首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 120 毫秒
1.
2.
As common soil fungi that form symbioses with most terrestrial plants,arbuscular mycorrhizal(AM) fungi play an important role in plant adaptation to chromium(Cr) contamination.However,little information is available on the underlying mechanisms of AM symbiosis on plant Cr resistance.In this study,dandelion(Taraxacum platypecidum Diels.) was grown with and without inoculation of the AM fungus Rhizophagus irregularis and Cr uptake by extraradical mycelium(ERM) was investigated by a compartmented cultivation system using a Cr stable isotope tracer.The results indicated that AM symbiosis increased plant dry weights and P concentrations but decreased shoot Cr concentrations.Using the Cr stable isotope tracer technology,the work provided possible evidences of Cr uptake and transport by ERM,and confirmed the enhancement of root Cr stabilization by AM symbiosis.This study also indicated an enrichment of lighter Cr isotopes in shoots during Cr translocation from roots to shoots in mycorrhizal plants.  相似文献   

3.
This study reports the effectiveness of an arbuscular mycorrhizal (AM) fungus Glomus intraradices on three clones (SOM-1, 05 and 50) of cassava (Manihot esculenta). Arbuscular mycorrhizal inoculation increased plant resistance to transplant stress from “in vitro” to “ex vitro” conditions and plant biomass (shoot and root) production was greatly enhanced by AM-colonization. The magnitude of AM growth stimulation over control clones was: 861% (SOM-1), 1042% (05) and 854% (50). Arbuscular mycorrhizal colonized cassava plants increased cassava water uptake in terms of percentage, 62% in clone SOM-1, 24% in clone 05, and 157% in clone 50. The highest effect of AM-colonization on water content in root of clone 50 was correlated with the greatest increment in leaf tissue production (1218% over control) and with the maximum shoot/root ratio determined. The biomass distribution between shoot and root was changed by AM symbiosis and such effect varied for each clone that may be caused by mycorrhizal changes in macro/micro-nutrients translocation/compartimentation. Cassava dependence on AM symbiosis was greatest in clone SOM-1 since AM-colonization provided the highest stem (weight, length, and diameters), leaf (weight and number), bud number, and root weight. These results lead to practical applications because AM inoculation is crucial for improving cassava yield (shoot and root) and nutrition irrespective of the clone involved. Thus, importance of AM symbiosis in micropropagated cassava clones is of great practical interest in agriculture and allows the selection of the most suitable clone for dry environments due to the particular effect on root water content that improves drought adaptation.  相似文献   

4.
Plants can mediate interactions between aboveground herbivores and belowground decomposers as both groups depend on plant-provided organic carbon. Most vascular plants also form symbiosis with arbuscular mycorrhizal fungi (AMF), which compete for plant carbon too. Our aim was to reveal how defoliation (trimming of plant leaves twice to 6 cm above the soil surface) and mycorrhizal infection (inoculation of the fungus Glomus claroideum BEG31), in nutrient poor and fertilized conditions, affect plant growth and resource allocation. We also tested how these effects can influence the abundance of microbial-feeding animals and nitrogen availability in the soil. We established a 12-wk microcosm study of Plantago lanceolata plants growing in autoclaved soil, into which we constructed a simplified microfood-web including saprotrophic bacteria and fungi and their nematode feeders. We found that fertilization, defoliation and inoculation of the mycorrhizal fungus all decreased P. lanceolata root growth and that fertilization increased leaf production. Plant inflorescence growth was decreased by defoliation and increased by fertilization and AMF inoculation. These results suggest a negative influence of the treatments on P. lanceolata belowground biomass allocation. Of the soil organisms, AMF root colonization decreased with fertilization and increased with defoliation. Fertilization decreased numbers of bacterial-feeding nematodes, probably because fertilized plants produced less root mass. On the other hand, bacterial feeders were more abundant when associated with defoliated than non-defoliated plants despite defoliated plants having less root mass. The AMF inoculation per se increased the abundance of fungal feeders, but the reduced and increased root AM colonization rates of fertilized and defoliated plants, respectively, were not reflected in the numbers of fungal feeders. We found no evidence of plant-mediated effects of the AM fungus on bacterial feeders, and against our prediction, soil inorganic nitrogen concentrations were not positively associated with the concomitant abundances of microbial-feeding animals. Altogether, our results suggest that (1) while defoliation, fertilization and AMF inoculation all affect plant resource allocation, (2) they do not greatly interact with each other. Moreover, it appears that (3) while changes in plant resource allocation due to fertilization and defoliation can influence numbers of bacterial feeders in the soil, (4) these effects may not significantly alter mineral N concentrations in the soil.  相似文献   

