首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
A field experiment was conducted during the kharif season of the crop year 2001 at the Indian Agricultural Research Institute, New Delhi, to study the comparative effects of organic and conventional farming on scented rice. Grain yield of rice increased significantly with increasing rate of fertilizer application only up to 60?kg N?+?13?kg P?+?17?kg K ha???1. The effect of 10 t ha???1 farmyard manure (FYM) was found to be similar to 60?kg N?+?13?kg P?+?17?kg K ha???1, whereas the effect of Sesbania green manuring (SGM) was similar to 120?kg N?+?26?kg P?+?34?kg K ha???1. Inoculation of BGA (Blue green algae) with FYM or SGM had no additional advantage over FYM or SGM alone. The highest yield (5.2 t/ha) of rice was obtained when FYM?+?SGM?+?BGA?+?PSB (Pseudomonas striata) were applied together. The yield obtained with this combination was significantly more than that obtained with 180?kg N?+?39?kg P?+?51?kg K ha???1. A similar trend was observed in N, P, and K uptake of rice. Inorganic nutrients had no significant effect on grain quality parameters like head rice recovery (HRR), kernel length (KL), kernel breadth (KB) and KL?:?KB ratio, whereas organic manures and biofertilizers resulted in an increase in HRR, KL and KL?:?KB ratio. A combination of FYM?+?SGM?+?BGA?+?PSB also resulted in highest organic C and available N content in soil and thus holds a promise for sustainable production.  相似文献   

2.
A field study conducted for two crop cycles of five cropping systems supplied with six nutrient combinations at the Indian Agricultural Research Institute, New Delhi indicated that the cropping systems having a legume increased organic C content over initial level by 0.02?–?0.05%, available N by 3.5?–?14.1?kg ha???1, whereas the rice-wheat cropping system resulted in a reduction in organic C and available N over initial level by 0.05% and 1.5?kg ha???1, respectively after 2 years of study. Rice-potato-mungbean cropping system resulted in a negative balance of available P and rice-clover cropping system had a negative balance of both available P and available K content in soil and thus call for adequate P and K fertilization. Application of P and K helped in building up their content in soil; NPK?+?FYM showed the highest increase in organic C, available N, available P and available K content in soil. These results suggest the inclusion of a legume in a cropping system for maintaining organic C and available N in soil and adequate P and K fertilization for arresting the depletion of available P and K content in soil. Integrated nutrient management is one of the best methods for resilience of soil fertility under rice-wheat cropping system.  相似文献   

3.
A field experiment was conducted for 3 years during 2006–2009 in India to study the effects of plant nutrient recycling through crop residue management, green manuring, and fertility levels on yield attributes, crop productivity, nutrient uptake, and biofertility indicators of soil health in a rice–wheat cropping system. The study revealed that soil microbial biomass carbon (SMBC) and carbon dioxide (CO2) evolution were significantly greatest under crop residue incorporation (CRI) + Sesbania green manuring (SGM) treatment and were found at levels of 364 μg g?1 soil and 1.75 μg g?1 soil h?1, respectively; these were increased significantly by recycling of organic residues. Activities of dehydrogenase and phosphatase enzymes increased significantly after 3 years, with maximum activity under CRI + SGM treatment. The CRI with or without SGM significantly influenced the plant height, number of tillers m?2, number of grains panicle?1 or ear?1, and 1000-grain weight. Mean yield data of rice and wheat revealed that CRI or crop residue burning (CRB) resulted in slightly greater yield over crop residue removal (CRR) treatment. The CRI + SGM treatment again observed significantly greatest grain yields of 7.54 and 5.84 t ha?1 and straw yields of 8.42 and 6.36 t ha?1 in rice and wheat, respectively, over other crop residue management treatments. Total nitrogen (N), phosphorus (P) and potassium (K) uptake in rice–wheat system was greatest with amounts of 206.7, 37.2, and 205.6 kg ha?1, respectively, in CRI + SGM treatment. Fertility levels significantly influenced the rice and wheat yield with greatest grain yields of 6.66 and 5.68 t ha?1 and straw yields of 7.94 and 5.89 t ha?1 in rice and wheat, respectively, with the application of 150% of recommended NPK. Total NPK uptake in rice–wheat system also increased significantly with increase in fertility levels with greatest magnitude by supplying 150% of recommended NPK. Overall, nutrient recycling through incorporation of crop residues and Sesbania green manuring along with inorganics greatly improved the crop productivity, nutrient uptake, and biofertility indicators of soil health with substantial influence on SMBC, CO2 evolution, and dehydrogenase and phosphatase enzyme activities. This indicates that crop residue management along with Sesbania green manuring practice could be a better option for nutrient recycling to sustain the crop productivity and soil health in intensive rice–wheat cropping system in India as well as in similar global agroecological situations, especially in China, Pakistan, and Bangladesh.  相似文献   

