首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Two winter oilseed rape (Brassica napus) cultivars, tolerant to glyphosate and glufosinate, were compared with a conventional cultivar at three sites over 4 years, in 3‐year crop rotations in the UK. The winter oilseed rape was grown in Years 1 and 4, with winter cereals, which received uniform herbicide treatments, in the intervening years. The second winter oilseed rape treatments were applied to randomised sub‐plots of the original plots. Weed densities were recorded in autumn and spring and weed biomass was measured in summer. At most sites, there was only one application of glufosinate or glyphosate, whereas two products were often used on the conventional variety. The timing of glyphosate and glufosinate application was, on average, 34 days later than that of the conventional broad‐leaved weed control treatments. Overall weed control, across all sites and years, was not statistically different between the conventional, glyphosate and glufosinate treatments. However, glyphosate achieved higher control of individual weed species more frequently than the other treatments. Glufosinate and the conventional treatments were similar in performance. The treatments in Year 1 sometimes affected weed populations in the subsequent cereal crops and, in rare instances, those in the rape in Year 4. Carry‐over effects were small after most treatments. In general, weed survival was greater in the oilseed rape crops, irrespective of the treatment, than it was in the intervening cereal crops.  相似文献   

2.
The effects of cover crops on weeds and the underlying mechanisms of competition, physical control and allelopathy are not fully understood. Current knowledge reveals great potential for using cover crops as a preventive method in integrated weed management. Cover crops are able to suppress 70–95% of weeds and volunteer crops in the fall‐to‐spring period between two main crops. In addition, cover crop residues can reduce weed emergence during early development of the following cash crop by presenting a physical barrier and releasing allelopathic compounds into the soil solution. Therefore, cover crops can partly replace the weed suppressive function of stubble‐tillage operations and non‐selective chemical weed control in the fall‐to‐spring season. This review describes methods to quantify the competitive and allelopathic effects of cover crops. Insight obtained through such analysis is useful for mixing competitive and allelopathic cover crop species with maximal total weed suppression ability. It seems that cover crops produce and release more allelochemicals when plants are exposed to stress or physical damage. Avena strigose, for example, showed stronger weed suppression under dry conditions than during a moist autumn. These findings raise the question of whether allelopathy can be induced artificially. © 2019 Society of Chemical Industry  相似文献   

3.
The objective of this study was to obtain detailed information on the long‐term weed suppression potential of four winter soil cover types included in an arable crop system managed at various input levels. We used weed seedbank size and composition to assess weed suppression potential. A field experiment was established in 1993 as a split‐split‐plot design with four replications, including two tillage systems [a conventional system (CS) including ploughing in the cover crops and a low‐input system (LIS) including no tillage with surface mulching of the cover crops] in the main plots, three mineral nitrogen fertilization rates for the main crop in the sub‐plots and four soil cover types (main crop residue, rye, crimson clover and subterranean clover) in the sub‐sub‐plots. Seedbank sampling took place in winter 2000/01. The weed seedbank was analysed with the seedling emergence method. Data were analysed using anova and multivariate techniques. Results indicated that the seedbank density in the LIS was about five times higher than in the conventional input system. In the CS, use of a rye cover crop resulted in a lower seedbank density with respect to the crop residue treatment (?25%), whereas in the LIS the subterranean clover cover crop decreased weed seedbank density as compared with the other cover crops and the crop residue treatment (?22% on average). Differences in species composition were mainly related to tillage system. Implications for cover crop management and the development of sustainable cropping systems are discussed.  相似文献   

