首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of this study was to investigate the effect of supplemental tribasic copper chloride (Cu(2)(OH(3))Cl; TBCC) vs. Cu sulfate (CuSO(4)) on Cu status and voluntary forage DMI in growing heifers. Two 90-d experiments were conducted using 48 non-pregnant, crossbred heifers (24 heifers/experiment; 355 +/- 10.7 and 309 +/- 9.9 kg for Exp. 1 and 2, respectively). In each experiment, 3 supplemental Cu treatments were randomly allocated to heifers in individual pens consisting of (1) 100 mg of Cu/d from CuSO(4), (2) 100 mg of Cu/d from TBCC, or (3) 0 mg of Cu/d. The 2 experiments differed by the form of supplement used to deliver the Cu treatments (corn- vs. molasses-based supplements for Exp. 1 and 2, respectively). Supplements were formulated and fed to provide equivalent amounts of CP and TDN daily but differed in their concentration of the Cu antagonists, Mo (0.70 vs. 1.44 mg/kg), Fe (113 vs. 189 mg/kg), and S (0.18 vs. 0.37%) for corn- and molasses-based supplements, respectively. All heifers were provided free-choice access to ground stargrass (Cynodon spp.) hay. Jugular blood and liver biopsy samples were collected on d 0, 30, 60, and 90 of each experiment. Heifer BW was collected on d 0 and 90. Heifer ADG was not affected by Cu treatment (average = 0.22 +/- 0.11 and 0.44 +/- 0.05 kg for Exp. 1 and 2, respectively; P > 0.20). In Exp. 1, heifers provided supplemental Cu, independent of source, had greater (P < 0.05) liver Cu concentrations on d 60 and 90 compared with heifers provided no supplemental Cu. In Exp. 2, average liver Cu concentrations were greater (P = 0.04) for heifers receiving supplemental Cu compared with heifers receiving no Cu; however, all treatments experienced a decrease in liver Cu concentration over the 90-d treatment period. Plasma ceruloplasmin concentrations did not differ in Exp. 1 (P = 0.83) but were greater (P = 0.04) in Exp. 2 for heifers receiving supplemental Cu compared with heifers receiving no Cu. In Exp. 1, voluntary forage DMI was greater (P < 0.05) for heifers provided supplemental Cu, independent of source, compared with heifers provided no Cu. In contrast, voluntary forage DMI was not affected (P > 0.10) by Cu supplementation in Exp. 2. These data imply that CuSO(4) and TBCC are of similar availability when offered to growing beef heifers in both corn- and molasses-based supplements. However, corn- and molasses-based supplements appear to affect Cu metabolism differently. These impacts may affect voluntary forage DMI in growing beef heifers.  相似文献   

2.
Two experiments at 2 Nebraska locations evaluated effects of heifer development system on growth and pregnancy rate. In Exp. 1, heifers (n=270, BW=225 ± 2 kg) grazed winter Sandhills range (WR) or west central Nebraska corn residue (CR) with a supplement (0.45 kg/animal; 31% CP; 80 mg·animal(-1)·d(-1) of monensin). In Exp. 2, heifers (n=180, BW = 262 ± 3 kg) grazed eastern Nebraska WR or CR with a supplement (0.45 to 0.90 kg/d; 31% CP; 80 to 160 mg·animal(-1)·d(-1) of monensin). The CR heifers tended to have less (P=0.10) ADG compared with WR heifers before breeding in Exp. 1; however, prebreeding ADG was similar (P=0.77) in Exp. 2. Prebreeding BW, percentage of mature BW at breeding, and pregnancy determination BW were similar (P ≥ 0.14) for CR and WR in both experiments. Percentage of heifers pubertal at breeding, AI conception, and AI pregnancy rate (Exp. 2) and final pregnancy rate in both experiments were also similar (P ≥ 0.27) for CR and WR heifers. Precalving BW, percentage of calves born in the first 21 d, calf birth date, calf birth BW, and dystocia score were all similar (P ≥ 0.21) for CR and WR heifers in both experiments. Cow BW at weaning, calf weaning BW, adjusted 205-d calf BW, and second season pregnancy rates were not affected (P ≥ 0.16) by treatment. Heifer development system did not affect (P ≥ 0.56) the cost of producing 1 pregnant heifer in Exp. 1 or 2. Development on CR may reduce ADG before breeding, but did not affect pregnancy rate. Heifer development using CR or WR postweaning resulted in similar reproductive performance and development cost.  相似文献   