4.
Crop residues are beneficial substances affecting crop production and soil properties. A field experiment was carried out to evaluate the effects of wheat (Triticum aestivum L.) residue rates (0, 25, 50 and 75%) combined with N levels (0, 34.5, 69, 103.5 kg ha?1) on yield and yield components of two red common bean (Phaseolus vulgaris L.) cultivars and to monitor chemical soil parameters. The experiment was conducted at Research Center, College of Agriculture, Shiraz University, Shiraz, Iran for two years (2008–2009). The experiment was conducted as a split–split plot arranged in a randomized complete blocks design with three replications. The highest seed yield was obtained when 25–50% of residues were incorporated. The highest seed yield, seed weight per plant, 100-seed weight and seed number per pod were obtained with 103.5 kg N ha?1 with no significant difference to 69 kg N ha?1. Residue incorporation significantly increased soil organic carbon (SOC) as well as available K and P content. It is possible to sow red common bean as a double cropping by soil incorporation of 25–50% wheat residues with application of 69 kg N ha?1.  相似文献   

5.
The status of available macronutrients [phosphorus (P) and potassium (K)] and soil organic carbon (SOC) of the surface soil under a rice–wheat cropping system was studied in 40 districts of the Indo-Gangetic Plains (IGP) of India. The soil samples were collected from the farmers' fields in four transects (Trans-, Upper, Middle, and Lower Gangetic Plains) of the IGP. The selection of farmers, villages, blocks, and districts within an agro-climatic zone (ACZ) was done on the basis of a multistage statistical approach. The available macronutrients were characterized as low, medium, and high. In Trans-Gangetic Plains, SOC, available P, and available K were in the ranges of 0.06–0.86%, 6.7–85.1 kg ha?1, and 50–347 kg ha?1, respectively. In Upper Gangetic Plains, the respective values were in the ranges of 0.05–2.55%, 4.5–155.0 kg ha?1, and 45 to 560 kg ha?1. Similarly, in Middle Gangetic Plains, these values were in the ranges of 0.04–2.01%, 4.7–183.7 kg ha?1, and 72–554 kg ha?1, respectively. In Lower Gangetic Plains, respective values were 0.12–1.78%, 2.2–112.0 kg ha?1, and 83–553 kg ha?1. In Trans-Gangetic plains, the majority of the soils in the midplains ACZ representing intensively cultivated rice–wheat system area were low to medium in SOC and available P, whereas available K status was medium to high. Irrespective of the agroclimatic variations, more than 90% of the soils were low to medium in SOC and available P with a marginal deficiency of K. The majority of the coarse-textured soils in Shiwaliks were found to have low to medium SOC and available P, whereas less intensively cultivated arid zone soils were high in SOC, available P, and available K. In Upper and Middle Gangetic Plains, the majority of the soils tested medium for SOC and medium to high in available P and K. The dominance of medium status of available P in these soils could be due to mining of soil P by the rice–wheat cropping system practiced in these regions for more than 300 years. In Lower Gangetic Plains, the SOC was medium to high in most of the soils, whereas available P and K were high. Recent introduction of the rice–wheat system on intensive scale in these traditionally rice-growing areas resulted in less mining of SOC, P, and K.  相似文献   

6.
ABSTRACT

In sorghum and mungbean – lentil cropping system, field experiments were conducted for three successive years to assess the effect of mung bean residue incorporation on sorghum and succeeding lentil productivity along with different doses of phosphorus (P; 0, 30, 60 kg ha? 1) applied to these crops. The level of soil fertility was also tested with or without incorporation of mung bean residue. The interaction of phosphorus to mungbean residue incorporation was thus studied in relation to improve crop productivity with balancing fertilizer requirements through an eco-friendly approach. Sorghum grain yield increased significantly when 60 kg P2O5 ha? 1 was applied and mungbean residue incorporated. The response was reduced to 30 kg P2O5 ha? 1 when mungbean residue was not incorporated. The succeeding lentil crop responded up to 60 kg P2O5 ha? 1 only when preceding sorghum crop received 0 or 30 kg P2O5 ha? 1. Response to applied P2O5 to lentil reduced to 30 kg ha? 1 when preceding sorghum crop received 60 kg P2O5 ha? 1 and mungbean residue incorporated. Available soil nitrogen, phosphorus, and organic carbon content increased when mungbean residue was incorporated; however, available potassium (K) of the soil decreased from its initial value.  相似文献   