4.
Glyphosate is a key component of weed control strategies in Australia and worldwide. Despite widespread and frequent use, evolved resistance to glyphosate is rare. A herbicide resistance model, parameterized for Lolium rigidum has been used to perform a number of simulations to compare predicted rates of evolution of glyphosate resistance under past, present and projected future use strategies. In a 30‐year wheat, lupin, wheat, oilseed rape crop rotation with minimum tillage (100% shallow depth soil disturbance at sowing) and annual use of glyphosate pre‐sowing, L. rigidum control was sustainable with no predicted glyphosate resistance. When the crop establishment system was changed to annual no‐tillage (15% soil disturbance at sowing), glyphosate resistance was predicted in 90% of populations, with resistance becoming apparent after between 10 and 18 years when sowing was delayed. Resistance was predicted in 20% of populations after 25–30 years with early sowing. Risks of glyphosate resistance could be reduced by rotating between no‐tillage and minimum‐tillage establishment systems, or by rotating between glyphosate and paraquat for pre‐sowing weed control. The double knockdown strategy (sequential full rate applications of glyphosate and paraquat) reduced risks of glyphosate and paraquat resistance to <2%. Introduction of glyphosate‐resistant oilseed rape significantly increased predicted risks of glyphosate resistance in no‐tillage systems even when the double knockdown was practised. These increased risks could be offset by high crop sowing rates and weed seed collection at harvest. When no selective herbicides were available in wheat crops, the introduction of glyphosate‐resistant oilseed rape necessitated a return to a minimum‐tillage crop establishment system.  相似文献   

5.
Cover crops have been shown to be important integrated weed management tools. In addition to directly competing with weeds, cover crops can provide weed suppressive effects following incorporation through release of allelopathic compounds and/or changes to nutrient availability. Incorporation of a cover crop mixture may provide a synergistic or antagonistic effect on weed suppression by further altering nutrient dynamics. To investigate this phenomenon, we evaluated the suppressive effects following incorporation of annual ryegrass, buckwheat, brown mustard, and phacelia sown with and without field pea on germination and growth of several pernicious weed species. Further, we used the additive partitioning model to determine if pea synergistically improved biomass production and weed suppression of cover crops. Our results demonstrate that following incorporation, cover crop residues suppress weed germination and weed biomass production. According to the additive partitioning model, the addition of pea had an antagonistic effect on buckwheat and brown mustard biomass production and decreased buckwheat weed suppression by 8%. In contrast, the addition of field pea greatly enhanced biomass production of phacelia at a reduced seeding rate suggesting a positive biodiversity effect. Limited evidence was found for changes to nutrient availability following cover crop incorporation, however, a dose-dependent effect of cover crop residue on weed suppression suggests allelopathy and/or nutrient availability may have a role on weed seed germination success. Together, our results support the use of incorporated cover crop residues as an integrated weed management tool.  相似文献   

6.
Biofumigation from Brassica cover crops may be used to control soilborne pests and weeds. A study was conducted to understand the influence of biofumigation on key processes of annual weed population dynamics. Five combinations of Indian mustard (M) and oat (O) cover crop treatments were assessed in a 3 year field study at two locations in Québec, Canada. Treatments included four spring/fall cover crop combinations (M/M, M/O, O/M, O/O) and a weedy check control with no cover crop. Prior to mowing and incorporation of cover crops, weed identification, count and biomass measurements were recorded to evaluate the total weed density, to calculate the relative neighbour effect (RNE) and weed diversity metrics and to perform principal co‐ordinates analyses. Indian mustard cover crops had no impact on weed establishment in 2014 due to low biofumigant potential compared to the oat cover crop. In 2015 and 2016, Indian mustard isothiocyanate (ITC) production increased and weed establishment within the Indian mustard cover crop decreased. Moreover, post‐cover crop incorporation decreased the next year spring weed emergence. Allelopathic interference of Indian mustard was significant when plant tissues produced more than 600 μg of allyl‐ITC g?1. It is now possible to rationalise the use of Brassica cover crops and biofumigation for weed control with an enhanced understanding of the impact of biofumigation on key processes of weed population dynamics.  相似文献   

