首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
应用RT-PCR技术扩增出犬瘟热病毒(CDV)核衣壳(N)蛋白基因的高度保守序列,将其克隆至质粒pMD18-T中,获得了重组质粒pMD18-T-N。将N基因的目的片段克隆到表达载体pGEX-4T-1中谷胱甘肽转移酶(GST)基因的下游,并将该重组质粒转化大肠杆菌BL21株,经IPTG诱导,N基因融合蛋白获得了高效表达。SDS-PAGE电泳和Western—blot分析结果显示,表达产物的分子质量为55ku,与CDV标准阳性血清呈阳性反应。表明,大肠杆菌表达的CDVN蛋白在免疫原性上与天然N蛋白具有一定的相似性,可作为诊断用抗原。  相似文献   

2.
尼帕病毒和亨得拉病毒核蛋白单克隆抗体的制备与鉴定   总被引:2,自引:0,他引:2  
尼帕病毒(Nipahvirus,NiV)和亨得拉病毒(Hendravirus,HeV)是近年来出现的2种新的高致病性副粘病毒,在我国尚未发现。为防范2种病毒在我国的出现,本研究开展了前瞻性工作,成功研制了针对2种病毒核蛋白(N)的单克隆抗体,可用于病毒监测与诊断。首先利用大肠杆菌表达的2种病毒N蛋白免疫BALB/c小鼠,细胞融合后应用间接免疫荧光的方法对杂交瘤细胞克隆进行筛选,获得了5株N蛋白特异单抗。单抗腹水的抗体效价均超过2×10^5,培养上清抗体效价1:64~1:256。Western—blot和间接免疫荧光试验证明,5株单抗均特异针对N蛋白,其中1株(H4D11)只与HeVN蛋白反应,而不与NiVN蛋白反应,表明它具有鉴别2种病毒的能力。所研制的单抗对建立2种病毒的检测技术,用于动物监测,以防范2种新发传染病在我国流行具有重要意义。  相似文献   

3.
本研究旨在克隆和表达水泡性口炎病毒(vesicular stomatitis virus,VSV)特异性抗原N蛋白,进而纯化并分析其免疫原性。根据GenBank中已发表的VSV基因组N基因序列,分别合成VSV两种不同血清型的N基因,经序列对比分析后,设计合成1对特异性引物,PCR扩增获得约1 300 bp的N基因片段,将目的片段亚克隆至pCold Ⅰ原核表达载体中,经IPTG诱导表达后,采用Ni-NTA树脂亲和层析法纯化重组N蛋白。SDS-PAGE分析表明,N基因在大肠杆菌中得到表达,蛋白大小约为50 ku;Western blotting检测结果表明,该重组蛋白与VSV多克隆抗体发生特异性反应。本试验成功构建了VSV-IND和VSV-NJ的原核表达载体,实现了N蛋白在大肠杆菌中的可溶性表达,纯化后的重组蛋白具有良好的免疫原性。  相似文献   

4.
采用PCR方法扩增犬瘟热病毒N基因,将其克隆至原核表达载体p ET-32a(+)中,构建犬瘟热N基因原核表达重组质粒,然后转化大肠杆菌BL21(DE3)菌株,经IPTG诱导表达重组N蛋白。从包涵体中纯化重组蛋白,制备多克隆抗体,采用Western blot检测其特异性。结果显示PCR扩增得到犬瘟热N基因,重组N蛋白在大肠杆菌BL21(DE3)菌株中得到表达,制备的多克隆抗体能与N蛋白特异性反应。  相似文献   

5.
PRRS病毒核衣壳蛋白在大肠杆菌中的高效表达   总被引:6,自引:0,他引:6  
用表达非融合蛋白的原核表达载体pBV220,通过PCR技术的引物设计对猪繁殖与呼吸综合征(PRRS)病毒BJ-4株核衣壳蛋白(N)基因起始密码子上游进行了改造和修饰,成功地构建了含有PRRS病毒N基因的原核重组表达载体pBV-N。pBV-N转化大肠杆菌DH5α,温度诱导后菌体裂解物经SDS-PAGE分析发现,在约15000处出现1条诱导前后的pBV220载体对照和诱导前的pBV-N中均缺少的特异性的蛋白条带,分子量大小与PRRS病毒N蛋白相符,并随着诱导时间的延长而变化,在诱导后4h达到高峰。薄层扫描结果显示,重组N蛋白表达量最多可占菌体总蛋白的27.4%。Western-blotting检测,此15000的蛋白带可为PRRS病毒N蛋白的单克隆抗体所识别,表明该重组N蛋白具有良好的抗原性。  相似文献   