3.
In vitro digestion and growth studies were conducted to evaluate the effects of level of soybean oil inclusion in forage-based diets. In Exp. 1, diets were bromegrass hay (H), bromegrass hay and corn-soybean meal supplement (C), C with 3% added soybean oil (O3), and C with 6% added soybean (O6). Diets containing supplements were formulated to be isonitrogenous and isocaloric. Treatment means were compared using a single-degree-of-freedom contrast (H vs C, O3, and O6) and orthogonal polynomial contrasts within diets C, O3, and O6. Diet H had the lowest (P = .0003) IVDMD and a linear decline (P = .0001) in IVDMD was observed from C to O6, but 24-h IVDMD disappearance was greatest (P = .001; quadratic) for O3. Total VFA increased from C to O3 and then decreased from O3 to O6 (quadratic; P = .001), and acetate:propionate ratio decreased linearly (P = .0001) from C to O6. Changes in long-chain fatty acids reflected biohydrogenation by ruminal microbes; however, only 18:3 was hydrogenated to the same extent across all diets. In Exp. 2, 36 Angus x Gelbvieh heifers (260.0 +/- 6.0 kg initial BW) were individually fed C, O3, or O6 as mixed rations for 104 d. Diets were formulated to be isonitrogenous and provide ADG of .91 kg. Feed efficiency and ADG was greatest (P < .02; quadratic) for O3 heifers. Serum NEFA increased linearly (P = .02) and serum glucose (P = .02), cholesterol (P = .002), and GH (P = .04) showed a quadratic response to level of dietary soybean oil. Plasma proportions of 16:0, 16:1, 18:0, and 18:1 increased quadratically (P < .03), and 18:2 increased linearly (P < .001) from C to O6. In Exp. 3, 42 Angus x Gelbvieh heifers (288.7 +/- 6.6 kg initial BW) were divided into six pens (two pens/treatment) in a randomized complete block designed experiment. Rations were delivered as hay plus a top-dressed supplement (C, O3, or O6). Heifers fed O3 conceived 10 d earlier (quadratic; P = .06) than heifers fed C and O6. Other production estimates did not differ (P > or = .10) among dietary treatments. Inclusion of soybean oil at 3% of a forage-based diet increased total VFA, many blood metabolites, ADG, and feed efficiency, and it decreased time to conception. Adding soybean oil as 3% of a forage-based diet is an acceptable feeding strategy for developing beef heifers.  相似文献   

4.
Three experiments were conducted to evaluate plasma concentrations of glucose, insulin, IGF-I, and progesterone (P4) in pubertal beef heifers receiving exogenous glucose, insulin, or sometribove zinc. All heifers used had no luteal P4 synthesis but received a controlled internal drug-releasing device containing 1.38 g of P4 to estimate treatment effects on hepatic P4 degradation. In Exp. 1, 8 pubertal, nulliparous Angus × Hereford heifers (initial BW = 442 ± 14 kg; initial age = 656 ± 7 d) were randomly assigned to receive, in a crossover design containing 2 periods of 10 h, intravenous (i.v.) infusions (10 mL) of insulin (1 μg/kg of BW; INS) or saline (0.9%; SAL). Treatments were administered via jugular venipuncture in 7 applications (0.15 μg insulin/kg BW per application) 45 min apart (from 0 to 270 min). Blood samples were collected immediately before each infusion as well as at -120, -60, 330, 390, and 450 min relative to the first infusion. Heifers receiving INS had greater (P < 0.01) plasma insulin, reduced (P ≤ 0.04) plasma glucose and IGF-I, and similar (P = 0.62) plasma P4 concentrations compared with SAL heifers. In Exp. 2, the same heifers were assigned to receive, in a similar experimental design as Exp. 1, i.v. infusions (10 mL) of 1) insulin (1 μg/kg BW) and glucose (0.5 g/kg BW; INS+G) or 2) SAL. Heifers receiving INS+G had greater (P ≤ 0.02) plasma insulin, glucose, and P4 but reduced (P = 0.01) plasma IGF-I concentrations compared with SAL heifers. In Exp. 3, the same heifers were assigned to receive, in a crossover design containing 2 periods of 14 d, subcutaneous (s.c.) injections of 1) 250 mg of sometribove zinc (BST) or 2) SAL. Blood samples were collected 3 h apart (0900, 1200, 1500, and 1800 h) from heifers on d 6, 8, and 10 relative to treatment administration (d 1). Heifers receiving BST had greater (P < 0.01) plasma glucose and IGF-I and similar (P ≥ 0.67) plasma insulin and P4 concentrations compared with SAL heifers. Results from this series of experiments suggested that concurrent increases in glucose and insulin are required to reduce hepatic catabolism and increase plasma concentrations of P4 in bovine females.  相似文献   

5.
6.
High fat range supplement (HFRS) and HFRS with lipid from soybean soapstock (HFRS-SPH; Consolidated Nutrition, Omaha, NE) were compared with a corn-soybean meal supplement (control). In Exp. 1, primiparous cows were individually fed the control supplement (n = 12), HFRS (n = 12), or HFRS-SPH (n = 10) for 62 ± 2 d prepartum. Heifer body condition score pre- and postpartum did not differ (P=0.78) among groups. Milk production was not influenced (P=0.15) by source of supplement. Somatic cell counts, however, tended to be less (P=0.07) in HFRS-supplemented heifers than in heifers fed the control supplement. At birth, calf body temperature (P=0.8), vigor (P=0.7), and BW (P=0.6), as well as BW gain through 90 d postpartum (P=0.6), did not differ among prepartum supplementation treatments. Plasma concentrations of linoleic acid were greater (P=0.02) in fat-supplemented heifers at 30 d prepartum and at calving compared with heifers on the control treatment; however, concentrations of plasma linoleic acid returned to levels comparable with those in control heifers by 30 d postpartum. Neither number of cows cycling by 90 d postpartum (P=0.15) nor length of the postpartum interval (P=0.25) differed among treatment groups. In Exp. 2, multiparous cows were pen-fed the control supplement (n = 49), HFRS (n = 47), or HFRS-SPH (n = 49) for 59 ± 2 d prepartum. Prior to parturition, cows fed the control supplement had better body condition scores (5.8 ± 0.1; P=0.004) than cows fed either commercial supplement (5.4 ± 0.1). Calf performance (P=0.7) and conception rates (P= 0.5) did not differ among treatments. Productivity of cows and calves was not improved with provision of supplemental fat prepartum.  相似文献   

