首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the role of earthworms in soil functioning is often emphasised, many important aspects of earthworm behaviour are still poorly understood. In this study we propose a simple and cost-effective method for estimating burrow system area and continuity, as well as a new and often neglected parameter, the percentage of burrow refilling by the earthworms own casts. This novel parameter is likely to have a huge influence on the transfer properties of the burrow system. The method uses standard repacked soil cores in PVC cylinders and takes advantages of clay shrinkage and the fact that earthworms were previously shown to prefer to burrow at the PVC/soil interface. In this way, after removing the PVC cylinders off dry cores, the external section of the burrow system made by earthworms along the soil walls could be easily described. We applied this method to characterise the burrow systems of four earthworms species: two anecics (Aporrectodea caliginosa nocturna and Aporrectodea caliginosa meridionalis) and two endogeics (Aporrectodea caliginosa icaliginosa and Allolobophora chlorotica). After one month the burrow's area generated by both anecic species were much larger (about 40 cm2) than the endogeic burrow's area (about 15 cm2). A. nocturna burrow system continuity was higher than that of A. meridionalis and both anecic burrow systems were more continuous than those made by the endogeic earthworms. This was partly explained by the far larger proportion of the burrow area that was refilled with casts: approximately 40% and 50% for Al. chlorotica and A. caliginosa, respectively compared with approximately 20% for the anecic burrows. We discuss whether these estimates could be used in future models simulating the dynamics of earthworm burrow systems by taking into account both burrow creation and destruction by earthworms.  相似文献   

2.
Many aspects of the reproduction and mating behaviour of earthworms remain poorly understood. In this study, we focused on body size as a possible trait that influences earthworm reproduction and mating processes. Eisenia andrei is a simultaneously hermaphroditic animal with reciprocal insemination and many hermaphrodites are expected to mate not primarily to get their own eggs fertilized, but rather to get the opportunity to fertilize the eggs of their partners. We investigated whether E. andrei has a size-dependent sex allocation, i.e. if larger earthworms are more biased toward female allocation and produce more egg mass and whether E. andrei has a size-related mate choice by studying the relationship between mating delay and cocoon production. To test this, we compared cocoon production between pairs of earthworms of equal and different size. Mature individuals of E. andrei were classified in two size classes (small and large) and we performed a two-factorial experiment with earthworm size and the size of the partner as factors. After copulation, earthworms were isolated and thereafter their mass and the number of cocoons they produced were recorded weekly for 18 weeks. We found no evidence of size-dependent sex allocation and we found no effect of size-assortative mating on cocoon production. With respect to the differences in the time to mate, the mating delay seems to indicate the existence of some kind of mate choice, independent of the earthworm size. Those earthworms that were matched sooner laid many cocoons, but those that waited a long time to mate laid fewer cocoons. This effect was stronger in those individuals paired with large partners, suggesting that some large partners are more desired ‘males’ than others; the reason for this remain as an open question. In general, our results confirm that earthworms are able to discriminate their partners and adjust their breeding effort accordingly.  相似文献   

3.
Earthworms strongly affect soil organic carbon cycling. The aim of this study was to determine whether deep burrowing anecic earthworms enhance carbon storage in soils and decrease C turnover. Earthworm burrow linings were separated into thin cylindrical sections with different distances from the burrow wall to determine gradients from the burrow wall to the surrounding soil. Organic C, total N, radiocarbon (14C) concentration, stable isotope values (δ13C, δ15N) and extracellular enzyme activities were measured in these samples. Anecic earthworms increased C stocks by 270 and 310 g m?2 accumulated in the vertical burrows. C-enrichment of the burrow linings was spatially highly variable within a distance of millimetres around the burrow walls. It was shown that C accumulation in burrows can be fast with C sequestration rates of about 22 g C m?2 yr?1 in the burrow linings, but accumulated C in the burrows may be mineralised fast with turnover times of only 3–5 years. Carbon stocks in earthworm burrows strongly depended on the earthworm activity which maintains continuous C input into the burrows. The enhanced extracellular enzyme activity of fresh casts was not persistent, but was 47% lower in inhabited burrows and 62% lower in abandoned burrows. Enzyme activities followed the C concentrations in the burrows and were not further suppressed due to earthworms. Radiocarbon concentrations and stable isotopes in the burrow linings showed an exponential gradient with the youngest and less degraded organic matter in the innermost part of the burrow wall. Carbon accumulation by anecic earthworm is restricted to distinct burrows with less influence to the surrounding soil. Contrary to the initial hypothesis, that organic C is stabilised due to earthworms, relaxation time experiments with nuclear magnetic resonance spectroscopy (NMR) did not reveal any enhanced adsorption of C on iron oxides with C stabilising effect. Our results suggest that earthworm activity does not substantially increase subsoil C stocks but burrows serve as fast ways for fresh C transport into deep soil horizons.  相似文献   