5.
Arbuscular mycorrhizal (AM) fungi can form symbiotic association with the roots of plants that acquire carbon (C) exclusively from the host plants and supply nitrogen (N) to the plants. In this study, our objective was to investigate the effects of the AM fungus on plant growth, C and N partitioning and accumulation of Glycine max L. grown under water stress in pot experiment. Soybean seedlings were inoculated or not inoculated with the AM fungus, and were exposed to three irrigation treatments including full irrigation, deficit irrigation and partial root-zone drying irrigation (PRD). The 15N isotope labeling was used to trace soybean N accumulation. Results showed that water stress significantly decreased plant dry weight. Compared with non-AM fungus, AM fungus increased root N and 15N concentration, and decreased stem, leaf and pod N and 15N concentrations under PRD. AM colonization decreased C and N partitioning into stem and leaf, and increased C and N partitioning into root under PRD. AM plants had greater C accumulation and N use efficiency than non-AM plants. It was concluded that AM symbiosis plays an important role in C and N dynamics of soybean grown under water stress.  相似文献   

6.
Plant growth-promoting rhizobacteria and arbuscular mycorrhizal (AM) fungi represent two main groups of beneficial microorganisms of the rhizosphere. The role of different strains of Azospirillum on AM fungi development was evaluated by measuring the percentage of AM colonisation of the root system in durum wheat and maize plants, grown under both greenhouse and field conditions. The effect of wild-type Azospirillum brasilense strain Sp245 and genetically modified (GM) derivatives overproducing indole-3-acetic acid was assessed at greenhouse level in (1) three different cultivars of durum wheat, in the presence of indigenous AM fungi and (2) maize plants artificially inoculated with Glomus mosseae and Glomus macrocarpum. In addition, the establishment of natural AM fungal symbiosis was evaluated using Azospirillum lipoferum CRT1 in maize plants at field level. Despite the stimulatory effect of the different Azospirillum inocula on root growth, no significant differences in AM colonisation were found, independently of the AM fungus involved, either in wheat or in maize plants. Similarly, GM A. brasilense, which strongly stimulates root development, did not affect AM formation. Although these results were obtained in conditions in which the mycorrhization rate was moderate (15–30%), overall considered they indicate that the use of wild-type or GM Azospirillum phytostimulators does not alter mycorrhization.  相似文献   

7.
Aspergillus niger-treated dry olive cake (DryOC) can be used as a soil organic amendment and the aim of this work was to study the effectiveness of this amendment and a Cd-adapted arbuscular mycorrhizal (AM) fungus in improving Trifolium repens growth and nutrition in Cd-contaminated soil. In a compartmentalized growth system, consisting of a root compartment (RC) and two hyphal compartments (HCs), we investigated the influence of the amendment on intraradical and extraradical AM fungi development. In addition, we studied the viability and infectivity of the detached extraradical mycelium in plants, designated as receptor plants, grown in the HC after removal of the RC. Both the amendment and the AM fungus increased shoot and root biomass and nodulation in both the non-contaminated and Cd-contaminated soils. The positive interaction between the microbiologically treated DryOC and the AM fungus resulted in the highest plant yield, which can be explained by enhanced nutrient acquisition and arbuscular richness as well as by the immobilisation of Cd in amended soils. However, A. niger-treated DryOC had no effect on the extraradical mycorrhizal mycelium development. Although Cd decreased AM hyphal length density, symbiotic infectivity was similar in receptor plants grown in non-contaminated and contaminated soil, thus confirming the AM fungal inoculum potential.The combination of the AM fungus and A. niger-treated DryOC increased plant tolerance to Cd in terms of plant growth and nutrition and can be regarded as an important strategy for reclaiming Cd-contaminated soils.  相似文献   

