首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An estimated 97 percent of the soils in Laos are characterized by low phosphorus (P). This characteristic, together with high acidity, constrains food crop production. The P status, sorption, and associated properties were evaluated for fifteen important agricultural soils from the uplands. Soil pH values ranged from 4.5 to 5.9. Soil organic carbon (C) varied from 7.0 to 22.9 g kg?1. Soil clay varied from 179 to 709 g kg?1. The cation exchange capacity (CEC) also varied from 4.30 to 32.1 cmolc kg?1. Extractable P levels of thirteen of the fifteen soils were P deficient with medium to very high P sorption, indicating substantial fertilizer P requirements. Dithionite and oxalate aluminum and iron predicted P sorbed at 0.2 mg P L?1. The extractable P increase per unit added P, P buffer coefficient (PBC), was low, also indicating high P sorption. Field studies are needed to confirm predictions of P requirements.  相似文献   

2.
Abstract

In Oxisols, acidity is the principal limiting factor for crop production. In recent years, because of intensive cropping on these soils, deficiency of micronutrients is increasing. A field experiment was conducted on an Oxisol during three consecutive years to assess the response of common bean (Phaseolus vulgaris L.) under a no‐tillage system to varying rates of lime (0, 12, and 24 Mg ha?1) and boron (0, 2, 4, 8, 12, 16, and 24 kg ha?1) application. Both time and boron (B) were applied as broadcast and incorporated into the soil at the beginning of the study. Changes in selected soil chemical properties in the soil profile (0- to 10‐ and 10- to 20‐cm depths) with liming were also determined. During all three years, gain yields increased significantly with the application of lime. However, B application significantly increased common bean yield in only the first crop. Only lime application significantly affected the soil chemical properties [pH; calcium (Ca2+); magnesium (Mg2+); hydrogen (H+)+ aluminum (Al3+); base saturation; acidity saturation; cation exchange capacity (CEC); percent saturation of Ca2+, Mg2+, and potassium (K+); and ratios of exchangeable Ca/Mg, Ca/K, and Mg/K] at both soil depths (0–10 cm and 10–20 cm). A positive significant association was observed between grain yield and soil chemical properties. Averaged across two depths and three crops, common bean produced maximum grain yield at soil pHw of 6.7, exchangeable (cmolc kg?1) of Ca2+ 4.9, Mg2+ 2.2, H++Al3+ 2.6, acidity saturation of 27.6%, CEC of 4.1 cmolc kg?1, base saturation of 72%, Ca saturation of 53.2%, Mg saturation of 17.6%, K saturation of 2.7%, Ca/Mg ratio of 2.8, Ca/K ratio of 25.7, and Mg/K ratio of 8.6. Soil organic matter did not change significantly with addition of lime.  相似文献   

3.
ABSTRACT

A field study was conducted with the objective of determining response of dry bean (Phaseolus vulgaris L.) to liming and copper (Cu) fertilization applied to an Oxisol. The lime rates used were 0, 12, and 24 Mg ha?1 and Cu rates were 0, 2.5, 5, 10, 20, and 40 kg Cu ha?1. Liming significantly increased common bean grain yield. Liming also significantly influenced soil chemical properties in the top (0–10 cm) as well as in the sub (10–20 cm) soil layer in favor of higher bean yield. Application of Cu did not influence yield of bean significantly. Average soil chemical properties across two soil layers (0–10 and 10–20 cm) for maximum bean yield were pH 6.4, calcium (Ca), 4.2 cmolc kg?1, magnesium (Mg) 1.0 cmolc kg?1, H+Al 3.2 cmolc kg?1, acidity saturation 40.4%, cation exchange capacity (CEC) 8.9 cmolc kg?1, base saturation 63.1%, Ca saturation 45.7%, Mg saturation 18.0%, and Potassium (K) saturation 2.9.  相似文献   