7.
Crossbred heifers (n = 120; BW = 368 kg, SD = 39 kg) were used to determine effects of dried distillers grains (DDG) and relative contributions of undegradable intake protein (UIP) and fat (ether extract, EE) in DDG on ADG and forage intake (FI). Heifers rotationally grazed six 3.5-ha, smooth bromegrass paddocks (IVDMD = 65.7%, CP = 20.8%, UIP = 2.17%, DM basis). Heifers were blocked by previous ADG and allotted to treatments in a 3 x 3 + 1 factorial design. Factors were source and level of supplementation. Supplements were as follows: 1) DDG (UIP = 15.8%, EE = 9.67%), 2) corn gluten meal (CGM; UIP = 31.6%, EE = 0.83%), or 3) corn oil (OIL; UIP = 0.74%, EE = 19.3%). Amounts of DDG were 750, 1,500, or 2,250 g/d, whereas amounts of CGM and OIL were 375, 750, or 1,125 g/ d. Supplements containing CGM and OIL were fed in amounts that provided UIP and EE, respectively, equivalent to those of the DDG. Contrasts of interest were DDG vs. CGM and DDG vs. OIL. Control heifers were fed 250 g/d of a supplement containing corn bran and molasses (UIP = 0.92%, EE = 1.13%). Heifers were supplemented individually. Treatments were separated by regressing the response variables on grams of nutrient (DM, UIP, or EE) intake per kilogram of BW, because not all heifers consumed their allotment of supplement. Supplemental DDG resulted in a linear increase in ADG (P < 0.01), whereas CGM tended to increase ADG (P = 0.14) but at a rate that was 39% of that for DDG, representing a response to MP. Supplementation of OIL did not affect ADG (P = 0.25) and tended to result in ADG less than that of DDG (P = 0.09). Supplementation with DDG had no effect (P = 0.63) on FI when predicted by the use of chromic oxide but tended (P = 0.07) to decrease FI when it was predicted from ADG using NE equations. Despite the differences between methods in the significance of the effect of DDG, the rates of substitution agreed (-0.50 and -0.45 for chromic oxide and NE equations, respectively), suggesting that the chromic oxide method was less sensitive in assessing FI. Supplementation with CGM decreased FI (P < 0.01), but FI for CGM did not differ from that of DDG when the chromic oxide method was used (P = 0.19). Corn oil had no effect on FI (P = 0.42). Increased ADG and decreased FI observed from DDG supplementation is not independently explained by UIP or EE contained in DDG.  相似文献   

8.
Three trials were conducted to evaluate poultry manure as a CP and mineral supplement in high concentrate diets limit-fed to gestating and lactating beef cows and heifers. Trial 1 used 67 pregnant Simmental x Angus beef cows (BW, 640 ± 6 kg). During this 126-d trial, no differences (P>0.10) in BW changes or body condition scores (BCS) were observed between cows provided supplemental CP and minerals from either poultry manure or a soybean meal-based protein and mineral supplement. Feed costs per day were lower for cows fed diets supplemented with poultry manure ($0.82) than for those fed diets supplemented with the soybean meal-based protein and mineral supplement ($1.11) and were much lower than those for cows fed an all hay diet offered for ad libitum intake ($1.46). In Trial 2, 26 pregnant Simmental x Angus beef heifers (BW, 503 ± 11 kg) were used to determine the efficacy of poultry manure as a source of energy, protein, and minerals. No differences (P>0.10) in performance were observed between heifers consuming a low poultry manure diet (4.6 kg/d corn and 1.1 kg/d poultry manure) or a high poultry manure diet (3.1 kg/d corn and 3.2 kg/d poultry manure). Feed costs per day were lower for heifers on the high poultry manure treatment ($0.61 vs $0.73 for high and low poultry manure treatments, respectively). Trial 3 was conducted with 61 beef cows and 23 beef heifers in late gestation. Animals consuming the poultry manure-supplemented, corn-based diet lost more weight during both the gestation (P<0.10) and lactation periods (P<0.05) than those fed the soybean meal-based protein and mineral supplement. Overall BCS change was similar among treatments (P=0.31). Feed costs per day were lower for cows fed supplemental poultry manure ($0.82) than for those fed the soybean meal-based protein and mineral supplement ($1.11). Poultry manure was a more economical source of supplemental CP and minerals than a soybean meal-based protein and mineral supplement when fed to meet nutrient needs of cows that were limit-fed a corn-based diet. Effects on cow performance were minimal.  相似文献   

