcane filtercake, biosolids, and mixtures of municipal solid wastes and biosolids) were applied on the surface of an Oldsmar sand soil (in 7.5 cm diameter leaching columns) at 100 Mg ha?1 rate and leached with deionized water (300 ml day?1, for five days; equivalent to 34 cm rainfall). The concentrations of NO3-N, NH4-N, and PO4-P in leachate reached as high as 246, 29, and 7 mg L?1, respectively. The amount of N and P leached accounted for 3.3-15.8 percent of total N and 0.2-2.8 percent of total P in the compost. The leaching peaks of NO3-N occurred following the application of only 300-400 ml water (equivalent to 6.8-9.1 cm rainfall).  相似文献   

12.
通过田间裂区试验研究了不同施氮量(N 0、150、210和270 kg/hm2)和灌水量(900、1200、和1500 m3/hm2)对夏玉米土壤硝态氮分布累积、氮素平衡以及氮肥利用率的影响。结果表明,夏玉米收获期各处理土壤硝态氮在表层(0—20 cm)含量最高,在0—200 cm剖面均呈现先减少后增加再减少的变化趋势;土壤剖面NO3--N累积量随施氮量的增加而增加,且施氮处理硝态氮积累量显著高于不施氮处理。作物吸氮量、氮素表观损失量均与施氮量和总氮输入量呈显著相关,氮素输入量每增加1 kg,作物吸氮量仅增加0.301 kg,而表观损失量增加0.546 kg,是作物吸氮量的1.8倍左右。随施氮量的增加土壤剖面中NO3--N的损失量逐渐减少。夏玉米子粒吸氮量和收获指数随施氮量的增加有增加的趋势;氮肥回收效率和氮肥农学效率均以处理W1500N150最高,分别为46.15%和12.98kg/kg;氮肥生理效率以处理W1200N150最大,为34.49 kg/kg。本试验条件下,以水氮处理W1500N150的土壤硝态氮残留量、表观损失量较低,夏玉米氮肥回收效率和农学效率较高。  相似文献   

13.
This study was carried out in the Xujiawan watershed in Sichuan Province, China. The area is characterized by easy weathering of bedrock (sedimentary sandstone and shale) and vulnerability to erosion due to coarse soil texture and weak soil structure. The objective of this study was to understand the dynamics of nitrogen (N) and phosphorus (P) losses during typical storm events. The results showed that runoff generation was sudden and ephemeral, giving rise to flash floods with sharp, narrow hydrographs and short time lags in this type of agricultural ecosystems. The time lag effect of runoff formation depended on soil conditions before storm events. Suspended solids (SS) concentration peaks occurred at the beginning of the storm flow and decreased as rainfall progressed. Meanwhile, SS losses increased at the beginning of runoff flow, then decreased due to flow volume change. Concentrations of NO3-N were four times higher than NH4+-N in runoff. NO3-N concentrations first decreased as runoff volume increased until reaching relatively low concentrations, then increased again as runoff volume decreased. Both NH4+-N and dissolved phosphorus (DP) in runoff remained at low concentrations with a small magnitude of variation. Suspended particulate nitrogen (SN) was the dominant N form. Losses of NO3-N were higher than NH4+-N in the dissolved nitrogen (DN). Suspended particulate nitrogen losses were several times higher than DN in the early period of runoff formation, but the ratio of SN/DN decreased gradually as rainfall progressed, and by the end of the storm event the rate was lower than 1, indicating DN took the main form after the early physical flush. In the early period of storm events, suspended particulate phosphorus (SP)/DP was above 70 and decreased as rainfall progressed, but remained higher than 1, which showed that SP was the main form of P loss. The transport of N, and particularly P, was intimately linked to sediment in the runoff, indicating an obvious soil erosion-associated nutrient transport, especially in relation to P loss.  相似文献   