7.
Wheat (Triticum aestivum L) residue removed, burnt, or incorporated with or without 0, 60, and 120 kg nitrogen (N) ha?1 effects on maize (Zea mays L) hybrids (Pioneer-3025, Pioneer-30P45, and Kiramat) were assessed at University of Agriculture, Peshawar, Pakistan during 2010 and 2011 for maize production and soil carbon (C) storage. Pioneer-30P45 had higher grain yield, leaf area, and delayed maturity. Residue burning combined with 120 kg N ha?1 produced higher grain yield. The leaf area, leaf area ratio, grain N content, and solar radiation interception were improved with N + residue burnt/incorporated over control. The grain yield was positively correlated with yield parameters. Soil organic carbon (SOC) content were in order of incorporated > burnt > removed at all growth stages (i.e., sowing, tasseling, maturity, and harvesting). Conclusively, wheat residue burnt/incorporated into the soil with 120 kg N ha?1 was best for maize production of Pioneer-30P45; however residue incorporation into the soil improved SOC.  相似文献   

8.
In the context of sustainable soil-quality management and mitigating global warming, the impacts of incorporating raw or field-burned adzuki bean (Vigna angularis (Willd.) Ohwi & Ohashi) and wheat (Triticum aestivum L.) straw residues on carbon dioxide (CO2) and nitrous oxide (N2O) emission rates from soil were assessed in an Andosol field in northern Japan. Losses of carbon (C) and nitrogen (N) in residue biomass during field burning were much greater from adzuki bean residue (98.6% of C and 98.1% of N) than from wheat straw (85.3% and 75.3%, respectively). Although we noted considerable inputs of carbon (499 ± 119 kg C ha–1) and nitrogen (5.97 ± 0.76 kg N ha–1) from burned wheat straw into the soil, neither CO2 nor N2O emission rates from soil (over 210 d) increased significantly after the incorporation of field-burned wheat straw. Thus, the field-burned wheat straw contained organic carbon fractions that were more resistant to decomposition in soil in comparison with the unburned wheat straw. Our results and previously reported rates of CO2, methane (CH4) and N2O emission during wheat straw burning showed that CO2-equivalent greenhouse gas emissions under raw residue incorporation were similar to or slightly higher than those under burned residue incorporation when emission rates were assessed during residue burning and after subsequent soil incorporation.  相似文献   

9.
ABSTRACT

The incorporation of previous crop residues in agricultural management benefits soil fertility, crop production, and environment. However, there is no enough information about maximum residue application level without negative effect over next crop yield. To evaluate maize (Zea mays L.) yield under short-time conservation management with incorporation and/or importation of different residue levels, a biannual rotation experiment was conducted in ash volcanic soil in south-central Chile. The experiment consisted of two previous crops, canola (Brassica napus L.) and bean (Phaseolus vulgaris L.), and four levels of residue incorporation (0%, 50%, 100%, and 200% of generated residue; from 0 to 21.4?Mg?ha?1 for canola and from 0 to 19.0?Mg?ha?1 for bean). Previous crop species and residue level affected some nutrients concentrations in grain and plant and some soil chemical properties, without effect in maize yield, which averaged 16.6?Mg?ha?1. Bean residue increased Ca and reduced S in maize plant, increasing soil P, Ca, Mg and K (P?<?0.05). Maize grain Ca content was positively and proportionally affected by canola residue level and negatively and proportionally affected by bean residue level. All canola residue levels increased soil pH and Mg, but the highest level reduced soil S; soil P concentration increased proportionally with bean residue level. The highest bean residue level increased soil S. Different crop and levels of residue did not affect maize yield but did some plant nutrient concentration, and also affected some soil chemical properties.  相似文献   