9.
We conducted three experiments to determine the effects of increasing L-lysine HCl in growing-finishing pig diets. Experiments 1 and 2, conducted at the Kansas State University research center, each used 360 growing-finishing pigs with initial BW of 56 and 63 kg, respectively. Dietary treatments were sorghum- (Exp. 1) or corn- (Exp. 2) soybean meal-based and consisted of a control (no L-lysine HCl) or 0.15, 0.225, and 0.30% L-lysine HCl replacing lysine provided by soybean meal. Experiment 3 was conducted in a commercial research facility using a total of 1,200 gilts with an initial BW of 29 kg. Pigs were allotted to one of eight dietary treatments fed in four phases. These consisted of a positive control diet with no added L-lysine HCl and the control diet with 0.05, 0.10, 0.15, 0.20, 0.25, and 0.30% L-lysine HCl replacing the lysine provided by soybean meal. The eighth dietary treatment was a negative control diet with no added L-lysine HCl and formulated to contain 0.10% less total lysine than the other treatments to ensure that dietary lysine was not above required levels. In Exp. 1, increasing L-lysine HCl decreased (linear, P < 0.01) ADG, feed efficiency (G:F), and percentage lean and increased (linear, P < 0.01) backfat depth. In Exp. 2, increasing L-lysine HCl decreased (quadratic, P < 0.03) ADG, G:F, and ADFI, but carcass characteristics were not affected. In Exp. 3, increasing L-lysine HCl decreased ADG (linear, P < 0.01) and G:F (quadratic P < 0.03). In all three experiments, the greatest negative responses were observed when more than 0.15% L-lysine HCl was added to the diet. Therefore, unless other synthetic amino acids are added to the diet, no more than 0.15% L-lysine HCl should replace lysine from soybean meal in a corn- or sorghum-soybean meal-based diet to avoid deficiencies of other amino acids. Based on the content of diets containing 0.15% Lysine-HCl, it appears the requirements for methionine plus cystine expressed as ratios relative to lysine are not greater than 50% during the early growing-finishing period (30 to 45 kg) and 62% during the late finishing period (90 to 120 kg) on a true digestible basis. For similar periods, the ratio requirements for threonine are not greater than 59% and 64% on a true digestible basis.  相似文献   

10.
Spring-born Hereford x Angus heifers (n = 206) were used to determine effects of energy supplementation programs and amount of starch in the diet on incidence of puberty. In Exp. 1, heifers (205 +/- 5 kg; n = 68) grazing dormant native pasture were fed 0.9 kg/d (as-fed basis) of a 42% CP supplement from November until February 14. Heifers were stratified by weaning weight and allotted randomly to treatment before breeding (May to July). Treatments were 1) 0.9 kg (as-fed basis) of a 42% CP supplement/d and pasture (control); 2) a high-starch (HS) diet (73% corn; 53% starch) fed in a drylot for 60 d (HS-60); 3) a HS diet fed in drylot for 30 d (HS-30); or 4) a low-starch (LS) diet (49% corn; 37% starch) self-fed on pasture for 30 d (LS-30). The HS-60 and HS-30 heifers were limited-fed to gain 0.9 kg/d, and the LS-30 heifers had ad libitum access to the diet. High-starch-60 and LS-30 heifers were heavier (P < 0.05) than control and HS-30 heifers at the beginning of the breeding season. Thirty-one, 25, and 26% more HS-60 heifers were pubertal (P < 0.05) on May 1 compared with LS-30, HS-30, and control heifers, respectively. At puberty, HS-60 heifers were 24 and 22 d younger (P < 0.05) than LS-30 and control heifers, and 31 kg lighter (P < 0.01) than LS-30 heifers. In Exp. 2, heifers grazed dormant pasture and were fed 0.9 kg (as-fed basis) of a 42% CP supplement/d from weaning in October to late February; then heifers were assigned randomly to treatments for 60 d before the breeding season. In two years, control heifers (n = 46) grazed pasture and received 0.9 kg of SBM supplement/d; LS (n = 46) heifers were self-fed a distiller's grain and soybean hull-based diet in drylot; and HS heifers (n = 46) were limited-fed a corn-based diet in drylot. During treatment, HS and LS heifers had greater weight gains than control heifers. Pubertal BW (313 +/- 6 kg) was not influenced by treatment, but HS and LS heifers were younger (P < 0.03) than control heifers at puberty. During a 60-d breeding period, the incidence of puberty was greater (P < 0.05) for HS and LS heifers than for control heifers and was greater (P < 0.05) in HS than in LS heifers in Year 1. Feeding a LS or a HS diet for 30 d before breeding may be inadequate to stimulate puberty in beef heifers, but feeding a diet with a greater amount of starch for 60 d before breeding may increase the incidence of puberty during breeding of heifers that have inadequate yearling weight.  相似文献   