6.
将V13KL编码基因片段克隆到原核表达载体pET30b(+),并在目的蛋白N端设计肠激酶酶切位点,构建出pET30b(+)-VK13L重组质粒,转化大肠杆菌表达菌株BL21(DE3),优化诱导条件,使得抗菌肽得到了高效表达。经Tricine-SDS-PAGE和Westernblotting鉴定,目的蛋白的相对分子质量与预期一致。结果表明,V13KL基因成功克隆并且获得表达,在诱导体系中加入1mmol/LIPTG诱导6h便可检测到蛋白表达。  相似文献   

7.
为研究猪流行性腹泻病毒(Porcine epidemic diarrhea virus,PEDV)的N蛋白特性及在诊断中的应用,本研究采用RT-PCR方法从猪流行性腹泻病毒FJ-11A株中扩增其N蛋白基因片段,并将其克隆到原核表达载体pET-32a上,构建原核表达重组质粒pET32a-PEDV-N,进行条件优化诱导表达、SDS-PAGE、Western blot和ELISA试验。结果表明,该重组目的蛋白(约60 kDa)得到表达,且具有良好的免疫学活性,该研究为开发猪流行性腹泻病毒诊断方法和研究N蛋白功能奠定基础。  相似文献   

8.
根据Genbank中的O型口蹄疫病毒全基因序列设计了一对扩增口蹄疫病毒VP1基因的引物,用该特异性表达引物从口蹄疫阳性质粒pMD—P1中扩增得到目的基因VP1(639bp)。用相同的限制性内切酶酶切目的基因和表达载体PET32a后构建重组表达载体.转化宿主菌BL21(DE3),经酶切及PCR鉴定筛选出阳性克隆.测序证明目的基因正确插入了表达载体,用不同浓度的IPTG诱导VP1基因的表达,收集菌液进行SDS—PAGE电泳,Westerll—blotting分析蛋白免疫原性。结果表明,VP1结构蛋白在大肠杆菌中表达量较高,表达产物的分子量约为41Ku,并能被口蹄疫阳性血清所识别,经分析表达蛋白约占菌体蛋白的34%。口蹄疫病毒VP1蛋白在大肠杆菌中高效表达且表达产物具有免疫原性。  相似文献   

9.
为原核表达鲤春病毒血症病毒(SVCV)核(N)蛋白,本研究采用RT-PCR方法扩增SVCV N蛋白基因(SVCV-N),克隆于原核表达载体pET-28a(+)中,并转化到大肠杆菌Rosetta中进行表达.SDS-PAGE分析表明,SVCV-N基因在大肠杆菌中获得高效表达,表达产物约47 ku,与预期相符.Western blot检测表明,该重组蛋白可以被SVCV阳性血清所识别.  相似文献   

10.
本研究旨在克隆犬冠状病毒(canine coronavirus,CCV)N基因,体外表达N蛋白,并制备抗该蛋白质的多克隆抗体,用于CCV的诊断及其抗原的检测。参考GenBank中CCV的N基因序列(登录号:KY063618.2),选择CCV流行毒株的N基因,通过对该基因密码子进行优化和基因合成,最后选择一段有效基因构建重组表达质粒pET-B2M-N,将成功构建的重组质粒转化大肠杆菌DH5α感受态细胞,挑取阳性克隆提取质粒,转化大肠杆菌BL21(DE3)感受态细胞,通过0.5 mmol/L IPTG 30 ℃进行诱导表达。结果表明,优化诱导条件后成功表达出大小约为49 ku的重组蛋白。将重组蛋白与弗氏佐剂按一定比例混合,每隔2周免疫G767、G768两只日本大耳白兔数次,用间接ELISA检测G768抗体效价可达1∶512 000,选用G768抗体进行抗体纯化,纯化后浓度可达10 mg/mL,用间接ELISA、Western blotting和间接免疫荧光试验对N蛋白纯化后制备的兔多克隆抗体进行检测分析,表明表达的重组N蛋白免疫原性良好,制备的多克隆抗体具有良好的反应原性。本研究为犬冠状病毒抗原抗体检测以及靶标CCV诊断试剂盒的建立奠定了一定的基础。  相似文献   