7.
Predicting the risk of weed infestation in winter oilseed rape crops   总被引:1,自引:0,他引:1  
Chemical weed control before crop and weed emergence is a systematic practice in winter oilseed rape crops in France. It would be profitable both for farmers and the environment to predict the level of weed infestation early on in the growing season and to control weeds only when necessary using post‐emergence weed control. The objective of this paper was to develop and evaluate simple models to predict weed biomass in oilseed rape crops. The model input variables were related to weed population characteristics and farmers’ practices. The models can be used to classify oilseed rape plots into two categories: plots with a level of weed infestation above a threshold or those with level of weed infestation below a threshold. A data set including 3 years of experiments, conducted across several regions in France, was used to estimate the parameters and to evaluate the models. High values of sensitivity and specificity were obtained when weed biomass was predicted as a function of sowing date, type of soil tillage, soil mineral nitrogen, crop density, weed density at emergence, and main characteristics of the most abundant weed species. Model performance strongly decreased when input variables related to the weed population were not taken into account. The best models correctly classified 90% of the plots with high weed infestation and 64% of the plots with low weed infestation.  相似文献   

8.
Volunteer summer‐annual oilseed rape (sOSR; Brassica napus) is an ongoing concern in Canadian crop production. Large harvest seed losses and secondary dormancy in this species generate a persistent volunteer seedbank. Yield loss in subsequent crops, potential sOSR oil profile contamination and herbicide‐resistance trait introgression create a need for effective sOSR seedbank management. This field study evaluated the effects of timing and type of implement of post‐harvest soil disturbance and seeding a winter cereal on volunteer sOSR population persistence and demographic life‐stage transition rates at five locations in Manitoba, Canada. Following sOSR harvest and supplemental seed rain, seedbank densities ranged from 6770 to 15360 and 50 to 2610 seeds m?2 among sites in autumn and spring respectively. In contrast to European research on winter‐annual oilseed rape, early autumn soil disturbance, shortly after sOSR harvest, was the best strategy to decrease volunteer sOSR persistence (3% population persistence from autumn to spring, compared with 6% in zero tillage). Substantial autumn seedling recruitment (38% of the autumn seedbank) and subsequent winterkill contributed to lower population persistence. Soil disturbance in spring stimulated spring seedling recruitment compared with other disturbance timings (11% and 3% of the spring seedbank, respectively). The implement used for soil disturbance and seeding winter wheat (Triticum aestivum) had minimal effect on population persistence. This research showed that timing of post‐harvest soil disturbance should be utilised as an effective tactic to decrease population persistence of volunteer sOSR via stimulation of autumn seedling recruitment and concomitant winterkill.  相似文献   

9.
Three field experiments were conducted in lupin in 1997, 1998 and 1999 to study two aspects of selectivity of post‐emergence weed harrowing; the ability of the crop to resist soil covering (the initial damage effect), and the ability of the crop to tolerate soil covering (the recovery effect). Each year soil covering curves and crop tolerance curves were established in three early growth stages of lupin. Soil covering curves connected weed control and crop soil cover in weedy plots, and crop tolerance curves connected crop yield and crop soil cover in weed‐free plots. The experiments showed that both resistance and tolerance were unaffected by the growth stage of lupin within the range from the cotyledon to the 7–8 leaf growth stages. Tolerance to soil covering was also unaffected by year whereas the ability of the crop to resist soil covering was highly affected by year. Lupin showed high tolerance to soil covering but a rather low ability to resist soil covering. Harrowing at multiple growth stages supported the finding that lupin is fairly tolerant to soil covering. Advantages and disadvantages of using soil covering as a measure of crop damage is discussed. In conclusion, weed harrowing in lupin showed positive prospects because of high tolerance to crop soil cover.  相似文献   

10.
Journal of Plant Diseases and Protection - Data on weed species currently found in winter oilseed rape, the extent of their occurrence and regional distinctions were collected in autumn 2005, 2006...  相似文献   