11.
Economically viable options for retaining ownership of spring-born calves through a winter backgrounding program are somewhat limited in the southeastern United States. Although sod-seeded winter annual forages produce less forage than those same forages planted using conventional tillage practices, sod-seeded winter annual forages have the potential to provide a low-cost, rapid-gain, ecologically and economically viable option for retaining ownership of fall-weaned calves. A study was conducted during the winters of 1998, 1999, and 2000 using 180 crossbred calves (261 +/- 2.8 kg initial BW; n = 60 each year) to compare sod-seeded winter annual forages with conventional hay and supplement backgrounding programs in southeast Arkansas. Calves were provided bermudagrass hay (ad libitum) and a grain sorghum-based supplement (2.7 kg/d) on 1-ha dormant bermudagrass pastures or were grazed on 2-ha pastures of bermudagrass/dallisgrass overseeded with 1) annual ryegrass, 2) wheat plus annual ryegrass, or 3) rye plus annual ryegrass at a set stocking rate of 2.5 calves/ha. Calves grazed from mid-December until mid-April but were fed bermudagrass hay during times of low forage mass. Mean CP and IVDMD concentrations were 19.0 and 71.1%, respectively, across sampling dates and winter annual forages, but three-way interactions among forage treatments, year, and sampling date were detected (P < 0.01) for forage mass, concentrations of CP, and IVDMD. The IVDMD of rye plus ryegrass was greater (P < 0.05) than that of ryegrass in yr 2. A forage treatment x sampling date interaction was detected for forage CP in yr 1 (P < 0.05) and 2 (P = 0.05) but not in yr 3 (P = 0.40). Forage mass did not differ (P > or = 0.22) among winter annual treatments on any sampling date. During the first 2 yr, calves fed hay plus supplement gained less (P < 0.05) BW than calves that grazed winter annual forages; gains did not differ (P > or = 0.23) among winter annual treatments. During the 3rd yr, undesirable environmental conditions limited growth of the winter annual forages; total gain did not differ (P = 0.66) among the four treatments. Winter annual forages offer potential to provide high-quality forage for calves retained until spring, but consistent forage production and quality are a concern when sod-seeding techniques are used.  相似文献   

12.
A digestion study with 28 yearling heifers (428 +/- 9.9 kg; Exp. 1) and a 2-yr winter grazing trial with 60 crossbred cows (552 +/- 6.9 kg; Exp. 2) were used to determine the effects of level of nonstructural carbohydrate (NSC) supplementation on intake and digestibility of low-quality forage. Treatments were as follows: 1) control, no supplement; 2) 0.32 kg of NSC (1.8 kg/d of soybean hulls and soybean meal; DM basis); 3) 0.64 kg of NSC (1.7 kg/d of wheat middlings; DM basis); and 4) 0.96 kg of NSC (1.7 kg/d of barley and soybean meal; DM basis). Supplements provided 0.34 kg of CP/d and 5.1 Mcal of ME/d. In Exp. 1, heifers were individually fed hay (5.5% CP, DM basis) and their respective supplements in Calan gates for 28 d. Data were analyzed as a completely randomized design. In Exp. 2, cows were individually fed supplement on alternate days, and grazed a single rangeland pasture stocked at 1.8 ha/ animal unit month. Two ruminally cannulated cows were used per treatment to obtain forage extrusa and to measure in situ DM disappearance (DMD) and carboxymethylcellulase (CMCase) activity of particle-associated ruminal microbes. Data were analyzed as a completely randomized design with the effects of treatment, year, and their interaction. In both experiments, Cr2O3 boluses were used to determine fecal output, individual animal was the experimental unit, and contrasts were used to test linear and quadratic effects of NSC level and control vs. supplemented treatments. In Exp. 1, hay and diet DM, NDF, and CP intakes and digestibilities were increased (P < 0.01) by NSC supplementation compared with the control. In Exp. 2, 72-h in situ DMD and CMCase were decreased linearly (P < 0.08) with increasing NSC supplementation. Intake of forage DM, NDF, and CP was decreased linearly (P < 0.01) with increasing NSC supplementation during both years. Supplementation with NSC decreased (P = 0.01) cow BW loss compared with the control in yr 1, whereas in yr 2, cow BW loss was linearly increased (P = 0.03) by increasing NSC supplementation. Supplements containing NSC improved forage digestion and intake when heifers consumed forage deficient in CP relative to energy (digestible OM:CP > 7), but decreased forage digestion and intake when cows grazed forage with adequate CP relative to energy (digestible OM:CP < 7). Forage and supplement digestible OM:CP seemed to be superior predictors of response to supplementation with NSC compared with forage CP levels alone.  相似文献   