14.
The objective of this study was to investigate the effect of adding flue gas desulphurization gypsum (FGDG) on the transformation and fate of nitrogen during co-composting of dairy manure and pressmud of a sugar refinery. The ammonia absorption of FGDG was investigated. The changes in compost temperature, pH, electrical conductivity (EC), moisture, organic matter, the C/N ratio, Kjeldahl N, NH4+-N, NO2?-N, NO3?-N were assessed. The addition of FGDG did not significantly affect compost temperature, pH, EC, moisture, and organic matter degradation. However, the addition of FGDG significantly increased the NH4+-N content in the compost during the thermophilic phase, and the NH4+-N maximal content in the compost with FGDG (CP+G) was 59.9% more than that in the compost without FGDG (CP–G). FGDG was thought to create the formation of (NH4)2SO4 and the cation exchange between NH4+ and Ca2+. The NO2?-N content in the CP+G peaked on day 15, and was not observed in the CP–G. In the final compost products, the NO3?-N concentration in the CP–G was more than that in the CP+G, which was 1451 (CP–G) and 1109 mg·kg?1 (CP+G) dry material. This might be due to the NO2? accumulation in the CP+G, which accelerated N loss in the form of N2O. There is a strong correlation between N2O emission and NO2?-N accumulation in the composting process. Compared with the original N content in the compost mixture, the N loss in CP–G and CP+G were 15.0 and 10.8%, respectively. These results revealed that NH4+-N conservation effect was improved during the thermophilic phase and the total N loss was mitigated by adding FGDG into composting materials. FGDG could be utilized as a potential amendment to conserve nitrogen during composting.  相似文献   

15.
施用包膜尿素对水稻生长和氮磷流失的影响   总被引:8,自引:3,他引:5  
施用新型肥料是减少养分径流损失的重要途径。采用田间试验研究了施用包膜尿素对水稻生长和径流氮磷损失的影响,试验设置CK(习惯施肥)、PU1(减磷41%、减氮20%、施普通尿素)、PU2(PU1基础上减氮13%)、UR1(PU2基础上施包膜尿素)和UR2(UR1基础上减氮13%)5个处理。结果表明:PU1和UR1处理水稻氮磷含量与CK处理相近,PU1成熟期氮、磷总积累量比CK增加11.21,2.69kg/hm~2。PU1和UR1处理成熟期地上部生物量和籽粒产量高于CK处理,籽粒产量分别提高7.68%,5.77%。PU1、PU2、UR1和UR2处理径流总磷含量和累积流失量比CK处理低,减少13.18%~21.51%。施用包膜尿素(PU1、PU2)处理径流总氮、铵氮和硝氮含量低于施用普通尿素(CK、UR1、UR2)处理;稻田径流总氮、铵氮和硝氮累积流失量分别减少12.90%~26.91%,54.52%~49.38%和4.03%~15.95%,其中包膜尿素处理铵氮累积流失量显著(P0.05)小于普通尿素处理。施用包膜尿素和优化施肥能促进水稻对氮磷养分的吸收,提高水稻籽粒产量,显著减少稻田氮磷流失量,值得在水稻生产中推广应用。  相似文献   