11.
Weed control is a major concern for organic farmers around the world and non-chemical weed control methods are now the subject of many investigations. Field studies were conducted in tomato (Solanum lycopersicum L.) from 2004 to 2006 at the Black Sea Agricultural Research Institute experiment field to determine the weed suppressive effects of winter cover crops. Treatments consisted of ryegrass (Lolium multiflorum L.), oat (Avena sativa L.), rye (Secale cereale L.), wheat (Triticum aestivum L.), gelemen clover (Trifolium meneghinianum Clem.), Egyptian clover (Trifolium alexandrinum L.), common vetch (Vicia sativa L.), hairy vetch (Vicia villosa Roth.) and a control with no cover crop. Treatments were arranged in a randomized complete block design with four replications. To determine the weed suppressive effects of the cover crops, weed density and total weed dry biomass were assessed at 14, 28, and 56 days after termination (DAT) of the cover crops from all plots using a 50 × 50 cm quadrat placed randomly in each plot. After cover crop kill and incorporation into soil, tomato seedlings variety ‘H2274’ were transplanted. Broadleaved weed species were the most prominent species in both years. Total weed biomass measured just prior to cover crop incorporation into the soil was significantly lower in S. cereale plots than in the others. The number of weed species was lowest at 14 DAT and later increased at 28 and 56 DAT, and subsequently remained constant during harvest. This research indicates that cover crops such as L. multiflorum, S. cereale, V. sativa and V. villosa could be used in integrated weed management programs to manage some weeds in the early growth stages of organic tomato.  相似文献   

12.
The competitive abilities of eight winter crops were compared against Lolium rigidum Gaud, (annual ryegrass), an important weed of southern Australia, as a potential strategy to suppress weeds and reduce dependence on herbicides. Two cultivars of each species were chosen to represent the range of competitive ability within each crop and grown in field experiments in 1992 and 1993. The order of decreasing competitive ability (with the ranges of percentage yield reduction from L. rigidum at 300 plants m?2 in parenthesis) was as follows: oats (Avena sativa L.), 2–14%; cereal rye (Secale cereale L.), 14–20%; and triticale (×Triticosecale), 5–24%; followed by oilseed rape, (Brassica napus L.), 9–30%; spring wheat (Triticum aestivum L.), 22–40%; spring barley (Hordeum vulgare L.), 10–55%; and, lastly, field pea (Pisum sativum L.), 100%, and lupin (Lupinus angustifolius L.), 100%. Differences in competitive ability of cultivars within each species were identified, but competition was strongly influenced by seasonal conditions. Competition for nutrients (N, P and K) and light was demonstrated. L. rigidum dry matter and seed production were negatively correlated with grain yield of the weedy crops. More competitive crops offer the potential to suppress grass weeds while maintaining acceptable grain yields. Ways of improving the competitive abilities of grain legume crops are discussed.  相似文献   

13.
G Fried  B Chauvel  X Reboud 《Weed Research》2015,55(5):514-524
Temporally repeated data sets can provide useful information about the management practices governing changes in the arable weed flora. This study aimed (i) to investigate changes in the most common weed species in winter oilseed rape crops in France between the 1970s and the 2000s and (ii) to pinpoint the main plant biological traits and associated management practices underlying the development of a specific weed flora in this crop. We compared two large‐scale surveys covering France in the 1970s and the 2000s, the later survey including several floristic samplings, on two dates, and both herbicide‐free control and treated plots. This last survey aimed to identify the species best able to maintain high densities over a growing season of oilseed rape. Since the 1970s, the frequency of two‐thirds (69%) of the 26 most common species has changed, spectacularly in some cases, with several species once considered rare becoming very common (e.g. Geranium dissectum) and, conversely, some formerly common species becoming rarer (e.g. Stellaria media). Our results indicated a general strong increase in specialist weeds of oilseed rape. Weed species success was favoured by tolerance to oilseed rape herbicides and germination synchronous with the crop. The proportion of specialist oilseed rape weed species tended to increase with herbicide treatment intensity and to decrease with increases in the proportion of spring‐sown crops in the rotation. Changes to the rotation may therefore constitute an additional or alternative means of controlling some weeds well adapted to oilseed rape crops.  相似文献   