8.
Our objective was to evaluate how increasing levels of N in the medium (0, 4, 8 and 16 mmol N added kg-1 soil) affect the interaction between Sinorhizobium and arbuscular mycorrhiza (AM) fungi in the tripartite symbiosis with Medicago sativa. Growth response, nutrient acquisition, protein content, and nitrate reductase (NR) activity were measured both in plant shoots and roots. Results showed that N levels in soil did not affect mycorrhizal colonization but they strongly influenced nodulation, particularly of mycorrhizal plants. Mycorrhizal colonization was required for a proper nodulation when no N was applied to soil. In contrast, the addition of 4 mmol N kg-1 soil reduced nodulation only in mycorrhizal plants and 8 mmol N added kg-1 soil allowed nodule formation only in non-mycorrhizal plants. Nodulation was totally inhibited in all treatments with the addition of 16 mmol N added kg-1 soil. N addition enhanced NR activity in all the treatments, while AM colonization increased the proportion of NR allocated to roots. This effect was more pronounced under the lowest N levels in the medium. The two AM fungal species showed different distribution pattern of enzymatic activities in plant tissues indicating specific physiological traits. Protein content as well as the relative proportion of protein in roots were greatly increased after mycorrhizal colonization. Glomus intraradices-colonized plants had the highest protein content in shoot and root. Mycorrhizal effects on growth, N acquisition and biochemical variables cannot be interpreted as an indirect P-mediated effect since P content was lower in mycorrhizal plants than in those which were P fertilized. Mycorrhizal colonization increased the N content in plants irrespective of the N level, but the effectiveness of AM fungi on plant N acquisition depended on the AM fungus involved, G. intraradices being the most effective, particularly at the highest N rate. N2 fixation, enhanced by AM colonization, contributed to N acquisition when a moderate N quantity was available in the soil. Nevertheless, under a high N amount the nodulating process and/or fixing capacity by Sinorhizobium was reduced in AM plants. In contrast, the AM fungal mycelium from a particular mycorrhizal fungus may continue to contribute efficiently to the N uptake from the soil even at high N levels. These results demonstrate the particular sensitivity of AM fungal species in terms of their growth and/or function to increasing N amounts in the medium. A selection of AM fungi used to address specific environmental conditions, such as N fertilization regimes comparable to those used in agronomic practices, is required for a better use of N applied to soil.  相似文献   

9.
The effect of salinity on the efficacy of two arbuscular mycorrhizal fungi, Glomus fasciculatum and G. macrocarpum, alone and in combination was investigated on growth, development and nutrition of Acacia auriculiformis. Plants were grown under different salinity levels imposed by 0.3, 0.5 and 1.0 S m-1 solutions of 1 M NaCl. Both mycorrhizal fungi protected the host plant against the detrimental effect of salinity. The extent of AM response on growth as well as root colonization varied with fungal species, and with the level of salinity. Maximum root colonization and spore production was observed with combined inoculation, which resulted in greater plant growth at all salinity levels. AM fungal inoculated plants showed significantly higher root and shoot weights. Greater nutrient acquisition, changes in root morphology, and electrical conductivity of soil in response to AM colonization was observed, and may be possible mechanisms to protect plants from salt stress.  相似文献   