4.
This experiment was conducted to investigate the effects of biochars, produced from maize straw at different temperatures (300, 400, and 500 °C), on growth of maize. Maximum cation exchange capacity (CEC) (106 cmolc kg?1) of biochar was observed at 400 °C. The pH, electrical conductivity (EC), and carbon content of biochars significantly increased with increasing temperature, and maximum pH (9.8), EC (3.0 dS m?1), and carbon content (607 g kg?1) were observed at 500 °C. Concentration of phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) significantly increased with increasing temperature, while of nitrogen (N) decreased. Ammonium bicarbonate–diethylene triamine penta acetic acid (AB-DTPA)–extractable nutrients were decreased with increasing pyrolysis temperature. Shoot and root dry matter of maize increased significantly with application of biochar produced at 300 and 400 °C and decreased significantly at 500 °C. Maximum shoot and root dry matter of maize was obtained at biochar produced at 300 °C. Phosphorus and K concentration in shoots and roots increased with biochar, and it was significantly more with fertilizer application. In contrast to P, shoot and root K concentration increased significantly with increasing pyrolysis temperature. The results of this study indicated that application of biochar produced at low pyrolysis temperature may be a practical approach to improve crop growth.  相似文献   

5.
Amending vegetable soils with organic materials is increasingly recommended as an agroecosystems management option to improve soil quality. However, the amounts of NO, N2O, and N2 emissions from vegetable soils treated with organic materials and frequent irrigation are not known. In laboratory-based experiments, soil from a NO 3 ? -rich (340 mg N?kg?1) vegetable field was incubated at 30°C for 30 days, with and without 10 % C2H2, at 50, 70, or 90 % water-holding capacity (WHC) and was amended at 1.19 g?C kg?1 (equivalent to 2.5 t?C ha?1) as Chinese milk vetch (CMV), ryegrass (RG), or wheat straw (WS); a soil not amended with organic material was used as a control (CK). At 50 % WHC, cumulative N2 production (398–524 μg N?kg?1) was significantly higher than N2O (84.6–190 μg N?kg?1) and NO (196–224 μg N?kg?1) production, suggesting the occurrence of denitrification under unsaturated conditions. Organic materials and soil water content significantly influenced NO emissions, but the effect was relatively weak since the cumulative NO production ranged from 124 to 261 μg N?kg?1. At 50–90 % WHC, the added organic materials did not affect the accumulated NO 3 ? in vegetable soil but enhanced N2O emissions, and the effect was greater by increasing soil water content. At 90 % WHC, N2O production reached 13,645–45,224 μg N?kg?1 from soil and could be ranked as RG?>?CMV?>?WS?>?CK. These results suggest the importance of preventing excess water in soil while simultaneously taking into account the quality of organic materials applied to vegetable soils.  相似文献   

6.
ABSTRACT

Excessive application of animal manure to farmland leads to phosphorus (P) loss into the surrounding water. Manure is incinerated to convert it to P-rich ash as a slow-release P fertilizer. However, the potential P loss and P availability for plants from cattle manure ash (CMA) have not been fully understood. The aims of this study were to determine the P release mechanism from CMA and to propose appropriate application rates that mitigate P loss and increase available P to soil in Fukushima, where the soil is deficient in nutrients after the replacement of cesium-137-contaminated soil with sandy mountain soil. Different P fractions in CMA were sequentially extracted with H2O, 0.5 M NaHCO3, 0.1 M NaOH, and 1 M HCl. Phosphorus contents in different fractions of CMA were in the order of HCl–P > NaHCO3–P > H2O–P > NaOH–P. Water-soluble P release of CMA was also determined by kinetic experiments for 120 h. Results showed that total water-soluble P accounted for a maximum of 2.9% of total P in CMA over 120 h due to recalcitrant P compounds formed through incineration. The Fukushima sandy soil amended with CMA at three application rates, 94, 157, and 314 mg P kg?1 (corresponding to 300, 500, 1000 kg P2O5 ha?1) was incubated for 56 days. Cattle manure compost and KH2PO4 were applied at 157 mg P kg?1 for comparison. Phosphorus release in water and CaCl2 solution from ash-amended soil was significantly lower than those from compost and KH2PO4-amended soil at the same P application rate of 157 mg P kg?1 (p < 0.05). Available P in ash-amended soil, determined by Fe-oxide impregnated strips, was not significantly different from those in compost-amended soil after day 7 and KH2PO4-amended soil on day 56 at the same P application rate. Thus, CMA reduces P losses from soil to the surrounding water while it increases P availability for plants. In comparison of different rates of CMA, P release in water or CaCl2 was significantly greater at 314 mg P kg?1 than at 94 or 157 mg P kg?1, while the percentage of available P to total P was the lowest at the highest application rate (p < 0.05), suggesting that the best application rates were 94 and 157 mg P kg?1 in this experiment.  相似文献   

7.