4.
Earthworms can have a profound effect on a myriad of soil physical, chemical and microbial parameters. To better understand their role in the soil, they are often studied under controlled conditions. However, a persistent problem in such controlled experiments is the ability of earthworms to escape from experimental units with open tops (e.g. for plant growth). Here, we tested whether adhesive hook tape applied to the inside of mesocosms is effective in confining them to their experimental units. A mesocosm study was set up with hook tape treatments (control, one layer, two layers), mesocosm material (polyvinylchloride – PVC, polypropylene – PP) and earthworm species (Lumbricus rubellus (Hoffmeister), Aporrectodea caliginosa (Savigny), Lumbricus terrestris (L.) + Aporrectodea longa (Ude)) as different factors to study the escape of earthworms during 24 h. In the treatments without hook tape, individuals of L. rubellus and A. caliginosa escaped, with highest escape rates (80%) for L. rubellus from the PP mesocosms, and lowest escape rates (20%) for A. caliginosa from the PVC mesocosms. When hook tape was applied, in either one or two layers, no individuals of those species escaped. The two anecic earthworm species, L. terrestris and A. longa did not escape from any mesocosms, irrespective of the presence of hook tape. As not a single earthworm escaped from the hook tape treatments, we conclude that applying hook tape is a simple, inexpensive and effective method to keep earthworms confined to experimental units.  相似文献   

5.
The vertical distribution and activity of earthworm life stages were studied in an arable field during 0.5 m deep frost. The anecic Lumbricus terrestris L. were below the frost at the bottom of their home burrows (max. depth 1.0 m) and remained there apparently active. Their burrows were open, free of ice and water. The endogeic Aporrectodea caliginosa Sav., mainly small juveniles, were aestivating in the frost layer, which confirms freeze-tolerance in this species. Large A. caliginosa individuals were actively burrowing below the frost down to 1 m depth at soil temperatures close to +1 °C, frost evidently triggering much deeper burrowing than summer droughts. Demonstrating cold-hardiness, viable cocoons of both A. caliginosa and L. terrestris were obtained within a 0-0.25 m layer, frozen for ca. one month prior to sampling. These two common earthworms of boreal soils seem to over-winter in all life stages and remain active below the frost, potentially contributing to the maintenance of subsoil processes during the winter months.  相似文献   

6.
Anecic (deep-burrowing) earthworms are important for soil biogeochemical functioning, but the fine-scale spatial range at which they incorporate C and N around their burrows (the drilosphere sensu stricto) needs to be investigated under realistic conditions. We conducted a field experiment to delimit spatially the extent to which soil around natural Lumbricus terrestris burrows is influenced biochemically. We placed plant litter dual-labelled with 13C and 15N stable isotope tracers on L. terrestris burrow openings and we measured residue-derived 13C and 15N in thin concentric layers (0–2, 2–4, 4–8 mm) around burrows with or without a resident earthworm. After 45 days, earthworms were significantly enriched in 13C and 15N as a result of feeding on the plant litter. At 0–5 cm soil depth, soil 15N concentrations were significantly higher around occupied than unoccupied burrows, and they were significantly higher in all burrow layers (including 4–8 mm) than in bulk soil (50–75 mm from burrow). This suggests that biochemical drilosphere effects of anecic earthworms, at least in the uppermost portion of the burrow, extend farther than the 2 mm layer assumed traditionally.  相似文献   