10.
 Arbuscular mycorrhizal (AM) root colonization was studied in a long-term field trial in which four farming systems currently in use in Switzerland were continuously applied to a randomized set of plots at a single field site from 1978 till 1993. There were two low-input farming systems (organic and bio-dynamic) and two high-input (conventional) farming systems (according to Swiss guidelines of integrated plant production with and without farmyard manure). The systems had an identical 7-year crop rotation and tillage scheme and differed essentially only in the amount and type of fertilizer supplied and in plant protection management. The percentage of root colonization by AM fungi was determined in field samples 2–3 times over the growing season in crops in the rotation, namely in winter wheat (Triticum aestivum L. cv. Sardona), vetch-rye and grass-clover. We found the percentage of root length colonized by AM fungi to be 30–60% higher (P≤0.05) in the plants grown in soils from the low-input farming systems than in those grown in conventionally farmed soils. Approximately 50% of the variation of AM root colonization was explained by chemical properties of the soils (pH, soluble P and K, exchangeable Mg), the effect of soluble soil P being most pronounced. The potential of the field soils from the differently managed plots to cause symbiosis with AM fungi was tested in a glasshouse experiment, using wheat as a host plant. Soils from the low-input farming systems had a greatly enhanced capacity to initiate AM symbiosis. The relative differences in this capacity remained similar when propagules of the AM fungus Glomus mosseae were experimentally added to the soils, although overall root colonization by AM fungi was 2.8 times higher. Received: 27 August 1999  相似文献   

11.
This greenhouse study aimed to analyze the impact of arbuscular mycorrhizal (AM) fungal associations on maize (Zea mays L. hybrid Pioneer 3905) in order to compare their functional compatibility and efficiency. The AM fungus species used for this study were Glomus aggregatum, G. etunicatum, G. mosseae, and G. versiforme. Shoot and leaf masses, chlorophyll, soluble protein, total and reducing sugar, carbon (C), and nitrogen (N) concentrations, and glutamine synthetase (GS) activity in the maize leaves were analyzed. The root colonization ranged from 26% to 72% depending on the AM fungus species. Leaf mass was significantly higher when maize plants were colonized with G. etunicatum in comparison to the non‐AM control. The mycorrhizal effect on dry leaf mass ranged from 15.9% to 23.9% depending on the AM species. However, the total shoot mass did not differ significantly among the treatments. The mycorrhizal treatment had a marginally significant effect on the chlorophyll concentrations in maize leaves. The protein concentration was the highest in the plants colonized with G. etunicatum and the N percentage was significantly higher in the leaves of plants colonized by G. versiforme or G. aggregatum than those with G. mosseae. However, the AM colonization did not significantly alter the GS activity among the treatments. The highest sugar concentrations were detected in the leaves of plants colonized by G. versiforme. The sugar concentrations as well as the C percentage were lower in the leaves of plants colonized by G. etunicatum compared to the other mycorrhizal treatments but the values were comparable to the non‐AM control. Our overall results suggest that the expression of the mycorrhizal potential in the maize host plants varies among AM fungal species.  相似文献   

12.
Soybean plants autoregulate to suppress excessive nodulation. It has been revealed recently that the autoregulation of various legumes controls both nodulation and arbuscular mycorrhizal (AM) fungal colonization. We investigated the involvement of autoregulation in the interaction between rhizobial nodulation and AM fungal colonization. We used a wild-type soybean cv. Enrei and its hypernodulating mutant Kanto100, defective in the autoregulation. We included four different treatments: an uninoculated control, inoculation with rhizobium Bradyrhizobium japonicum alone, inoculation with AM fungus Gigaspora rosea alone, and dual inoculation with rhizobium and AM fungus. In both Enrei and Kanto100, AM fungal colonization enhanced the weight and N2 fixation of nodules, suggesting that autoregulation of host plant is not involved in the stimulatory effect of AM fungal colonization on rhizobial nodulation. In plants with the AM fungus alone, the AM fungal colonization of Enrei was comparable to that of Kanto100. In plants with dual inoculation, however, this was significantly (P?<?0.05) lower than in Kanto100. To confirm the control of AM fungal colonization by the autoregulation of host plant, a reciprocal grafting experiment was performed between Enrei and Kanto100. In plants with the AM fungus alone, AM fungal colonization was comparable among Enrei (shoot)/Enrei (root), Enrei/Kanto100, Kanto100/Enrei, and Kanto100/Kanto100 grafts. In plants with dual inoculation, however, AM fungal colonization of Enrei/Enrei and Enrei/Kanto100 grafts was significantly (P?<?0.05) lower than that of Kanto100/Enrei and Kanto100/Kanto100. These results indicate that rhizobial nodulation suppresses AM fungal colonization, and the autoregulation of host plant, initiated by nodulation, is involved in this phenomenon.  相似文献   