Purpose

Crop straws and animal manure have the potential to ameliorate acidic soils, but their effectiveness and the mechanisms involved are not fully understood. The aim of this study was to evaluate the effectiveness of two crop (maize and soybean) straws, swine manure, and their application rates on acidity changes in acidic red soils (Ferralic Cambisol) differing in initial pH.

Materials and methods

Two red soils were collected after 21 years of the (1) no fertilization history (CK soil, pH 5.46) and (2) receiving annual chemical nitrogen (N) fertilization (N soil, pH 4.18). The soils were incubated for 105 days at 25 °C after amending the crop straws or manure at 0, 5, 10, 20, and 40 g kg?1 (w/w), and examined for changes in pH, exchangeable acidity, N mineralization, and speciation in 2 M KCl extract as ammonium (NH4+) and nitrate plus nitrite (NO3??+?NO2?).

Results and discussion

All three organic materials significantly decreased soil acidity (dominated by aluminum) as the application rate increased. Soybean straw was as effective (sometimes more effective) as swine manure in raising pH in both soils. Soybean straw and swine manure both significantly reduced exchangeable acidity at amendment rate as low as 10 g kg?1 in the highly acidic N soil, but swine manure was more effective in reducing the total acidity especially exchangeable aluminum (e.g., in the N soil from initial 5.79 to 0.50 cmol(+) kg?1 compared to 2.82 and 4.19 cmol(+) kg?1 by soybean straw and maize straw, respectively). Maize straw was less effective than soybean straw in affecting soil pH and the acidity. The exchangeable aluminum decreased at a rate of 4.48 cmol(+) kg?1 per pH unit increase for both straws compared to 6.25 cmol(+) kg?1 per pH unit from the manure. The NO3??+?NO2? concentration in soil increased significantly for swine manure amendment, but decreased markedly for straw treatments. The high C/N ratio in the straws led to N immobilization and pH increase.

Conclusions

While swine manure continues to be effective for ameliorating soil acidity, crop straw amendment has also shown a good potential to ameliorate the acidity of the red soil. Thus, after harvest, straws should preferably not be removed from the field, but mixed with the soil to decelerate acidification. The long-term effect of straw return on soil acidity management warrants further determination under field conditions.
  相似文献   

8.
Maintaining soil organic carbon (SOC) in arid ecosystem is important for soil productivity and restoration of deserted sandy soil in western plain of India. There is a need to understand how the cropping systems changes may alter SOC pools including total organic carbon (TOC), particulate organic C (POC), water soluble carbon (WSC), very labile C (VLC), labile C (LC), less labile C (LLC) and non-labile C (NLC) in arid climate. We selected seven major agricultural systems for this study viz., barren, fallow, barley–fallow, mustard–moth bean, chickpea–groundnut, wheat–green gram and wheat–pearl millet. Result revealed that conversion of sandy barren lands to agricultural systems significantly increased available nutrients and SOC pools. Among all studied cropping systems, the highest values of TOC (6.12 g kg?1), POC (1.53 g kg?1) and WSC (0.19 g kg?1) were maintained in pearl millet–wheat system, while the lowest values of carbon pools observed in fallow and barren land. Strong relationships (P < 0.05) were exhibited between VLC and LC with available nutrients. The highest carbon management index (299) indicates that wheat–pearl millet system has greater soil quality for enhancing crop productivity, nutrient availability and carbon sequestration of arid soil.  相似文献   