7.
We studied the effects of maize residue application on some life-cycle parameters of the earthworm Aporrectodea trapezoides in saline agricultural soils with electrical conductivity (EC) ranging from 1.58 to 7.35 dS m−1. This experiment was carried out under controlled laboratory conditions for 150 days. Results showed that soil salinity significantly affected the growth and reproduction of earthworms, decreasing survival, numbers and mean fresh weights of adults, juveniles and cocoons. Maize residue application gave a greater survival of earthworms at all salinity levels, but the differences were only significant at an EC of 7.35 dS m−1, although the mean weight of adult earthworms was significantly increased by maize residue application at all salinity levels. At an EC of 1.58 dS m−1 and 3.35 dS m−1, the application of maize residues gave significantly higher numbers of cocoons and juveniles, but in soils with 5.26 dS m−1 and 7.35 dS m−1 earthworms did not produce any cocoons over the experimental period, irrespective of maize residue application. These results indicated that maize residue application alleviated the negative effects of soil salinity on the growth and reproduction of A. trapezoides up to 3.35 dS m−1, above which maize residues only increased the growth but not on the reproduction of earthworms.  相似文献   

8.
Biological invasions are one of the most significant global-scale problems caused by human activities. Earthworms function as ecosystem engineers in soil ecosystems because their feeding and burrowing activities fundamentally change the physical and biological characteristics of the soils they inhabit. As a result of this “engineering,” earthworm invasions can have significant effects on soil physical, chemical and biological properties. The species Amynthas agrestis (family Megascolecidae) was introduced to the United States from Asia, and has expanded its distribution range to include relatively undisturbed forests. Here, to clarify life history traits, we reared individuals under seven different conditions of food provision using litter, fragmented litter and soil, and also analyzed the stable isotope ratios of field-collected specimens to investigate their food resources in the field. Second, we examined whether prescribed fire can be used to manage invasive earthworms. We constructed eight experimental plots, each with 100 individuals of A. agrestis each, and burned half of the plots. The feeding experiment showed that the earthworms in units containing soil and some form of organic matter (litter and/or fragmented litter) produced many cocoons, indicating that litter and fragmented litter are important food resources for them. Stable isotope analyses also supported this result. During the experimental fires, average soil temperature at 5 cm depth increased by only 7.7 °C (average maximum of 32.2 °C). Litter mass was significantly reduced by the fires. Although numbers of A. agrestis and cocoons recovered from burned and unburned plots were not different, the viability of cocoons was significantly lower in burned plots. Fire may also reduce the survival rate of juveniles in the next year by depriving them of their preferred food resource. Most native earthworms in the United States live in the soil, while many invasive ones live in the litter layer and soil surface. Therefore, prescribed fire could be a viable tool for control of invasive earthworms without negatively impacting native earthworm populations.  相似文献   

9.
《Applied soil ecology》2005,28(1):15-22
We evaluated the role of soil water content in controlling C and N dynamics within the drilosphere created by the anecic earthworm Lumbricus terrestris (L.). Mesocosms (volume = 3.1 l) were each amended with corn litter and three earthworms. Control treatments received no earthworms and no other earthworm species were present in the soil. WET and DRY treatments received a total of 9.25 cm and 3.25 cm of water, respectively. Water was added on weeks 1, 3, 7, and 10 at a rate of 2.0 cm per mesocosm for WET treatments and 0.5 cm per mesocosm for DRY treatments. Mesocosms were sampled destructively after incubation at 18–20 °C for 0, 3, 7, and 13 weeks. The water content of WET burrow soil ranged from 0.12 g g−1 to 0.18 g g−1 and was significantly higher than in the DRY treatment throughout the incubation period. The live weight of earthworms was significantly higher in the WET treatment only on week 13, whereas litter consumption was significantly lower in the DRY treatment for week 13. Carbon mineralization, measured as CO2 evolved after a 24-h incubation, was consistently higher in WET than in DRY burrow soil. Effects of differences in soil water content were also apparent for biomass C and metabolic quotient. Soil water content did no affect the total C concentration of burrow soil. DRY burrow soil had consistently lower levels of nitrate than WET soil throughout the experiment. Lower levels of ammonium and inorganic N were observed for WET burrow soil on weeks 3 and 7. Water content did not have a significant effect on burrow soil total N. We concluded that the water content of the drilosphere affects both C and N dynamics and can affect the speciation of inorganic N; yet, the effects of soil water content do not appear to result from differences in the feeding activities of anecic earthworms.  相似文献   