14.
Information on temporal and spatial variation in weed seedling populations within agricultural fields is very important for weed population assessment and management. Primarily, spatial information allows a potential reduction in herbicide use, when post‐emergent herbicides are only applied to field sections with high weed infestation levels. This paper presents a system for site‐specific weed control in sugar beet, maize, winter wheat, winter barley, winter rape and spring barley. The system includes on‐line weed detection using digital image analysis, computer‐based decision making and Global Positioning System‐controlled patch spraying. In a 2‐year study, herbicide use with this map‐based approach was reduced in winter cereals by 6–81% for herbicides against broad leaved weeds and 20–79% for grass weed herbicides. Highest savings were achieved in cereals followed by sugar beet, maize and winter rape. The efficacy of weed control varied from 85% to 98%, indicating that site‐specific weed management will not result in higher infestation levels in the following crops.  相似文献   

15.
The potential of oilseed rape to suppress weed growth while maintaining optimal yield and quality is not well understood under field conditions in Australia. This study, conducted in Condobolin and Wagga Wagga, New South Wales (NSW), during 2015 and 2016, examined a diverse range of commercial oilseed rape cultivars for their inherent ability to suppress weeds and maintain yields when in competition with natural weed infestations, with and without pre-emergent herbicide treatment. Cultivar differences were observed in oilseed rape canopy architecture and yield; however, early-season biomass, light interception, leaf area index and visual vigour ratings exhibited both year and location interactions. Cultivars with the highest biomass, light interception, leaf area indices and visual vigour were typically also the most weed-suppressive, in particular GT-50 and Hyola 600RR. Although crop and weed biomass accumulation differed significantly among cultivars for both location and year, weed biomass was inversely related to cultivar biomass in both years and locations. Hybrid Hyola and GT-50 cultivars exhibited up to 50% less weed biomass while maintaining consistently high levels of dry crop biomass. In addition, pre-emergent herbicide applications reduced weed infestation and contributed to higher crop yield in both locations and years. Given the consistent aboveground competitive ability of certain oilseed rape cultivars, our study demonstrated that diverse cultivar-dependent competitive traits such as early growth vigour, biomass production, absorption of photosynthetically active radiation and production and retention of crop residue significantly impacted weed establishment and total weed biomass. Our findings suggest that cultivar selection offers potential as a tool for maintaining suitable grain yield in the presence of weeds while potentially delaying the development of herbicide resistance through efficacious weed suppression.  相似文献   

16.
This study was conducted in the Mediterranean environment of Central Italy from 2011 to 2013 with the aim of evaluating the effects of winter cover crops and their residues on weed composition in a cover crop‐tomato sequence. Treatments consisted of five soil managements (three cover crop species ‐ hairy vetch, phacelia, white mustard, winter fallow mulched with barley straw before tomato transplanting and conventionally tilled soil), two nitrogen fertilisation levels (0 and 100 kg N ha?1) and two weed management levels (weed free and weedy) on tomato. Cover crop residues were arranged in strips on the soil surface and then used as beds for transplanting the tomato seedlings in paired rows. Rotary hoeing was performed in the bare strips between paired tomato rows. At tomato harvesting, the weed aboveground biomass and density was higher in nitrogen‐fertilised tomato than unfertilised tomato, except in hairy vetch and barley straw that showed similar values. Hairy vetch used as a cover crop and dead mulch was the most suppressive species with the highest production of residues, while phacelia and mustard were not suitable for controlling weeds. The tomato yield was high in nitrogen fertilised and weed‐free treatments, except in barley straw mulch, which showed similar values among the weed management treatments. The mulch strips caused variations in weed species composition that was mainly composed of perennial ruderal weeds, while in tilled soil, the weed flora was dominated by annual photoblastic weeds.  相似文献   

17.
Crop and density effects on weed beet growth and reproduction   总被引:1,自引:1,他引:1  
Weed beet populations growing in each crop of the arable rotation could be a relay for the gene flow from adjacent transgenic herbicide‐resistant sugarbeet. In this study, weed beet growth and reproduction were assessed under several conditions which could be found in the rotation: various weed beet densities (ranging from 1 to 120 plants m?2) and various crops (winter wheat, spring barley, spring pea, sugarbeet, maize, ryegrass). Measurements were carried out both on life‐cycle dynamics (bolting time, time to flowering onset, dynamics of flower opening) and on other quantitative data (survival rate, bolting rate and pollen, flower and seed production). Increasing weed beet density resulted in decreases in bolting rate and flower and seed production per plant. In cereals, weed beet establishment and reproduction were strongly reduced, compared with bare ground as a control situation. In pea, there was no effect on establishment, but the early harvest limited seed set. In the other crops, flower and seed production were reduced to a lesser extent. Parameters of the fitted equations on the bolting and flowering progress were modified by the weed beet density and by the crop. Our data may be used in a model predicting weed beet demographic evolution according to cropping system, and in assessing gene flow.  相似文献   