9.
Abstract

This study was conducted to investigate the effect of time and rate of phosphorus (P) addition on phosphorus availability and phosphorus buffer coefficient in some calcareous soils. Phosphorus was added to the samples at rates of 0, 50, 100, 200, 400, 600 and 800 mg P kg?1 soil. The samples were incubated for 0.041, 1, 7, 14, 21, 30, 60 and 90 days at constant temperature and moisture. Extractable phosphorus was determined after the incubation. The results showed a sharp decrease in available P within 1 h after P addition. There was a linear relation between added P and extractable P in all soils. The buffer coefficients of soils were estimated by Olsen P for above incubation periods. Generally the buffer coefficient decreased with increasing time of incubation. The results indicated that inputs of between 23 – 59 mg kg?1 are required to raise Olsen P by 10 mg kg?1 in these calcareous soils, which assuming 2500 t soil ha?1, gives a required input of 58 – 148 kg P ha?1.  相似文献   

10.
Abstract

Soils collected from 15 locations from SE Nigeria at the 0‐ to 20‐cm depth were studied for the nutrient elements of fine fractions and their role in the stability of the soils. The objective was to understand the role of these elements in the stability of the aggregates. The fine fractions were clay and silt, and elements measured in the fine fractions were exchangeable sodium (Na+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), exchangeable acidity (EA), cation exchange capacity (CEC), and available phosphorus (P). The aggregate stability was measured at the microlevel with clay dispersible indices and water‐stable aggregate (WSA) <0.25 mm, and at macrolevel with other WSA indices and mean‐weight diameter (MWD). Soils varied from loamy sand to sandy clay. There were more exchangeable cations, CEC, EA, and available P in clay than in the silt fraction. Whereas EA values ranged from 2.8 to 10.4 cmol kg?1, they were between 1.6 and 9.2 cmol kg?1 in silt. The CEC in the clay fraction was from 7.4 to 70 cmol kg?1 and between 4.0 and 32.8 cmol kg?1 in the silt fraction. The WDC were from 50 to 310 g kg?1 while the average dispersion ratio (DR) was generally higher than the corresponding clay‐dispersion ratio (CDR), and the MWD ranged from 0.45 to 2.68 mm. Soils with WSA skewed mostly to higher WSA (>2–1.00 mm) had a higher MWD. Exchangeable Ca2+ in clay correlated significantly with CDR and WSA sizes 1.0–0.5 mm and 0.5–0.25 mm (r=0.45,* 0.51,* and 0.60*), respectively, but negatively correlated with clay flocculation index (CFI) (r=?0.45*). Also, available P in clay correlated respectively with CDR and CFI (r=0.45*, ?0.45*), whereas K+ in silt correlated significantly with WDSi (r=0.64*), CFI (r=0.62*), and CDR (r=?0.65*). Principal component analysis revealed that elemental contents in the silt fraction can play very significant roles in the microaggregate stability.  相似文献   

11.
Salt-affected soil induces detrimental influences on paddy rice (Oryza sativa L.) growth and ameliorating the influences could be done with organic amendments, such as animal manure and biochar. The aims of the current study are: (1) to examine the interactive effects of biochar and cow manure on rice growth and on selected properties of salt-affected soil, and (2) to identify potential mechanisms related to the amendments. Saline-sodic soil was used for a net house experiment with two experimental factors: biochar (no-biochar, rice-husk, and -straw biochar) and cow manure (with and without cow manure). Without the manure, addition of both rice-hush and – straw biochar significantly increased rice growth, whereas a combination of individual biochar with manure did not show a positive synergistic effect. The interactive effect of two factors was not significant on available P and exchangeable K concentrations, but the main effects of the two factors were significant. Biochar addition resulted in higher soil cation exchange capacity (CEC) (28.8 to 29.0 cmolc kg?1) than the control (25.6 cmolc kg?1), but manure addition did not. Improved nutrient availabilities such as P and K, as well as CEC are among the potential mechanisms accounting for the enhanced rice growth with biochar.  相似文献   