13.
菌根植物适应低磷胁迫的分子机制   总被引:1,自引:1,他引:0  
丛枝菌根 (AM) 真菌能够和绝大多数陆生植物建立共生体系,对于植物适应低磷胁迫具有重要作用。已有很多研究从不同角度揭示了宿主植物和AM真菌协同适应低磷胁迫的生理机制,并已深入到分子和信号水平。本文归纳了近年来相关研究成果,从磷胁迫信号感知、有机酸分泌、磷酸酶与激素合成相关基因、磷酸盐转运蛋白基因、转录因子与小分子物质miRNA等若干方面讨论了菌根共生体系响应和适应磷胁迫的分子机理,重点介绍了1) 环境磷浓度作为营养信号诱发菌根植物的生理响应过程及其在共生体系建立中的关键作用;2) AM真菌调节植物激素平衡进而影响植物生长发育和根系构型的生理机制;3) 丛枝菌根涉及的植物、真菌以及菌根特异诱导植物产生的磷酸盐转运蛋白基因在磷酸盐摄取中的特殊作用及可能调控机制;4) 转录因子作为感知磷胁迫信号和调控转录表达水平的枢纽,在增强植物适应磷胁迫能力方面的重要贡献。这些因素既单独作用又相互关联,共同构成菌根植物适应磷胁迫的分子调控网络。未来需要着重加强菌根共生界面的磷转运机制、菌根植物适应低磷胁迫的转录因子调节,以及各调控因子相互作用研究,从而全面揭示菌根植物适应低磷胁迫的分子调控网络,为发展和应用菌根技术调控植物磷营养奠定理论基础。  相似文献   

14.
The interactions between soil P availability and mycorrhizal fungi could potentially impact the activity of soil microorganisms and enzymes involved in nutrient turnover and cycling, and subsequent plant growth. However, much remains to be known of the possible interactions among phosphorus availability and mycorrhizal fungi in the rhizosphere of berseem clover (Trifolium alexandrinum L.) grown in calcareous soils deficient in available P. The primary purpose of this study was to look at the interaction between P availability and an arbuscular mycorrhizal (AM) fungus (Glomus intraradices) on the growth of berseem clover and on soil microbial activity associated with plant growth. Berseem clover was grown in P unfertilized soil (−P) and P fertilized soil (+P), inoculated (+M) and non-inoculated (−M) with the mycorrhizal fungus for 70 days under greenhouse conditions. We found an increased biomass production of shoot and root for AM fungus-inoculated berseem relative to uninoculated berseem grown at low P levels. AM fungus inoculation led to an improvement of P and N uptake. Soil respiration (SR) responded positively to P addition, but negatively to AM fungus inoculation, suggesting that P limitation may be responsible for stimulating effects on microbial activity by P fertilization. Results showed decreases in microbial respiration and biomass C in mycorrhizal treatments, implying that reduced availability of C may account for the suppressive effects of AM fungus inoculation on microbial activity. However, both AM fungus inoculation and P fertilization affected neither substrate-induced respiration (SIR) nor microbial metabolic quotients (qCO2). So, both P and C availability may concurrently limit the microbial activity in these calcareous P-fixing soils. On the contrary, the activities of alkaline phosphatase (ALP) and acid phosphatase (ACP) enzymes responded negatively to P addition, but positively to AM fungus inoculation, indicating that AM fungus may only contribute to plant P nutrition without a significant contribution from the total microbial activity in the rhizosphere. Therefore, the contrasting effects of P and AM fungus on the soil microbial activity and biomass C and enzymes may have a positive or negative feedback to C dynamics and decomposition, and subsequently to nutrient cycling in these calcareous soils. In conclusion, soil microbial activity depended on the addition of P and/or the presence of AM fungus, which could affect either P or C availability.  相似文献   