16.
Mineral N accumulates in autumn under pastures in southeastern Australia and is at risk of leaching as nitrate during winter. Nitrate leaching loss and soil mineral N concentrations were measured under pastures grazed by sheep on a duplex (texture contrast) soil in southern New South Wales from 1994 to 1996. Legume (Trifolium subterraneum)‐based pastures contained either annual grass (Lolium rigidum) or perennial grasses (Phalaris aquatica and Dactylis glomerata), and had a control (soil pH 4.1 in 0.01 m CaCl2) or lime treatment (pH 5.5). One of the four replicates was monitored for surface runoff and subsurface flow (the top of the B horizon), and solution NO3 concentrations. The soil contained more mineral N in autumn (64–133 kg N ha?1 to 120 cm) than in spring (51–96 kg N ha?1), with NO3 comprising 70–77%. No NO3 leached in 1994 (475 mm rainfall). In 1995 (697 mm rainfall) and 1996 (666 mm rainfall), the solution at 20 cm depth and subsurface flow contained 20–50 mg N l?1 as NO3 initially but < 1 mg N l?1 by spring. Nitrate‐N concentrations at 120 cm ranged between 2 and 22 mg N l?1 during winter. Losses of NO3 were small in surface runoff (0–2 kg N ha?1 year?1). In 1995, 9–19 kg N ha?1 was lost in subsurface flow. Deep drainage losses were 3–12 kg N ha?1 in 1995 and 4–10 kg N ha?1 in 1996, with the most loss occurring under limed annual pasture. Averaged over 3 years, N losses were 9 and 15 kg N ha?1 year?1 under control and limed annual pastures, respectively, and 6 and 8 kg N ha?1 year?1 under control and limed perennial pastures. Nitrate losses in the wet year of 1995 were 22, 33, 13 and 19 kg N ha?1 under the four respective pastures. The increased loss of N caused by liming was of a similar amount to the decreased N loss by maintaining perennial pasture as distinct from an annual pasture.  相似文献   

17.
To-date, assessments of nitrogen use efficiency (NUE) of sugarcane have not included the contribution of its components, nitrogen uptake efficiency (NUpE) and nitrogen utilization efficiency (NUtE). This study determined these values, based on biomass and plant nitrogen (N) content, in two four-month-old pot-grown genotypes. The treatments included six N regimes, with nitrate (NO3N) or ammonium (NH4+-N) supplied alone, or as NO3?-N for the first 6 weeks and then NH4+-N until harvest, each as 4 or 20 mM. Regardless of the N form, NUE was higher at four than at 20 mM due to significantly higher NUpE at low N supply. The results indicated that there was luxury N uptake and preference for NH4+-N nutrition, which resulted in the highest determined NUE. There were significant differences between genotypes in biomass, morphological growth parameters, N uptake, total plant N and NUE, the latter matching previously established sucrose yield-based NUE field rankings.  相似文献   

18.
Information about the mineralization rate of compost at various temperatures is a precondition to optimize mineral N fertilization and to minimize N losses in compost‐amended soils. Objectives were to quantify the influence of the temperature on the mineralization rate and leaching of dissolved organic carbon (DOC) and nitrogen (DON), NO3, and NH4+ from a fresh (C : N = 15.4) and a mature (C : N = 9.2) organic household waste compost. Compost samples were mixed with quartz sand to ensure aerobic conditions, incubated at 5, 10, 15, 20, and 25°C and irrigated weekly for 112 days. For the fresh compost, cumulative CO2 evolution after 112 days ranged from 36% of the initial C content at 5°C to 54% at 25°C. The CO2 evolution was only small in the experiments with mature compost (1 to 6% of the initial C content). The data were described satisfactorily by a combined first‐order (fresh compost) or a first‐order kinetic model (mature compost). For the fresh compost, cumulative DOC production was negatively related to the temperature, probably due to leaching of some of the partly metabolized easily degradable fractions at lower temperatures. The production ratios of DOC : CO2‐C decreased with increasing temperature from 0.094 at 5°C to 0.038 at 25°C for the fresh and from 1.55 at 5°C to 0.26 at 25°C for the mature compost. In the experiments with fresh compost, net release of NO3 occurred after a time lag which depended on the temperature. Cumulative net release of NO3 after 112 days ranged from 1.8% of the initial N content at 5°C to 14.3% at 25°C. Approximately 10% of the initial N content of the mature compost was released as NO3 after 14 days at all temperatures. The DOC : DON ratios in the experiments using fresh compost ranged from 11.5 to 15.7 and no temperature dependency was observed. For the mature compost, DOC : DON ratios were slightly smaller (7.4 to 8.9). The DON : (NH4+ + NO3) ratio decreased with increasing temperature from 0.91 at 5°C to 0.19 at 25°C for the fresh compost and from 0.21 at 5°C to 0.12 at 25°C for the mature compost. The results of the dynamics of C and N mineralization of fresh and mature compost can be used to assess the appropriate application (timing and amount) of compost to soils.  相似文献   