12.
Abstract

The effect of zinc–phosphorus (Zn‐P) interaction on Zn efficiency of six wheat cultivars was studied. The higher dry matter yields were observed when Zn was applied at 5 µg g?1 soil than with no Zn application. Phosphorus applications also increased dry matter yield up to the application of 25 µg P g?1 soil. The dry matter yield was significantly lower at the P rate of 250 µg g?1 soil. At the Zn‐deficient level, the Zn‐efficient cultivars had higher Zn concentrations in the shoots. Zinc concentrations in all cultivars increased when the P level in the soil was increased from 0 to 25 µg P g?1 soil except for the cv. Durati, in which Zn concentrations decreased with increases in P levels. However, when Zn×P interactions were investigated, it was observed that at a Zn‐deficient level, Zn concentrations in the plant shoot decreased with each higher level of P, and more severe Zn deficiency was observed at P level of 250 µg g?1 soil.  相似文献   

13.
The increasing demand for fertilizers and the fact that the world reserves of phosphorus (P) and potassium (K) are depletable make appropriate soil management a critical factor in agriculture. Techniques for the fertilizer use and soil acidity corrective are becoming increasingly necessary to minimize the cost of yield and increase the nutrient efficiency. In view of the aforementioned, the present study aimed to assess the effects of gypsum application on the leaching of cations in the soil profile. A completely randomized design in a 5 × 4 factorial arrangement, with five replicates, was used. The treatments corresponded to five gypsum rates (0, 1, 2, 4, and 8 magnesium (Mg) ha?1) applied on broadcast of soil and at four depth sampled (0–5, 6–10, 11–15, and 16–20 cm). Gypsum application increased the fertility in depth, with the leaching of cations. There was an increase in soil pH, exchangeable K+ and calcium (Ca2+), sulfur (S–SO42?), P, boron (B), and manganese (Mn) concentration, cation exchange capacity (CEC), K+ and Ca2+ saturation, Ca2+/Mg2+, Ca2+/K+, and K+/(Ca2+ + Mg2+) ratios, and electrical conductivity in soil depth. On the other hand, there was a decrease in exchangeable Mg2+ and potential acidity hydrogen and aluminum (H+ Al3+), available silicon (Si), Mg2+ saturation, and Ca2+/K+ and Mg2+/K+ ratio. These results demonstrate that the gypsum application in an Oxisol with 690 g kg?1 of clay improves the root system with a significant increase in the soil fertility in the profile.  相似文献   

14.
Aerobic incubations to estimate net nitrogen (N) mineralization typically involve periodic leaching of soil with 0.01 M calcium chloride (CaCl2), so as to remove mineral N that would otherwise be subject to immobilization. A study was conducted to evaluate the accuracy of leaching for analysis of exchangeable ammonium (NH4+)-N and nitrate + nitrite (NO3?+ NO2)-N, relative to conventional extractions using 2 M potassium chloride (KCl). Ten air-dried soils were used, five each from Illinois and Brazil, that had been amended with NH4+-N (1 g kg?1) and NO3-N (0.6 g kg?1). Both methods were in good agreement for inorganic N analysis of the Brazilian Oxisols, whereas leaching was significantly lower by 12–48% in recovering exchangeable NH4+-N from Illinois Alfisols, Mollisols, and Histosols. The potential for underestimating net N mineralization was confirmed by a 12-wk incubation experiment showing 9–86% of mineral N recoveries from three temperate soils as exchangeable NH4+.  相似文献   

15.
Soybean is an important crop for the Brazilian economy, and soil acidity is one of the main yield-limiting factors in Brazilian Oxisols. A field experiment was conducted during three consecutive years with the objective to determine soybean response to liming grown on Oxisols. Liming rates used were 0, 3, 6, 12, and 18 Mg ha?1. Liming significantly increased grain yield in a quadratic trend. Ninety percent maximum economic grain yield (2900 kg ha?1) was achieved with the application of about 6 Mg lime ha?1. Shoot dry weight, number of pods per plant, and 100-grain weight were also increased significantly in a quadratic fashion with increasing liming rate from 0 to 18 Mg ha?1. These growth and yield components had a significant positive association with grain yield. Maximum contribution in increasing grain yield was of number of pods per plant followed by grain harvest index and shoot dry weight. Uptake of nitrogen (N) was greatest and phosphorus (P) was least among macronutrients in soybean plant. Nutrient-use efficiency (kg grain per kg nutrient accumulation in grain) was maximum for magnesium (Mg) and lowest for N among macronutrients. Application of 3 Mg lime ha?1 neutralized all aluminum ions in soil solution. Optimal acidity indices for 90% of maximum yield were pH 6.0, calcium (Ca) 1.6 cmolc kg?1, Mg 0.9 cmolc kg?1, base saturation 51%, cation exchange capacity (CEC) 4.8 cmolc kg?1, Ca/Mg ratio 1.9, Ca?/?potassium (K) ratio 5.6, and Mg/K ratio 3.0.  相似文献   