10.
Use of renewable N and C sources such as green manure (GM) and crop residues in rice-wheat cropping systems of South Asia may lead to higher crop productivity and C sequestration. However, information on measurements of gaseous N losses (N2O+N2) via denitrification and environmental problems such as N2O and CO2 production in rice-wheat cropping systems is not available. An acetylene inhibition-intact soil core technique was employed for direct measurement of denitrification losses, N2O and CO2 production, in an irrigated field planted to rice (Oryza sativa L.) and wheat (Triticum aestivum L.) in an annual rotation. The soil was a coarse-textured Tolewal sandy loam soil (Typic Ustochrept) and the site a semi-arid subtropical Punjab region of India. Wheat residue (WR, C:N=94) was incorporated at 6 t ha-1 and sesbania (Sesbania aculeata L.) was grown as GM crop for 60 days during the pre-rice fallow period. Fresh biomass of GM (C:N.=18) at 20 or 40 t ha-1 was incorporated into the soil 2 days before transplanting rice. Results of this study reveal that (1) denitrification is a significant N loss process under wetland rice amounting to 33% of the prescribed dose of 120 kg N ha-1 applied as fertilizer urea-N (FN); (2) integrated management of 6 t WR ha-1 and 20 t GM ha-1 supplying 88 kg N ha-1 and 32 kg FN ha-1 significantly reduced cumulative gaseous N losses to 51.6 kg N ha-1 as compared with 58.2 kg N ha-1 for 120 kg FN ha-1 alone; (3) application of excessive N and C through applying 40 t GM ha-1 (176 kg N ha-1) resulted in the highest gaseous losses of 70 kg N ha-1; (4) the gaseous N losses under wheat were 0.6% to 2% of the applied 120 kg FN ha-1 and were eight- to tenfold lower (5-8 kg N ha-1) than those preceding rice; (5) an interplay between the availability of NO3- and organic C largely controlled denitrification and N2O flux during summer-grown flooded rice whereas temperature and soil aeration status were the primary regulators of the nitrification-denitrification processes and gaseous N losses during winter-grown upland wheat; (6) the irrigated rice-wheat system is a significant source of N2O as it emits around 15 kg N2O-N ha-1 year-1; (7) incorporation of WR in rice and rice residue (C:N=63) in wheat increased soil respiration, and increased CO2 production in WR- and GM-amended soils under anaerobic wetland rice coincided with enhanced rates of denitrification; and (8) with adequate soil moisture, most of the decomposable C fraction of added residues was mineralized within one crop-growing season and application of FN and GM further accelerated this process.  相似文献   

11.
Productivity of rainfed finger millet in semiarid tropical Alfisols is predominantly constrained by erratic rainfall, limited soil moisture, low soil fertility, and less fertilizer use by the poor farmers. In order to identify the efficient nutrient use treatment for ensuring higher yield, higher sustainability, and improved soil fertility, long term field experiments were conducted during 1984 to 2008 in a permanent site under rainfed semi-arid tropical Alfisol at Bangalore in Southern India. The experiment had two blocks—Farm Yard Manure (FYM) and Maize Residue (MR) with 5 fertilizer treatments, namely: control, FYM at 10 t ha?1, FYM at 10 t ha?1 + 50% NPK [nitrogen (N), phosphorus (P), potassium (K)], FYM at 10 t ha?1 + 100% NPK (50 kg N + 50 kg P + 25 kg K ha?1) and 100% NPK in FYM block; and control, MR at 5 t ha?1, MR at 5 t ha?1 + 50% NPK, MR at 5 t ha?1 + 100% NPK and 100% NPK in MR block. The treatments differed significantly from each other at p < 0.01 level of probability in influencing finger millet grain yield, soil N, P, and K in different years. Application of FYM at 10 t ha?1 + 100% NPK gave a significantly higher yield ranging from 1821 to 4552 kg ha?1 with a mean of 3167 kg ha?1 and variation of 22.7%, while application of maize residue at 5 t ha?1 + 100% NPK gave a yield of 593 to 4591 kg ha?1 with a mean of 2518 kg ha?1 and variation of 39.3% over years. In FYM block, FYM at 10 t ha?1 + 100% NPK gave a significantly higher organic carbon (0.45%), available N (204 kg ha?1), available P (68.6 kg ha?1), and available K (107 kg ha?1) over years. In maize residue block, application of MR at 5 t ha?1 + 100% NPK gave a significantly higher organic carbon (0.39%), available soil N (190 kg ha?1), available soil P (47.5 kg ha?1), and available soil K (86 kg ha?1). The regression model (1) of yield as a function of seasonal rainfall, organic carbon, and soil P and K nutrients gave a predictability in the range of 0.19 under FYM at 10 t ha?1 to 0.51 under 100% NPK in FYM block compared to 0.30 under 100% NPK to 0.67 under MR at 5 t ha?1 application in MR block. The regression model (2) of yield as a function of seasonal rainfall, soil N, P, and K nutrients gave a predictability in the range of 0.11 under FYM at 10 t ha?1 to 0.52 under 100% NPK in FYM block compared to 0.18 under MR at 5 t ha?1 + 50% NPK to 0.60 under MR at 5 t ha?1 application in MR block. An assessment of yield sustainability under different crop seasonal rainfall situations indicated that FYM at 10 t ha?1 + 100% NPK was efficient in FYM block with a maximum Sustainability Yield Index (SYI) of 41.4% in <500 mm, 64.7% in 500–750 mm, 60.2% in 750–1000 mm and 60.4% in 1000–1250 mm rainfall, while MR at 5 t ha?1 + 100% NPK was efficient with SYI of 29.6% in <500 mm, 50.2% in 500–750 mm, 40.6% in 750–1000 mm, and 39.7% in 1000–1250 mm rainfall in semi-arid Alfisols. Thus, the results obtained from these long term studies incurring huge expenditure provide very good conjunctive nutrient use options with good conformity for different rainfall situations of rainfed semiarid tropical Alfisol soils for ensuring higher finger millet yield, maintaining higher SYI, and maintaining improved soil fertility.  相似文献   