13.
Two hundred ninety-nine Angus-based, nulliparous heifers (253 ± 2 kg initial BW) from 3 production years were utilized to compare traditional postweaning dry lot (DL) development with a more extensive winter grazing system utilizing a combination of corn residue and winter range (EXT). Heifers developed in the DL were offered a common diet after the weaning period for 208 d in yr 1, 194 d in yr 2, and 150 d in yr 3 until breeding. Heifers developed in EXT grazed corn residue for 135 d in yr 1, 106 d in yr 2, and 91 d in yr 3, and then fed in the DL until breeding (yr 1) or grazed dormant winter grass for approximately 60 d before being fed in the DL (yr 2 and 3). All 3 years, heifers were estrus synchronized, with timed AI performed in yr 1. In yr 2 and 3, estrus was detected and those detected in estrus were artificially inseminated approximately 12 h later. Heifers were exposed to bulls 10 d after the last AI for 60 d while grazing summer pasture. During the winter grazing period, EXT heifers gained less (P = 0.01) BW than DL heifers and EXT heifers had lighter (P = 0.02) BW at breeding. Fewer (P < 0.01) EXT heifers reached puberty before breeding. Conception to AI was not different (P = 0.23); however, AI pregnancy rate tended (P = 0.08) to be less in EXT heifers. Final pregnancy rates were not different (P = 0.38) between treatment groups. Although EXT heifers had lighter (P = 0.02) BW at pregnancy diagnosis; however, they did compensate with greater (P = 0.05) ADG after breeding, resulting in similar (P = 0.22) precalving BW. Winter development system did not influence (P > 0.10) percentage of calving in the first 21 d, calf birth date, and calf birth BW, or dystocia score. Pregnancy rate after the second breeding season was not different (P = 0.56) between treatments. Heifer development using extended winter grazing reduced (P < 0.01) the cost of producing a pregnant heifer by $45 compared with DL.  相似文献   

14.
Two experiments were conducted to evaluate the effects of Cu and Zn source on performance, morbidity, and humoral immune response in lightweight, newly received beef heifers. A 2 x 2 factorial arrangement of treatments was used in both experiments, with either a sulfate or a polysaccharide mineral complex (SQM) source of both Cu and Zn as the factors. Supplemental Cu and Zn were included in the receiving diet at concentrations designed to provide 10 mg of Cu/kg and 75 mg of Zn/kg (DM basis). In Exp. 1, 219 newly received beef heifers (British x Continental, average initial BW = 208 kg) were given ad libitum access to a 65% concentrate diet for 35 d to determine treatment effects on DMI, ADG, G:F, and bovine respiratory disease (BRD) morbidity. In Exp. 2, 24 heifers (average initial BW = 272 kg) were fed a diet with no supplemental Cu or Zn for 35 d, followed by fasting-refeeding-fasting stress, after which the same treatment diets used in Exp. 1 were fed for 21 d to examine the effects on humoral immune response (plasma IgG titer determined by ELISA on d 7, 14, and 21) to an ovalbumin (OVA) vaccine given on d 0 and 14. Copper source x Zn source interactions were not detected in either experiment. In Exp. 1, neither Cu nor Zn source affected (P > 0.10) DMI, ADG, G:F, or BRD morbidity. In Exp. 2, d 14 (P = 0.02) and 21 (P = 0.06) OVA titers were greater for heifers that received SQM Zn compared with heifers receiving ZnSO4, but heifers receiving CuSO4 had greater OVA titers than did heifers on the SQM Cu treatment on d 14 (P = 0.01) and 21 (P = 0.001). In summary, neither supplemental Cu nor Zn source affected performance or morbidity of lightweight, newly received heifers; however, source of both Cu or Zn affected the humoral immune response to OVA, although source effects were not consistent for the two minerals.  相似文献   

15.
Two experiments were conducted to compare the performance and physiological responses of forage-fed beef females supplemented with either a molasses-based (ML) or a citrus pulp-based (CT) supplement. In Exp. 1, BW gain, reproductive performance, and concentrations of blood urea N (BUN), plasma glucose, insulin, IGF-I, and progesterone (P4) were assessed in 60 Brahman x Angus heifers supplemented 3 times weekly with either ML or CT. Supplement intakes were formulated to be isocaloric and isonitrogenous. Reproductive performance was not affected by treatments, but mean BW gain was greater (P < 0.01) for heifers fed CT than for those fed ML (0.40 vs. 0.30 kg/d). Mean plasma concentrations of glucose, insulin, and IGF-I were greater (P < 0.05) for heifers fed CT, whereas BUN was greater (P < 0.05) for heifers fed ML. Mean plasma P4 concentration did not differ between treatments, but both groups had lower plasma P4 concentrations during days that supplements were offered (P < 0.01). In Exp. 2, forage DMI and concentrations of BUN, plasma glucose, insulin, IGF-I, and P4 were assessed in 24 Brahman x British mature cows supplemented with the same treatments described in Exp. 1. Overall forage DMI did not differ between treatments, but a day effect and a treatment x day interaction were detected (P < 0.05). Both groups consumed less forage during the days on which the supplements were offered (P < 0.01), and forage DMI for cows fed CT was less (P < 0.05) than for cows fed ML during those days. No differences were detected in any blood or plasma measurement. In addition, no differences in concentrations of P4 were detected between CT- and ML-fed cows. We concluded that CT-supplemented heifers had greater BW gain compared with ML-supplemented heifers, but no differences in reproductive performance were observed. We also observed that CT-supplemented cows had a greater variability in forage DMI compared with ML-supplemented cows.  相似文献   