11.
Newly discovered viruses of flying foxes.   总被引:3,自引:0,他引:3  
Flying foxes have been the focus of research into three newly described viruses from the order Mononegavirales, namely Hendra virus (HeV), Menangle virus and Australian Bat Lyssavirus (ABL). Early investigations indicate that flying foxes are the reservoir host for these viruses. In 1994, two outbreaks of a new zoonotic disease affecting horses and humans occurred in Queensland. The virus which was found to be responsible was called equine morbillivirus (EMV) and has since been renamed HeV. Investigation into the reservoir of HeV has produced evidence that antibodies capable of neutralising HeV have only been detected in flying foxes. Over 20% of flying foxes in eastern Australia have been identified as being seropositive. Additionally six species of flying foxes in Papua New Guinea have tested positive for antibodies to HeV. In 1996 a virus from the family Paramyxoviridae was isolated from the uterine fluid of a female flying fox. Sequencing of 10000 of the 18000 base pairs (bp) has shown that the sequence is identical to the HeV sequence. As part of investigations into HeV, a virus was isolated from a juvenile flying fox which presented with neurological signs in 1996. This virus was characterised as belonging to the family Rhabdoviridae, and was named ABL. Since then four flying fox species and one insectivorous species have tested positive for ABL. The third virus to be detected in flying foxes is Menangle virus, belonging to the family Paramyxoviridae. This virus was responsible for a zoonotic disease affecting pigs and humans in New South Wales in 1997. Antibodies capable of neutralising Menangle virus, were detected in flying foxes.  相似文献   

12.
Hendra virus (HeV) causes potentially fatal respiratory and/or neurological disease in both horses and humans. Although Australian flying‐foxes of the genus Pteropus have been identified as reservoir hosts, the precise mechanism of HeV transmission has yet to be elucidated. To date, there has been limited investigation into the role of haematophagous insects as vectors of HeV. This mode of transmission is particularly relevant because Australian flying‐foxes host the bat‐specific blood‐feeding ectoparasites of the genus Cyclopodia (Diptera: Nycteribiidae), also known as bat flies. Using molecular detection methods, we screened for HeV RNA in 183 bat flies collected from flying‐foxes inhabiting a roost in Boonah, Queensland, Australia. It was subsequently demonstrated that during the study period, Pteropus alecto in this roost had a HeV RNA prevalence between 2 and 15% (95% CI [1, 6] to [8, 26], respectively). We found no evidence of HeV in any bat flies tested, including 10 bat flies collected from P. alecto in which we detected HeV RNA. Our negative findings are consistent with previous findings and provide additional evidence that bat flies do not play a primary role in HeV transmission.  相似文献   

13.
Objective To determine the infectivity and transmissibility of Hendra virus (HeV). Design A disease transmission study using fruit bats, horses and cats. Procedure Eight grey-headed fruit bats (Pteropus poliocephalus) were inoculated and housed in contact with three uninfected bats and two uninfected horses. In a second exper iment, four horses were inoculated by subcutaneous injection and intranasal inoculation and housed in contact with three uninfected horses and six uninfected cats. In a third experi ment, 12 cats were inoculated and housed in contact with three uninfected horses. Two surviving horses were inoculated at the conclusion of the third experiment: the first orally and the second by nasal swabbing. All animals were necropsied and examined by gross and microscopic pathological methods, immunoperoxidase to detect viral antigen in formalin-fixed tissues, virus isolation was attempted on tissues and SNT and ELISA methods were used to detect HeV-specific antibody. Results Clinical disease was not observed in the fruit bats, although six of eight inoculated bats developed antibody against HeV, and two of six developed vascular lesions which contained viral antigen. The in-contact bats and horses did not seroconvert. Three of four horses that were inoculated devel oped acute disease, but in-contact horses and cats were not infected. In the third experiment, one of three in-contact horses contracted disease. At the time of necropsy, high titres of HeV were detected in the kidneys of six acutely infected horses, in the urine of four horses and the mouth of two, but not in the nasal cavities or tracheas. Conclusions Grey-headed fruit bats seroconvert and develop subclinical disease when inoculated with HeV. Horses can be infected by oronasal routes and can excrete HeV in urine and saliva. It is possible to transmit HeV from cats to horses. Transmission from P poliocephalus t o horses could not be proven and neither could transmission from horses to horses or horses to cats. Under the experimental conditions of the study the virus is not highly contagious.  相似文献   