12.
This study aims to examine the effects of long‐term fertilization and cropping on some chemical and microbiological properties of the soil in a 32 y old long‐term fertility experiment at Almora (Himalayan region, India) under rainfed soybean‐wheat rotation. Continuous annual application of recommended doses of chemical fertilizer and 10 Mg ha–1 FYM on fresh‐weight basis (NPK + FYM) to soybean (Glycine max L.) sustained not only higher productivity of soybean and residual wheat (Triticum aestivum L.) crop, but also resulted in build‐up of total soil organic C (SOC), total soil N, P, and K. Concentration of SOC increased by 40% and 70% in the NPK + FYM–treated plots as compared to NPK (43.1 Mg C ha–1) and unfertilized control plots (35.5 Mg C ha–1), respectively. Average annual contribution of C input from soybean was 29% and that from wheat was 24% of the harvestable aboveground biomass yield. Annual gross C input and annual rate of total SOC enrichment from initial soil in the 0–15 cm layer were 4362 and 333 kg C ha–1, respectively, for the plots under NPK + FYM. It was observed that the soils under the unfertilized control, NK and N + FYM treatments, suffered a net annual loss of 5.1, 5.2, and 15.8 kg P ha–1, respectively, whereas the soils under NP, NPK, and NPK + FYM had net annual gains of 25.3, 18.8, and 16.4 kg P ha–1, respectively. There was net negative K balance in all the treatments ranging from 6.9 kg ha–1 y–1 in NK to 82.4 kg ha–1 y–1 in N + FYM–treated plots. The application of NPK + FYM also recorded the highest levels of soil microbial‐biomass C, soil microbial‐biomass N, populations of viable and culturable soil microbes.  相似文献   

13.
Abstract

Despite being a major domain of global food supply, rice–wheat (RW) cropping system is questioned for its contribution to biomass burning in Indo-Gangetic Plains (IGP). Enhancing the yield and soil quality properties in this system is therefore necessary to reduce environmental degradation and maintain agricultural productivity. A field experiment evaluated the effects of soil management practices such as rice residue (RS) incorporation, and nitrogen (N) application on crop yield and micronutrients transformations in a RW cropping system of north-western India. The results revealed that N application (120?kg N ha?1) and RS incorporation (7.5 t ha?1) significantly increased micronutrients cations and crop yield compared with no-residue (RS0). Irrespective of N application, crop grain yield under RS incorporation (Rs7.5 t ha?1) was significantly higher than RS0 incorporation. Significant increase in all the micronutrient transformations was recorded in N120/Rs7.5 t ha?1 compared with RS0. Among different fractions, crystalline Fe bound in Zn, Mn, and Cu and amorphous Fe oxide in Fe fractions were the dominant fractions under N application (N120) and RS incorporation (RS7.5) treatment. Our study showed that application of N120 followed by RS7.5 can be more sustainable practice under RW cropping system for improvement in micronutrients availability and crop yield. This practice also provides an opportunity to incorporation of crop residues as an alternative to burning, which causes severe air pollution in the RW cropping system in the IGP.  相似文献   