16.
Abstract

Phosphorus (P) loading of soils from the repeated application of manure and the associated loss of P to water systems is a serious and increasing problem in today's agricultural landscape. The hypothesis of this study was that the application of mineral amendments to manure might reduce P availability in manure and soil without affecting crop productivity. An incubation experiment was conducted to evaluate the ability of aluminum sulfate, ferric chloride or calcium hydroxide at 100 and 200 g kg?1 of manure to reduce phytoavailable (Mehlich-3 extractable) P in liquid dairy, laying hen and broiler chicken manure. Mehlich-3 extractable P was reduced from 59 to 97% in all manure treated with aluminum sulfate and ferric chloride. The calcium hydroxide treatment resulted in a Mehlich-3 extractable P reduction ranging from ?17 to 51%. A container experiment was then carried out to examine the effect of soil with pre-treated manure on timothy (Phelum pretense L.) growth and soil P levels. Timothy yields in all dairy manure treatments were 45–57% lower compared to an N–P–K control, but were not lower compared to the untreated manure control. Dairy manure + aluminum sulfate (200 g kg?1) reduced water-extractable P by 82% relative to the N–P–K control. All other manure and amendment treatment combinations were not statistically different from the N–P–K or the untreated soil controls in terms of water-extractable P, Mehlich-3 extractable P or grass yield. Significant reductions in Mehlich-3 extractable P were observed with the aluminum sulfate or ferric chloride amendments, while varied results were observed with the calcium hydroxide amendment. Results suggest that the use of manure amended with aluminum sulfate or ferric chloride has little effect on growth or P accumulation by timothy. Overall, this study demonstrated that mineral pre-treatment of manure can reduce the extractable P content of the manure and soil without negative effects on plant growth.  相似文献   

17.
ABSTRACT

Conversion of manures to vermicompost and biochar may alleviate some negative effects of manure application to soil but the efficiency of the produced vermicompost and biochar as compared to their feedstocks is not well-known. In the current investigation, we compared the effects of sheep manure and its derived vermicompost and biochar (pyrolyzed at 400°C for 4 h) on the properties of a calcareous soil that planted with five cultivars of barley (Behrokh, Khatam, Reyhaneh03, Fajr 30 and Nimrooz) for 60 days. Different soil properties and availability of nutrients and barley yield were determined after plant harvest. The biochar significantly increased barley yield rather than control (4.20 vs. 3.57 g pot?1), but sheep manure and vermicompost had no effect on it (3.51 and 3.37 g pot?1, respectively). Fajr 30 and Nimrooz (3.52 and 3.42 g pot?1, respectively) had significantly lower yield than other cultivars. Biochar increased soil pH up to 8.2. Soil salinity was increased by application of all organic materials (increase to 16–36%). Cation exchange capacity (CEC) and organic matter content of soil were also increased by all organic materials application (0.4–0.9 cmol kg?1 and 0.33–0.50%, respectively). All organic materials increased total nitrogen (N), but this increase was the highest with sheep manure application (53%). The availability of phosphorus (P) and potassium (K) was increased significantly by application of all organic materials, and this increase was the highest with biochar application (19 and 309 mg kg?1, respectively). Biochar application had no effect on the availability of micronutrients, but application of sheep manure and vermicompost increased the availability of iron (Fe) (0.62 and 0.48 mg kg?1, respectively) and zinc (Zn) (0.18 and 0.37 mg kg?1, respectively). Generally, organic materials may change the status of soil nutrients via change in soil pH, organic matter content, release of nutrients, increase in soil CEC and formation of soluble complex with nutrients.  相似文献   