15.
Biochar application to soils has potential to simultaneously improve soil fertility and store carbon to aid climate change mitigation. While many studies have shown positive effects on plant yields, much less is known about the synergies between biochar and plant growth promoting microbes, such as mycorrhizal fungi. We present the first evidence that arbuscular mycorrhizal (AM) fungi can use biochar as a physical growth matrix and nutrient source. We used monoxenic cultures of the AM fungus Rhizophagus irregularis in symbiosis with carrot roots. Using scanning electron microscopy we observed that AM fungal hyphae grow on and into two contrasting types of biochar particles, strongly attaching to inner and outer surfaces. Loading a nutrient-poor biochar surface with nutrients stimulated hyphal colonization. We labeled biochar surfaces with 33P radiotracer and found that hyphal contact to the biochar surfaces permitted uptake of 33P and its subsequent translocation to the associated host roots. Direct access of fungal hyphae to biochar surfaces resulted in six times more 33P translocation to the host roots than in systems where a mesh prevented hyphal contact with the biochar.We conclude that AM fungal hyphae access microsites within biochar, that are too small for most plant roots to enter (<10 μm), and can hence mediate plant phosphorus uptake from the biochar. Thus, combined management of biochar and AM fungi could contribute to sustainable soil and climate management by providing both a carbon-stable nutrient reservoir and a symbiont that facilitates nutrient uptake from it.  相似文献   

16.
The effect of drought stress and inoculation with an indigenous Mozambican and a commercial arbuscular mycorrhizal (AM) inoculant on root colonization and plant growth and yield was studied in two peanut (Arachis hypogaea L.) cultivars—a traditional, low-yielding Mozambican landrace (Local) and a modern, high-yielding cultivar (Falcon)—grown in a non-sterile Mozambican soil. In these cultivars, AM mycorrhizal colonization was not substantially reduced by drought stress. Growth and yield of inoculated plants subjected to drought stress were increased in comparison with non-inoculated ones. The indigenous Mozambique inoculant significantly increased leaf and root growth in both cultivars under drought stress by preventing an increase in root weight ratio (RWR) and maximum root-length to leaf-area ratio (MRLAR). The commercial Hannover inoculant had a positive effect on growth only under well-watered conditions, this result was due most likely to a lesser ability to adapt to drought conditions to which the AM fungal strains in Mozambique inoculant are frequently exposed. Such drought-stress effects on growth could be alleviated by inoculation with Mozambique inoculant, particularly because of its ability to decrease sensitivity of the host plant to reduction in leaf expansion. Therefore, an adequate management of the AM symbiosis may improve peanut productivity, particularly under drought stress and in small-scale farming systems.  相似文献   

17.
Excess available K and Fe in Fe ore tailings with organic matter amendment and water-deficiencies may restrain plant colonization and growth, which hinders the formation of eco-engineered soil from these tailings for sustainable and cost-effective mine site rehabilitation. Arbuscular mycorrhizal (AM) fungi are widely demonstrated to assist plant growth under various unfavorable environments. However, it is still unclear whether AM symbiosis in tailings amended with different types of plant biomass and under different water conditions could overcome the surplus K and Fe stress for plants in Fe ore tailings, and if so, by what mechanisms. Here, host plants (Sorghum sp. Hybrid cv. Silk), either colonized or noncolonized by the AM fungi (Glomus spp.), were cultivated in lucerne hay (LH, C:N ratio of 18)- or sugarcane mulch (SM, C:N ratio of 78)-amended Fe ore tailings under well-watered (55% water-holding capacity (WHC) of tailings) or water-deficient (30% WHC of tailings) conditions. Root mycorrhizal colonization, plant growth, and mineral elemental uptake and partitioning were examined. Results indicated that AM fungal colonization improved plant growth in tailings amended with plant biomass under water-deficient conditions. Arbuscular mycorrhizal fungal colonization enhanced plant mineral element uptake, especially P, both in the LH- and SM-amended tailings regardless of water condition. Additionally, AM symbiosis development restrained the translocation of excess elements (i.e., K and Fe) from plant roots to shoots, thereby relieving their phytotoxicity. The AM fungal roles in P uptake and excess elemental partitioning were greater in LH-amended tailings than in SM-amended tailings. Water deficiency weakened AM fungal colonization and functions in terms of mineral element uptake and partitioning. These findings highlighted the vital role AM fungi played in regulating plant growth and nutrition status in Fe ore tailings technosol, providing an important basis for involvement of AM fungi in the eco-engineered pedogenesis of Fe ore tailings.  相似文献   