14.
A long-term field experiment with rice-wheat cropping was started in the wet season of 1988 with four levels of lantana (Lantana camara L.) (0, 10, 20, and 30 Mg ha?1 on fresh weight basis) and three tillage practices (No puddling, puddling, and soil compaction). From wet season of 1997, however, three tillage practices were replaced with three levels of nitrogen (N) and potassium (K) to rice (33, 66, and 100% of recommended) and 66% of recommended N, phosphorus (P), and K to wheat. Phosphorus was totally omitted for the rice crop. The recommended N and K for rice was 90 and 40 kg ha?1, whereas the recommendations for N, P, and K for wheat were 120, 90 and 30 kg ha?1. Organic amendments are known to improve soil productivity under rice-wheat cropping by improving physical conditions and nutrient status of the soil, but their availability is restricted. There is a need to identify locally available and cost-effective organic materials that have minimal alternate uses as fodder and fuel. We evaluated Lantana camara L. residues, a fast-growing weed in nearby wastelands, as a potential soil organic amendment. Among the different fractions of K, nonexchangeable K was dominant followed by exchangeable and water soluble K. The incorporation of lantana (10 to 30 Mg ha?1) over the last 12 years has resulted in a significant build-up of all the K fractions, the maximum being in water-soluble K (10 to 32%) followed by exchangeable K (18 to 27%) and least in nonexchangeable K (5 to 7%) over no lantana incorporation. The increasing levels of these two inputs significantly and consistently increased ammonium acetate (NH4OAc)- extracted K (available K) content in soil and also resulted in significantly higher accumulation of K by the crops during the years of experimentation. Among different K fractions, exchangeable K was observed to be the most important K fraction contributing towards wheat and rice yields as well as K accumulation by wheat and rice. Stepwise multiple regression equations indicated that exchangeable K was the most important variable contributing towards total variation in grain yield and K accumulation by wheat or rice.  相似文献   

15.
Crop residues can be used as an effective replacement for inorganic potassium (K) fertilizers. However, the impact of the type and quantity of crop residue on soil K supply capacity in different soil types remains poorly known. To investigate the effects of crop residue incorporation rate and inorganic K fertilization on apparent K balance and soil K supply capacity in cotton-wheat cropping system, we conducted two, six-year field experiments on two soil types in Nanjing and Dafeng, China. At both sites, crop residue incorporation ameliorated the negative K balance and improved the soil water-soluble, exchangeable, and non-exchangeable K (WSK, EK, and NEK) contents. The soil WSK, EK and NEK contents were positively correlated with the net K accumulation at both sites across two soil layers. However, the correlations between net K accumulation and quantity-intensity related parameters varied with the soil types. Treatment with wheat straw (9000 kg ha?1) + cotton residue (7500 kg ha?1) at both sites performed better than the 300 kg K2O ha?1 treatment in terms of balancing soil K depletion and keeping adequate K fertility status. Incorporation of adequate crop residues performed similarly to inorganic potash in improving the soil K supply power.  相似文献   

16.
Nitrogen (N) and phosphorus (P) deficiencies are key constraints in rainfed lowland rice (Oryza sativa L.) production systems of Cambodia. Only small amounts of mineral N and P or of organic amendment are annually applied to a single crop of rainfed lowland rice by smallholder farmers. The integration of leguminous crops in the pre‐rice cropping niche can contribute to diversify the production, supply of C and N, and contribute to soil fertility improvement for the subsequent crop of rice. However, the performance of leguminous crops is restricted even more than that of rice by low available soil P. An alternative strategy involves the application of mineral P that is destined to the rice crop already to the legume. This P supply is likely to stimulate legume growth and biological N2 fixation, thus enhancing C and N inputs and recycling N and P upon legume residue incorporation. Rotation experiments were conducted in farmers' fields in 2013–2014 to assess the effects of P management on biomass accumulation and N2 fixation (δ15N) by mungbean (Vigna radiata L.) and possible carry‐over effects on rice in two contrasting representative soils (highly infertile and moderately fertile sandy Fluvisol). In the traditional system (no legume), unamended lowland rice (no N, + 10 kg P ha?1) yielded 2.8 and 4.0 t ha?1, which increased to 3.5 and 4.7 t ha?1 with the application of 25 kg ha?1 of urea‐N in the infertile and the moderately fertile soil, respectively. The integration of mungbean as a green manure contributed up to 9 kg of biologically fixed N (17% Nfda), increasing rice yields only moderately to 3.5–4.6 t ha?1. However, applying P to mungbean stimulated legume growth and enhanced the BNF contribution up to 21 kg N ha?1 (36% Nfda). Rice yields resulting from legume residue incorporation (“green manure use”–all residues returned and “grain legume use”–only stover returned) increased to 4.2 and 4.9 t ha?1 in the infertile and moderately fertile soil, respectively. The “forage legume use” (all above‐ground residues removed) provided no yield effect. In general, legume residue incorporation was more beneficial in the infertile than in the moderately fertile soil. We conclude that the inclusion of mungbean into the prevailing low‐input rainfed production systems of Cambodia can increase rice yield, provided that small amounts of P are applied to the legume. Differences in the attributes of the two major soil types in the region require a site‐specific targeting of the suggested legume and P management strategies, with largest benefits likely to accrue on infertile soils.  相似文献   