14.
尼帕病毒(Ni V)和亨德拉病毒(HeV)属于副黏病毒亚科的亨尼帕病毒属的成员。Ni V和HeV感染引起新的两种重要的人兽共患传染病。有关APMV-1(NDV)的发病和流行以及病原学研究认为APMV-1不断发生演化,新的基因型不断产生,对不同宿主的致病力不断变化,病毒感染的宿主谱不断扩大。本文简要介绍两种新的人兽共患传染病和APMV-1对鹅、鸭、猪的感染研究现状,就APMV-1宿主感染谱与演化加以分析,思考新的动物副黏病毒病防控对策。  相似文献   

15.
Animal models of henipavirus infection: A review   总被引:1,自引:0,他引:1  
Hendra virus (HeV) and Nipah virus (NiV) form a separate genus Henipavirus within the family Paramyxoviridae, and are classified as biosafety level four pathogens due to their high case fatality rate following human infection and because of the lack of effective vaccines or therapy. Both viruses emerged from their natural reservoir during the last decade of the 20th century, causing severe disease in humans, horses and swine, and infecting a number of other mammalian species. The current review summarises current published data relating to experimental infection of small and large animals, including the natural reservoir species, the Pteropus bat, with HeV or NiV. Susceptibility to infection and virus distribution in the individual species is discussed, along with the pathogenesis, pathological changes, and potential routes of transmission.  相似文献   

16.
Hendra virus (HeV) is a zoonotic paramyxovirus which causes acute and deadly infection in horses (Equus caballus). It is a rare and unmanaged emerging viral infection in horses which is harbored by bats of the genus Pteropus (Australian flying foxes or fruit bats). The virus is pleomorphic in shape and its genome contains nonsegmented negative-stranded RNA with 18234 nucleotides in length. The virus is transmitted from flying foxes to horses, horse to horse, and horse to humans. Human-to-human transmission of HeV infection is not reported yet. The infection of HeV in horses is highly variable and shows broad range of signs and lesions including distinct respiratory and neurological disorders. Currently, there are no specific antiviral drugs available for the treatment of HeV infection in horses. Vaccination is considered as prime option to prevent HeV infection in horses. A subunit vaccine, called as “Equivac HeV vaccine” has been approved recently for preventing this viral infection in horses. In addition, a plethora of common preventive strategies could help restrict the inter- and intra-species transmission of HeV. Considering the scanty but severe fatality cases of this mystery virus as well as lack of proper attention by veterinary scientists, this review article spotlights not only on the clinical signs, transmission, epidemiology, biology, pathogenesis, and diagnosis of HeV but also the preventive managements of this uncommon infection in horses by vaccination and other precautious strategies.  相似文献   

17.
Hendra virus (HeV) is a zoonotic virus from the family Paramyxoviridae causing fatal disease in humans and horses. Five-week-old Landrace pigs and 5-month-old Gottingen minipigs were inoculated with approximately 107 plaque forming units per animal. In addition to fever and depression exhibited in all infected pigs, one of the two Landrace pigs developed respiratory signs at 5 days post-inoculation (dpi) and one of the Gottingen minipigs developed respiratory signs at 5 dpi and mild neurological signs at 7 dpi. Virus was detected in all infected pigs at 2–5 dpi from oral, nasal, and rectal swabs and at 3–5 dpi from ocular swabs by real-time RT-PCR targeting the HeV M gene. Virus titers in nasal swab samples were as high as 104.6 TCID50/mL. The viral RNA was mainly distributed in tissues from respiratory and lymphoid systems at an early stage of infection and the presence of virus was confirmed by virus isolation. Pathological changes and immunohistochemical staining for viral antigen were consistent with the tissue distribution of the virus. This new finding indicates that pigs are susceptible to HeV infections and could potentially play a role as an intermediate host in transmission to humans.  相似文献   