18.
Soil acidity is the principal limiting factor in crop production in Oxisols, and deficiency of micronutrients has increased in recent years because of intensive cropping. A field experiment was conducted over three consecutive years to assess response of common bean (Phaseolus vulgaris L.) to lime and iron (Fe) applications on an Oxisol in a no-tillage system. Changes in selected soil chemical properties in the soil profile (0- to 10- and 10- to 20-cm depths) with liming were also determined. Lime rates used were 0, 12, and 24 Mg ha–1, and Fe application rates were 0, 50, 100, 150 200, and 400 kg ha–1. Both lime and Fe were applied as broadcast and incorporated in the soil. Grain yields of common bean were significantly increased with the application of lime. Iron application, however, did not influence bean yield. There were significant changes in soil profile (0- to 10-cm and 10- to 20-cm depths) in pH, calcium (Ca2+), magnesium (Mg2+), hydrogen + aluminum (H+ + Al3+), base saturation, acidity saturation, cation exchange capacity (CEC), Ca2+ saturation, Mg2+ saturation, potassium (K+) saturation, and ratios of Ca/Mg, Ca/K, and Mg/K. These soil chemical properties had significant positive association with common bean grain yield. Averaged across two depths and three crops, common bean produced maximum grain yield at pHw 6.3, Ca2+ 3.8 cmolc kg–1, Mg2+ 1.1 cmolc kg–1, 3.5 H+ + Al3+ cmolc kg–1, acidity saturation 41.8%, CEC 7.5 cmolc kg–1, base saturation 57.4%, Ca saturation 45.2%, Mg saturation 14.2%, K saturation 9.1%, Ca/Mg ratio 3.1, Ca/K ratio 22.6, and Mg/K ratio 6.7.  相似文献   

19.
Leaching of nutrients in soil can change the surface and groundwater quality. The present study aimed at investigating the effects of raw and ammonium (NH4+)-enriched zeolite on nitrogen leaching and wheat yields in sandy loam and clay loam soils. The treatments were one level of nitrogen; Z0: (100 kg (N) ha?1) as urea, two levels of raw zeolite; Z1:(0.5 g kg?1 + 100 kg ha?1) and Z2: (1 g kg?1 + 100 kg ha?1), and two levels of NH4+-enriched zeolite; Z3: (0.5 g kg?1 + 80 kg ha?1) and Z4: (1 g kg?1 + 60 kg ha?1). Wheat grains were sown in pots and, after each irrigation event, the leachates were collected and their nitrate (NO3?) and NH4+ contents were determined. The grain yield and the total N in plants were measured after four months of wheat growth. The results indicated that the amounts of NH4+ and NO3? leached from the sandy loam soil were more than those from the clay loam soil in all irrigation events. The maximum and minimum concentrations of nitrogen in the drainage water for both soils were observed at control and NH4+-zeolite treatments, respectively. Total N in the plants grown in the sandy loam was higher compared to plants grown in clay loam soil. Also, nitrogen uptake by plants in control and NH4+-zeolite was higher than that of raw-zeolite treatments. The decrease in the amount of N leaching in the presence of NH4+-zeolite caused more N availability for plants and increased the efficiency of nitrogen fertilizers and the plants yield.  相似文献   

20.
Removal of soil phosphorus (P) in crop harvest is a remediation option for soils high in P. This 4-year field-plot study determined P uptake by annual ryegrass (ARG, Lolium multiflorum Lam.) and common bermudagrass (CB, Cynodon dactylon (L.) Pers.) from Ruston soil (fine-loamy, siliceous, thermic Typic Paleudult) enriched in P by five previous annual applications of poultry litter, and related P removed to Bray 2 P in surface (0–15 cm) soil. Decreases in surface soil Bray 2 P were largely attributable to uptake. Phosphorus uptake was positively related to Bray 2 P but approached a limit. Mass of P removed in harvest closely approximated the decrease in mass of surface soil Bray 2 P. Maximum Bray 2 P drawdown per harvest (ARG and CB, average) was ?3 mg kg?1 at Bray 2 P ? 300 mg kg?1, generally consistent with measured decreases in Bray 2 P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号