17.
Unground 15N-labelled medic material (Medicago littoralis) was mixed with topsoils at 3 field sites in South Australia, allowed to decompose for about 8 months before sowing wheat, and then for a further 7 months until crop maturity. The site locations were chosen to permit comparisons of recoveries and distribution of 15N in soils (organic N and inorganic N to 90 cm depth) and wheat (grain, straw and roots to 20 cm depth) in areas where rainfall (and wheat yields) differed greatly. Soils differed also in their texture and organic matter contents. Recoveries of applied 15N in wheat plus soil were 93.1% from a sandy loam (Caliph) and 92.3% from a sandy soil (Roseworthy) despite differences in rainfall and extent of leaching of the 15NO3? formed from the decomposing medic residues. From a heavy clay soil (Northfield), which received the highest rainfall, the 15N recovery was 87.7%. The loss of 15N at this site was not due to leaching, as judged by 15NO3? distribution in the soil profile at seeding and crop maturity.Wheat plants took up only 10.9–17.3% of the 15N added as legume material. Percentage uptakes of 15N were not related to grain yields. The proportions of wheat N derived from decomposing medic residues were 9.2% at Caliph (input medic, N, 38 kg N ha?1), 10.5% at Roseworthy (input medic N, 57 kg N ha?1), and only 4.6% at Northfield (input medic N, 57 kg N ha?1). Most (51–70%) of the 15N recovered in wheat was accounted for in the grain. Inorganic 15N in the soil profiles was depleted during the cropping phase, and at wheat harvest represented from 0.6 to 3.1% only of 15N inputs. The major 15N pool was soil organic 15N accounting for 71.9–77.7% of 15N inputs.We conclude that, in the context of N supply from decomposing medic tissues to wheat crops, the main value of the legume is long-term, i.e. in maintaining soil organic N concentrations to ensure adequate delivery of N to future cereal crops.The N of the wheat was not uniformly labelled, root N being generally of the highest atom% enrichmensts, and straw N of the lowest. Nevertheless, at the Roseworthy site, the enrichments of wheat N were similar to those of NO3? N in the profile at seeding, indicating that the proportions of 14N and 15N in the inorganic N pool did not change appreciably during the cropping period. By assuming equilibrium at this site, we calculate that during 15 months decomposition the soil plus legume delivered about 189 kg N ha?1, of which 93.2 kg ha?1 (49.3%) was taken up by the wheat, 37.2 kg ha?1 (19.7%) was immobilized or remained as fine root residues, and 17.3 kg ha?1 (9.2%) remained as inorganic N in the soil profile; 41.7 kg ha?1 (22.1%) was unaccounted for in the soil-plant system, and was probably lost via inorganic N. Thus about 6.5 kg inorganic N ha?1 was supplied by the soil plus medic residues per 100 kg dry matter ha?1 removed as wheat grain.  相似文献   