18.
Hendra virus (HeV), a potentially fatal zoonotic disease spread by flying foxes, to date has always infected humans via a spillover event from equine HeV infection. In a theoretical case study, we compared the impacts of two different HeV prevention strategies – vaccination and flying fox roost removal – using a recently developed framework that considers different stakeholder group perspectives. The perspectives of the four selected stakeholder groups regarding intangibles were inferred from public discussions and coverage in the media. For all stakeholder groups, the option to vaccinate horses was found to add value to the economic results when the intangible impacts were included in the analysis, while the option for roost removal unanimously detracted from economic analysis value when the intangible impacts were included. Both the mean and median stakeholder‐adjusted value ratios (2.25 and 2.12, respectively) for vaccination were inflated when intangible impacts were included, by value‐adding to the results of a traditional economic analysis. In the roost removal strategy, these ratios (1.19 and 1.16, respectively) were deflated when intangible impacts were included. Results of this theoretical study suggest that the inclusion of intangible impacts promotes the value of a two‐dose initial vaccination protocol using a subunit vaccination considered to offer complete protection for horses, as a strategy to control HeV, whereas roost removal becomes an even more costly strategy. Outcome of the analysis is particularly sensitive to the intangible value placed on human health. Further evaluation – via sociological methods – of values placed on intangibles by various stakeholder groups is warranted.  相似文献   

19.
Following the emergence of Hendra virus (HeV), private veterinarians have had to adopt additional infection control strategies to manage this zoonosis. Between 1994 and 2010, seven people became infected with HeV, four fatally. All infected people were at a higher risk of exposure from contact with horses as they were either veterinary personnel, assisting veterinarians, or working in the horse industry. The management of emerging zoonoses is best approached from a One Health perspective as it benefits biosecurity as well as a public health, including the health of those most at risk, in this case private veterinarians. In 2011 we conducted a cross-sectional study of private veterinarians registered in Queensland and providing veterinary services to horses. The aim of this study was to gauge if participants had adopted recommendations for improved infection control, including the use of personal protective equipment (PPE), and the development of HeV specific management strategies during the winter of 2011. A majority of participants worked in practices that had a formal HeV management plan, mostly based on the perusal of official guidelines and an HeV field kit. The use of PPE increased as the health status of an equine patient decreased, demonstrating that many participants evaluated the risk of exposure to HeV appropriately; while others remained at risk of HeV infection by not using the appropriate PPE even when attending a sick horse. This study took place after Biosecurity Queensland had sent a comprehensive package about HeV management to all private veterinarians working in Queensland. However, those who had previous HeV experience through the management of suspected cases or had attended a HeV specific professional education programme in the previous 12 months were more likely to use PPE than those who had not. This may indicate that for private veterinarians in Queensland personal experience and face-to-face professional education sessions may be more effective in the improvement of HeV management than passive education via information packages. The role of different education pathways in the sustainable adoption of veterinary infection control measures should be further investigated.  相似文献   

20.
通过GenBank中对小反刍兽疫病毒N蛋白基因、亨德拉病毒及尼帕病毒H蛋白基因、西尼罗河热病毒PrM蛋白基因和非洲猪瘟病毒P72基因这5种外来病病毒的主要基因的分析比较,选择相应基因的保守序列进行人工合成,并对每段基因设计2对引物,扩增片段大小均在350-550bp之间。通过对条件的反复优化,建立了1种能够同时检测到这5种病原的并联PCR/RT-PCR方法。结果显示,该方法最低可检测到10-5 mg/L的病毒的DNA/cDNA,而且特异性强、重复性好。在45份猪样品及56份蝙蝠样品的检测中,只有阳性对照出现了目的条带,而其他均未出现目的条带。这说明本研究建立的5种主要外来病病毒并联PCR/RT-PCR的检测方法具有灵敏度高、特异性好的特点,可用于ASFV、PPRV、HeV、NiV和WNV的预防、检测及扑灭。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号