19.
The connection between moisture and nitrogen (N) transformation in soils is key to understanding N losses, particularly nitrate (NO3?) losses, and also provides a theoretical framework for appropriate water management in agricultural systems. Thus, we designed this study to provide a process-based background for management decision. We collected soil samples from the long-term field experiment in subtropical China, which was designed to examine tobacco and rice rotations under a subtropical monsoon climate. The field experiment was established in 2008 with four treatments: (1) no fertilization as control; (2) N, phosphorus (P), and potassium (K) fertilizers applied at recommended rates; (3) N fertilizers applied at rates 50% higher than the recommended amounts and P and K fertilizers applied at recommended rates; and (4) N, P, and K fertilizers applied at recommended rates with straw incorporated (NPKS). Soil samples were collected during the unsaturated tobacco-cropping season and saturated rice-cropping season and were incubated at 60% water holding capacity and under saturated conditions, respectively. Two 15N tracing treatments (15NH4NO3 and NH415NO3) and a numerical modeling method were used to quantify N transformations and gross N dynamics. Autotrophic nitrification was stimulated by N fertilizer both under unsaturated and saturated conditions. The rate of NO3? consumption (via immobilization and denitrification) increased under the NPKS treatment under saturated conditions. Secondly, the rates of processes associated with ammonium (NH4+) cycling, including mineralization of organic N, NH4+ immobilization, and dissimilatory NO3? reduction to NH4+, were all increased under saturated conditions relative to unsaturated conditions, except for autotrophic nitrification. Consequently, NO3?-N and NH4+-N concentrations were significantly lower under saturated conditions relative to unsaturated conditions, which resulted in reduced risks of N losses via runoff or leaching. Our results suggest that under saturated conditions, there is a soil N conservation mechanism which alleviates the potential risk of N losses by runoff or leaching.  相似文献   

20.
周旋  吴良欢  戴锋  董春华 《土壤》2019,51(3):434-441
采用二因素随机区组设计,研究生化抑制剂组合(N-丁基硫代磷酰三胺(NBPT)、N-丙基硫代磷酰三胺(NPPT)和2-氯-6-(三氯甲基)吡啶(CP))与施肥模式(一次性施肥和分次施肥)互作对黄泥田稻季田面水和渗漏液氮(N)素浓度动态变化特征的影响。结果表明,黄泥田稻季田面水和渗漏液中N素形态分别以NH4+-N和NO–3-N为主。基肥施用后,稻田田面水中NH4+-N和总氮(TN)浓度于第1天达到峰值后降低,第6天分别降为峰值的57.9%~69.1%、41.9%~59.0%(一次性施肥)和29.9%~60.7%、60.9%~69.7%(分次施肥);稻田渗漏液中NO–3-N和TN浓度于第1~3天达到峰值后降低,第6天分别降为峰值的51.4%~56.5%、56.6%~61.6%(一次性施肥)和45.3%~57.5%、51.1%~59.6%(分次施肥)。不同施肥模式下,硝化抑制剂CP会提高田面水NH4+-N浓度,而脲酶抑制剂NBPT/NPPT或配施CP有效抑制脲酶活性,降低田面水NH4+-N峰值;CP显著降低渗漏液NO–3-N浓度,且CP或配施NBPT/NPPT有效抑制硝化作用,降低渗漏液NO–3-N峰值。新型脲酶抑制剂NPPT单独施用及与CP配施的稻田田面水和渗漏液N素浓度动态变化特征与NBPT相似。总之,生化抑制剂与适宜的氮肥运筹相结合更能有效延缓黄泥田中尿素水解,抑制硝化作用,减少N素径流和渗漏损失。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号