10.
The parthenogenetic earthworm Aporrectodea trapezoides (Dugès, 1828) is widely distributed all over the world due to European agricultural practices. In order to provide baseline life cycle data, cocoons were obtained from field-collected individuals and their features and viability, incubation period, number of hatchlings and mortality rate were recorded. Singleton and twin earthworms from this first experiment were cultured from hatching during a 490-day period under controlled conditions with biomass, survival, reproductive condition and cocoon production recorded at intervals of 15 days. On average, individuals of isolated-reared A. trapezoides reached maturity at day 153 and body weight at maturity was approximately 1 g. In order to record reproductive traits and differences between field-collected and laboratory-reared individuals, 40 microcosms with an isolated earthworm (20 with field-collected individuals and 20 with laboratory-reared ones) and 40 containing groups of three (20 with each type of individual) were maintained during a complete year under controlled conditions. The amount of soil per individual was the same in both types of microcosm. Both the individuals kept in isolation and those cultured in groups produced cocoons, hence completely proving the obligatory parthenogenetic reproduction in this species without copulation or need of any physical-chemical stimulus. In general, isolated earthworms produced a significantly higher number of cocoons than those in groups of three, and the same was recorded for laboratory-reared earthworms when compared with field-collected ones. This study highlights the importance of knowing the life cycle and reproductive traits of one possible key species in soil management due to its vast distribution and high density in soils, and the species’ highly recommended use in applied studies because of its ease of culture.  相似文献   

11.
Two earthworms species, Lumbricus terrestris (epianecic) and Aporrectodea giardi (anecic) were incubated in microcosms with an epigeic 13C-labelled litter for 246 d. At the end of the experiment, different soil compartments (surface casts, walls and peripheries of burrows, and surrounding soil) were sampled for 13C analysis. Two-dimensional images acquired using X-ray computed tomography allowed to estimate the weight of the ‘burrow wall’ and ‘burrow periphery’ compartments which are required to establish C balance. In the case of L. terrestris, the formed structures were more C litter enriched compared to the other species. The permanent character of the burrow system could lead to a high and constant enrichment of the entire burrow system. As consequence, the percentage of C litter in the ‘burrow wall’ and ‘burrow periphery’ compartments was important in spite of their low volume. The denser system developed by A. giardi resulted in C litter dilution in the whole formed structures. The C litter enrichment decreased with the soil depth, but owing to the intensity of the burrowing activity, the C litter transfers into the ‘burrow walls’ and ‘burrow periphery’ were important and the C litter was homogeneously distributed throughout the whole column.  相似文献   

12.
In Central Europe a rich endemic earthworm fauna exists. The ecology of most of these species has not been studied. In laboratory mesocosms we examined leaf litter acceptance and cast deposition of a total of 30 species, 21 of which were endemic. In both experiments earthworms, especially small species, exhibited a variety of behaviors. Hornbeam litter was consumed at higher C/N values by anecic species, but some epigeics still did not accept it. Surface cast deposition varied between 0 and 100% among small endogeics. Most anecic species deposited their casts belowground, but the model anecic species, Lumbricus terrestris was an exception: 79% of its total cast was deposited on the surface. Epigeics and endogeics did not clearly separate in these behavioral traits. Refinement of ecological categorization of Lumbricidae needs to include data on lesser known species.  相似文献   