18.
The role of mounds of the fungus-growing termite Macrotermes bellicosus (Smeathman) in nutrient recycling in a highly weathered and nutrient-depleted tropical red earth (Ultisol) of the Nigerian savanna was examined by measuring stored amounts of selected nutrients and estimating their rates of turnover via the mounds. A study plot (4?ha) with a representative termite population density (1.5?mounds?ha?1) and size (3.7?±?0.4?m in height, 2.4?±?0.2?m in basal diameter) of M. bellicosus mounds was selected. The mounds were found to contain soil mass of 9249?±?2371?kg?ha?1, composed of 7502?±?1934?kg?ha?1 of mound wall and 1747?±?440?kg?ha?1 of nest body. Significant nutrient enrichment, compared to the neighboring topmost soil (Ap1 horizon: 0–16?cm), was observed in the nest body for total nitrogen (N) and exchangeable calcium (Ca), magnesium (Mg) and potassium (K), and in the mound wall for exchangeable K only. In contrast, available (Bray-1) phosphorus (P) content was found to be lower in both the mound wall and the nest body than in the adjacent topmost soil horizon. Consequently, the mounds formed by M. bellicosus contained 1.71?±?0.62?kg?ha?1 of total N, 0.004?±?0.003?kg?ha?1 of available P, 3.23?±?0.81?kg?ha?1 of exchangeable Ca, 1.11?±?0.22?kg?ha?1 of exchangeable Mg and 0.79?±?0.21?kg?ha?1 of exchangeable K. However, with the exception of exchangeable K (1.2%), these nutrients amounted to less than 0.5% of those found in the topmost soil horizon. The soil nutrient turnover rate via M. bellicosus mounds was indeed limited, being estimated at 1.72?kg?ha?1 for organic carbon (C), 0.15?kg?ha?1 for total N, 0.0004?kg?ha?1 for available P, 0.15?kg?ha?1 for exchangeable Ca, 0.05?kg?ha?1 for exchangeable Mg, and 0.06?kg?ha?1 for exchangeable K per annum. These findings suggest that the mounds of M. bellicosus, while being enriched with some nutrients to create hot spots of soil nutrients in the vicinity of the mounds, are not a significant reservoir of soil nutrients and are therefore of minor importance for nutrient cycling at the ecosystem scale in the tropical savanna.  相似文献   

19.
The field experiment was conducted on black soil (Vertic Ustropept) at Zonal Agricultural Research Station farm, Solapur, for successive 30 years from 1987–1988 to 2016–2017 under dryland condition in a randomized block design with 10 treatments and 3 replications. The pooled results of seven years (2010–2011 to 2016–2017) revealed that the application of 25 kg N ha?1 through crop residue (CR, byre waste) along with 25 kg N ha-1 through Leucaena lopping (Leucaena leucocephala) to rabi sorghum gave significantly higher grain and stover yield and Sustainable Yield Index (14.61 and 36.11 q ha?1 and 0.47, respectively) which was on par with T7, where 25 kg N ha?1 through farmyard manure (FYM) + 25 kg N ha?1 through urea was applied for grain and stover yield (13.95 and 34.46 q ha?1 and 0.44, respectively). The gross and net monetary returns and benefit–cost ratio were also influenced significantly due to integrated nitrogen management (Rs. 59,796, Rs. 47,353 ha?1, and 3.13, respectively). This was also reflected in residual soil fertility status of soil after harvest of rabi sorghum. The organic carbon content and available nitrogen content of soil, as well as nitrogen uptake and moisture use efficiency for grain, were also increased. The total microbial count of bacteria, fungi, and actinomycetes was more where FYM or CR addition was done. The count of N fixers and P solubilizers was more under Leucaena application either alone or with CR or urea. Application of CR at 4.8 t ha?1 (25 kg N ha?1) along with Leucaena lopping at 3.5 t ha?1 (25 kg N ha?1) as green leaf manure is the best alternative organic source for fertilizer urea (50 kg N ha?1) to increase the production of dryland rabi sorghum.  相似文献   

20.
Crop growth in sandy soils is usually limited by plant‐available nutrients and water contents. This study was conducted to determine whether these limiting factors could be improved through applications of compost and biochar. For this purpose, a maize (Zea mays L.) field trial was established at 1 ha area of a Dystric Cambisol in Brandenburg, NE Germany. Five treatments (control, compost, and three biochar‐compost mixtures with constant compost amount (32.5 Mg ha–1) and increasing biochar amount, ranging from 5–20 Mg ha–1) were compared. Analyses comprised total organic C (TOC), total N (TN), plant‐available nutrients, and volumetric soil water content for 4 months under field conditions during the growing season 2009. In addition, soil water‐retention characteristics were analyzed on undisturbed soil columns in the laboratory. Total organic‐C content could be increased by a factor of 2.5 from 0.8 to 2% (p < 0.01) at the highest biochar‐compost level compared with control while TN content only slightly increased. Plant‐available Ca, K, P, and Na contents increased by a factor of 2.2, 2.5, 1.2, and 2.8, respectively. With compost addition, the soil pH value significantly increased by up to 0.6 (p < 0.05) and plant‐available soil water retention increased by a factor of 2. Our results clearly demonstrated a synergistic positive effect of compost and biochar mixtures on soil organic‐matter content, nutrients levels, and water‐storage capacity of a sandy soil under field conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号