16.
Crambe meal was compared to a combination of sunflower and soybean meal as a protein supplement for mature beef cows in two experiments. In Exp. 1, cows (n = 80, average BW 651+/-14.4 kg) were fed crambe meal at 9.86% of dry matter intake (DMI) during the last trimester of gestation. No differences (P < .05) were detected due to treatment for cow weight, condition score, thyroid hormones, calf birth weight, or calving interval. In Exp. 2, cows (n = 100, average BW 566+/-6.82 kg) were fed crambe meal at 7.44% of DMI during the last trimester of gestation and at 8.33% of DMI during early lactation (53+/-6 d of lactation). Gains were greater during gestation (P = .09) and throughout the supplementation period (P = .06), and days to first estrus were reduced (P < .01) for cows fed crambe meal. During lactation, serum triiodothyronine (T3) concentrations did not decline as much (P = .03) in cows fed crambe meal as in cows fed sunflower-soybean meal-based supplements. No differences (P > .10) were apparent for condition score, birth weight, calf growth rate, weaning weight, thyroid hormones during gestation, or calving interval. These data indicate that crambe meal fed at the levels used in this experiment can be used as a protein supplement for beef cows without negatively affecting cows' performance.  相似文献   

17.
Effects of bovine respiratory disease (BRD) on stocker cattle systems are unknown under extensive rangeland environments. Three experiments were conducted to test the hypothesis that BRD-based morbidity is a major factor affecting the productivity and profitability of stocker cattle grazing Southern Plains rangelands. In Exp. 1 (658 male calves; average BW = 231 kg), 17% of the cattle were treated for BRD <8 d, 6% for 8 to 14 d, and 8% for >14 d. Morbid cattle had lower ADG than did healthy cattle (P < 0.10). Cattle requiring 14 d of pharmaceutical therapy gained less than cattle having <14 d therapy (P < 0.01). In Exp. 2, (279 steers and bulls; average BW = 216 kg), the ADG by steers (0.74 kg x animal(-1) x d(-1)) was greater (P < 0.05) than by bulls castrated after arrival (0.64 kg x animal(-1) x d(-1)). Castration after arrival led to a 13.5% loss in daily gain and a 10.3% loss in season-long gain. More (P < 0.05) bulls castrated after arrival (60%) were morbid compared with steers (28%). In Exp. 3, 633 heifers (average BW = 251 kg) were used to test the effects of morbidity on weight gain and reproduction. Heifers with lower initial weights exhibited increased (P < 0.05) morbidity. Heifers requiring two or more antibiotic treatments gained 0.03 kg/d less (P < 0.10) than did healthy heifers and had lower (P < 0.05) conception rates (66 vs. 81%). Conception rate in twice-treated heifers was 19% less than healthy heifers. Morbid heifers conceived 0.6 mo later (P < 0.05) than healthy heifers. Under the conditions of Exp. 1 and Exp. 2, morbidity decreased net returns 9.7 to 21.3% per animal. Adjusted gross returns per animal in Exp. 3 for replacement heifers were 3 to 7.8% less for morbid heifers.  相似文献   

18.
Three experiments were conducted to determine the optimal true ileal digestible (TID) Trp:Lys ratio for 90- to 125-kg barrows. Basal diets contained 0.55% TID Lys and were either corn-based (Exp. 1) or corn- and soybean meal-based (Exp. 2 and 3) diets supplemented with crystalline AA. In addition, each experiment contained a corn-soybean meal control diet. The number of pigs per pen progressively increased, with pigs housed in 2 (n = 82; initial and final BW of 88.5 and 113.6 kg, respectively), 7 (n = 210, initial and final BW of 91.2 and 123.3 kg, respectively), or 20 to 22 (n = 759; initial and final BW of 98.8 and 123.4 kg, respectively) pigs per pen for each successive experiment. Pigs in Exp. 1 were fed 6 incremental additions of L-Trp, equating to TID Trp:Lys ratios of 0.109, 0.145, 0.182, 0.218, 0.255, and 0.290. For the 28-d period, there was a quadratic improvement in G:F (P = 0.05) and ADG (P = 0.08) with increasing TID Trp:Lys, characterized by an improvement in performance of pigs fed the basal diet compared with those consuming diets with a 0.145 TID Trp:Lys ratio, with a plateau thereafter as TID Trp:Lys increased. Pigs fed the control diet had less increase in backfat depth than the average of pigs fed the titration diets (1.30 vs. 4.09 mm, respectively; P = 0.02), but pork quality was unaffected by dietary treatment. Pigs in Exp. 2 were fed 4 incremental additions of L-Trp, equating to TID Trp:Lys ratios of 0.130, 0.165, 0.200, and 0.235. Average daily gain and ADFI increased in a linear fashion with increasing TID Trp:Lys for the 29-d trial (P < 0.01), with quadratic improvements in d-29 BW (P = 0.06) and G:F (P = 0.05). Pigs fed the diet containing a TID Trp:Lys ratio of 0.165 had greater d-29 BW, ADG, G:F, and lower serum urea N concentration than pigs fed the basal diet (P < 0.05), but were similar to pigs fed TID Trp:Lys ratios of 0.200 and 0.235 for all criteria measured. In Exp. 3, TID Trp:Lys ratios of 0.13, 0.15, 0.17, 0.19, and 0.21 were evaluated. The response to increasing TID Trp:Lys was limited to a quadratic (P < 0.10) improvement in G:F with increasing TID Trp:Lys ratios. Maximum G:F was noted at a TID Trp:Lys ratio of 0.17. No relationship was noted between TID Trp:Lys and carcass characteristics. These experiments demonstrate that the minimum TID Trp:Lys ratio for pigs from 90 to 125 kg of BW is at least 0.145, but not greater than 0.17.  相似文献   