18.
Data from surveys of winter oilseed rape crops in England and Wales in growing seasons with harvests in 1987–99 were used to construct statistical models to predict, in autumn (October), the incidence of light leaf spot caused by Pyrenopeziza brassicae on winter oilseed rape crops the following spring (March/April), at both regional and individual crop scales. Regions (groups of counties) with similar seasonal patterns of incidence (percentage of plants affected) of light leaf spot were defined by using principal coordinates analysis on the survey data. At the regional scale, explanatory variables for the statistical models were regional weather (mean summer temperature and mean monthly winter rainfall) and survey data for regional light leaf spot incidence (percentage of plants with affected pods) in July of the previous season. At the crop scale, further explanatory variables were crop cultivar (light leaf spot resistance rating), sowing date (number of weeks before/after 1 September), autumn fungicide use and light leaf spot incidence in autumn. Risk of severe light leaf spot (> 25% plants affected) in a crop in spring was also predicted, and uncertainty in predictions was assessed. The models were validated using data from spring surveys of winter oilseed rape crops in England and Wales from 2000 to 2003, and reasons for uncertainty in predictions for individual crops are discussed.  相似文献   

19.
Cover crops are increasingly being used for weed suppression and to enhance the sustainability of agro‐ecosystems. However, the suitability of cover crops for weed suppression in integrated and organic conservation tillage systems is still poorly investigated. Therefore, a 2‐year field study at eight sites was conducted to test the weed suppressive potential of six legume‐based cover crops, with the aim to reduce herbicide input or mechanical weed management interventions. In all experiments, cover crops were directly sown after cereals before next year's main crop (grain maize or sunflower). The presence of cover crops caused a 96% to 100% reduction of weed dry matter at the four sites managed under integrated production, while effects were lower at the four sited managed under organic production, ranging from 19% to 87%. Cover crops that covered soil quickly and which produced much dry matter had the best weed suppressive potential. However, their weed suppressing effect was difficult to predict, as it depended on the year of the investigation, experimental site, cover crop species, the speed of soil cover in autumn and the density of the resulting mulch layer in spring. The study demonstrated that cover crops are a useful tool to suppress weeds under integrated and organic conservation tillage practices. Our recommendation for supporting weed management in conservation tillage systems is to use locally adapted cover crops that have rapid establishment, good soil coverage and high dry matter production. However, additional weed management measures are required for reliable weed control under on‐farm conditions.  相似文献   

20.
In 1991, a farming-system comparison was established on Burgrain Farm (Alberswil) to investigate the long-term sustainability of farming systems in Switzerland. In this study, the impacts of the three farming systems [organic (ORG), and integrated (IF) with an extensive (IF ext ) and an intensive (IF int ) variant] on weed dynamics and diversity in six fields planted with winter wheat, maize, summer/winter barley, potatoes/oilseed rape and temporary grassland are examined. Altogether, 51 plant species were recorded from 1999 to 2006 in the maize and winter wheat crop. Total weed ground cover prior to harvest was seven times higher for wheat and 15 times higher for maize in ORG than in IF int , but grain yields were not negatively affected. Weed diversity was higher for ORG than for IF. In the temporary grassland, Taraxacum officinale and Rumex obtusifolius increased with time and dominated the weed community in the maize which followed. Chenopodium and Polygonum species dominated in the wheat, especially in ORG. We conclude from this study that an optimal combination of direct and indirect means for controlling weeds would allow organic farming at this site, provided that problematic weeds (e.g. Elytrigia repens ) can be kept at the low level observed at the end of 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号