18.
本试验通过两室分根装置种植玉米,利用网袋法研究接种Glomus mosseae和Glomus etunicatum两种AM真菌对玉米秸秆降解的影响。试验分别在玉米移栽后第20 d、30 d、40 d、50 d和60 d时取样,通过测定接种AM真菌后玉米秸秆中碳、氮释放,土壤中3种常见酶活性、微生物量碳、微生物量氮及土壤呼吸的动态变化,探讨AM真菌降解玉米秸秆可能的作用机制。研究结果表明:经60 d的培养后,与未接种根室相比,接种G.mosseae和G.etunicatum真菌的菌根室玉米秸秆降解量提高了20.75%和20.97%;另外,接种G.mosseae和G.etunicatum加快了玉米秸秆碳素释放,降低了氮素释放,致使碳氮比降低25.45%和26.17%,有利于秸秆进一步降解。在本试验条件下,接种AF真菌的菌根室中土壤酸性磷素酶、蛋白酶和过氧化氢酶活性均有显著提高,并增加了微生物量碳、氮和土壤呼吸作用,形成了明显有别于根际的微生物区系。这一系列影响都反映出AM真菌能够直接或间接作用于玉米秸秆的降解过程,是导致玉米秸秆降解加快的重要原因。  相似文献   

19.
Saline soils around Lake Urmia in northern Iran constitute a stressed environment for plants and microbial communities, including arbuscular mycorrhizal (AM) fungi. Soil and root samples were collected from fields cultivated with the glycophytes Allium cepa L. and Medicago sativa L., and sites dominated by the halophyte Salicornia europaea L. Soil and root samples were analyzed for the AM fungal signature neutral lipid fatty acid (NLFA) 16:1ω5. The roots were also examined microscopically for mycorrhizal colonization. Each plant species was sampled across a salt gradient. Microscopic examination showed no AM fungal structures in the roots of S. europaea. The highest root colonization was recorded for M. sativa. The highest NLFA 16:1ω5 values were found in soil around M. sativa roots and the lowest in soil around S. europaea roots. We found evidence for stimulation of vesicle formation at moderate salinity levels in M. sativa, which is an indication of increased carbon allocation to mycorrhiza. On the other hand, we found a negative correlation between salinity and arbuscule formation in A. cepa, which may indicate a less functional symbiosis in saline soils.  相似文献   

20.
A greenhouse experiment was conducted in a red sandy loam soil (Alfisol) to study the responses of arbuscular mycorrhizal (AM) fungus Glomus intraradices Schenck & Smith inoculated (M+) and uninoculated (M−) maize (Zea mays L) plants exposed to various levels of P (15 and 30 mg kg−1) and Zn (0, 1.25, and 2.5 mg kg−1). Roots and shoots were sampled at 55 and 75 days after sowing and assessed for their nutritional status, root morphology, and root cation exchange capacity (CEC) besides grain quality. Mycorrhizal plants had longer and more extensive root systems than nonmycorrhizal plants, indicating that M+ plants are nutritionally rich, especially with P, which directly assisted in the proliferation of roots. Further, root CEC of M+ plants were consistently higher than those of M− plants, suggesting that mycorrhizal colonization assists in the acquisition of nutrients from soil solution. Mycorrhizal inoculated plants had significantly (P ≤ 0.01) higher P and Zn concentrations in roots, shoots, and grains, regardless of P or Zn levels. The available Zn and P status of AM fungus-inoculated soils were higher than unioculated soils. The data suggest that mycorrhizal symbiosis improves root morphology and CEC and nutritional status of maize plants by orchestrating the synergistic interaction between Zn and P besides enhancing soil available nutrient status that enables the host plant to sustain zinc-deficient conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号