19.
Dried distillers grains plus solubles (DDGS) contain fat and rumen undegradable intake protein, both of which have been shown to increase reproductive performance in heifers. The mechanisms leading to enhanced reproduction have not been fully defined. The objectives of this research were to evaluate effects of DDGS in late gestation heifer diets on animal and reproductive performance and on blood plasma concentrations of GH, IGF-I, and NEFA. Over 2 yr, 201 heifers were randomly allotted to 1 of 2 diets, which were similar in energy and adequate in rumen degradable intake protein and were fed from d 190 of gestation through calving. Diets were grass hay with DDGS or soybean hulls (SBH) and a supplement. Cow BW and BCS were measured from the beginning of treatment through weaning. Blood samples were collected prepartum on d 71 and 69 of the feeding period and weekly after calving for 4 and 6 wk (d 84 to 105 and d 76 to 111 relative to the feeding period) during yr 1 and 2, respectively. No treatment x year interactions were detected for any of the performance, hormonal, or reproductive dependent variables. Both treatments caused positive BW changes over the feeding period, but DDGS heifers had a greater (P < 0.01) positive BW change compared with SBH heifers. Initial and final BCS and BCS change were similar (P >/= 0.26) between DDGS and SBH treatments. Treatment did not influence (P >/= 0.12) BW or BCS change during the postpartum period. Calving ease, calf vigor, and calf birth weight, weaning weight, and ADG (birth to weaning) were similar (P >/= 0.41) between treatments. The proportion of cows that had initiated estrous cycles (P = 0.46) and the pregnancy distribution (P >/= 0.21) were similar between treatments. However, a greater (P = 0.058) percentage of DDGS cows became pregnant compared with SBH cows (94 and 84%). In both years, there were no effects of treatment (P >/= 0.17) or treatment x time (P >/= 0.52), but time influenced (P 0.10) for the duration of the sampling period. Concentrations of NEFA increased from calving through d 8 and gradually declined through d 20. Prepartum diets containing DDGS, a source of fat and UIP, benefited pregnancy rates in well-maintained, primiparous beef heifers.  相似文献   

20.
Effect of supplementation frequency and supplemental urea level on forage use (Exp. 1) and performance (Exp. 2 and 3) of beef cattle consuming low-quality tallgrass-prairie were evaluated. For Exp. 1 and 2, a 2 x 2 factorial treatment structure was used, such that two supplements (30% CP) containing 0 or 30% of supplemental degradable intake protein (DIP) from urea were fed daily or on alternate days. In Exp. 1 and 2, supplement was fed at 0.41% BW daily or at 0.83% BW (DM basis) on alternate days. For Exp. 3, a 2 x 4 factorial treatment structure was used, such that four supplements (40% CP) containing 0, 15, 30, or 45% of supplemental DIP from urea were fed daily or 3 d/wk. Supplements were group-fed at 0.32% BW daily or at 0.73% BW (DM basis) 3 d/wk. In Exp. 1, 16 Angus x Hereford steers (initial BW = 252 kg) were blocked by BW and assigned to treatment. Urea level x supplementation frequency interactions were not evident for forage intake, digestion, or rate of passage. Forage OM intake (OMI) and total digestible OMI (TDOMI) were not significantly affected by treatment. Total-tract digestion of OM (P = 0.03) and NDF (P = 0.06) were greater for steers supplemented daily. In Exp. 2, 48 Angus x Hereford cows (initial BW = 490 kg) grazing winter tallgrass prairie were used. Significant frequency x urea interactions were not evident for BW and body condition (BC) change; similarly, the main effects were not substantive for these variables. In Exp. 3, 160 Angus x Hereford cows (initial BW = 525 kg) grazing dormant, tallgrass prairie were used. Supplement refusal occurred for cows fed the highest urea levels, particularly for cows fed the supplement with 45% of the DIP from urea 3 d/wk, and supplement refusal increased closer to calving. A frequency x urea interaction (P = 0.02) was observed for prepartum BW changes. As supplemental urea level increased, prepartum BW loss increased quadratically (P = 0.02); however, a greater magnitude of loss occurred when feeding supplements containing > or = 30% of DIP from urea 3 d/ wk. Cumulative BC change followed a similar trend. In conclusion, moderate protein (< or = 30% CP) supplements with < or = 30% of supplemental DIP from urea can be fed on alternate days without a substantive performance penalty. However, infrequent feeding of higher protein (> 30% CP) supplements with significant urea levels (> 15% of DIP from urea) may result in decreased performance compared with lower urea levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号