13.
《Pedobiologia》2014,57(4-6):303-309
By creating burrows, earthworms influence the transfer properties of soils. The effects of endogeic species on soil transfer properties, however, are not yet well understood because these earthworms generally create burrows that are refilled by casts and have no preferential vertical orientation. Thirty soil cores were incubated for various periods (1–3 or 4 weeks) at different earthworm densities (70, 210, 345 or 480 individuals m−2). The cores were then scanned using X-ray tomography and the burrow systems were characterised by measuring the total burrow volume, bioturbation volume (refilled burrows and lateral compaction around the burrows), the number of branches, tortuosity and continuity (assessed by computing the number of burrows with a vertical extension greater than 15, 20 and 25% of the core). We also computed the mean geodesic distance, i.e. the mean distance from the bottom to the top of the core assuming that distances inside burrows are null. Rainfall simulations were carried out on 17 cores chosen to encompass the variations observed in the burrow systems. The water transfer efficiency of each core was estimated by measuring two parameters: breakthrough volume and the percentage of water transmitted after 1 h of rain. Burrow and bioturbation volume increased significantly and steadily with time and earthworm density. We estimated that on average Allolobophora chlorotica burrowed 22 cm per week. All other burrow system characteristics also increased with time and earthworm density except the mean geodesic distance, which decreased significantly. This suggests that intraspecific interactions had no significant effect on burrow system geometry. Univariate PLS regressions were used to understand which burrow system characteristics had the strongest influence on water transfer. These regressions showed that the mean geodesic distance was the most important parameter. This means that in addition to individual burrow characteristics, the spatial arrangement of the whole burrow system also had a major effect on transfer properties.  相似文献   

14.
Earthworms are important engineering species of many terrestrial ecosystems as they play a significant role in regulating C turnover. The effects of earthworms on moderating C decomposition processes differ across species and with interactions between species, which is not fully understood. We carried out an experiment to study the interactions of Lumbricus rubellus and Octolasion lacteum, and their effects on soil respiration. Laboratory mesocosms were set up using tulip poplar (Liriodendron tulipifera) leaf litter and varying densities of earthworms in single and combined species treatments. CO2 efflux rate was used as an indicator of C decomposition rates, and measured with CO2 sensors every five days over one month. L. rubellus induced higher leaf consumption rate and higher CO2 efflux than O. lacteum; meanwhile O. lacteum grew more than L. rubellus. Both litter consumption rate and growth rate of earthworms decreased with increasing earthworm density. Soil CO2 efflux increased with increasing earthworm density (from ∼1-2 μg CO2 g−1 hr−1 with no earthworms to ∼ 4 μg CO2 g−1 hr−1 with 8 earthworms). Combining the two species had a synergistic effect on leaf litter consumption, and neutralizing effects on soil respiration. The data suggest that the strength of intra- and inter-specific interactions among earthworm ecological groups varies at different absolute and relative densities, leading to altered leaf litter decomposition and C cycling.  相似文献   

15.
The effects on two earthworm species of a gradient of metal contamination in soil collected close to a 50-year-old lead recycling factory were investigated in mesocosms filled with soil sampled at three distances from the factory (10, 30 and 60 m). After 5 weeks of exposure, earthworm litter consumption and weight change were measured. Burrow systems were analysed using X-ray tomography, and water infiltration was measured. No significant differences in earthworm weight or activity were observed between mesocosms filled with soil from 30 and 60 m. In contrast, both earthworm species significantly lost weight and burrowed less in the soil sampled at 10 m. In the cores filled with the soil collected at 10-m distance, Aporrectodea caliginosa avoided the highly contaminated first layer (0–5 cm) and burrowed deeper whereas Lumbricus terrestris burrowed relatively more in this layer. We assume that these different reactions are associated with their ecological types. Epi-anecic earthworms forage litter at the soil surface, whereas endogeic earthworms are geophagous and thus are able to forage deeper. This was further corroborated by the bioaccumulation factors measured for each species: for L. terrestris, BAF values for Pb and Cd only decreased slightly in the 10-m soil correlating with their overall reduced activity. However, BAF values for A. caliginosa were 20-fold lower compared to those observed in soil from 30 and 60 m. These modifications in burrowing behaviour in the 10-m mesocosms resulted in a significant and marked decrease in water infiltration rates but only for L. terrestris.  相似文献   

16.
While the benefits of earthworms to crop production are widely acknowledged, the mechanisms involved are poorly understood. We examined the effects of an anecic earthworm (Lumbricus terrestris) on the distribution of plant residue N in a corn (Zea mays)/soil system. Soil (mixed Ap and B horizons) mesocosms (10 cm diameter, 39 cm deep) were amended with 15N-labeled corn litter, inoculated with one earthworm per mesocosm (WORM) or none (CTRL), and pre-incubated for 1, 2 or 3 weeks. Earthworms and remaining plant residues were removed and sweet corn grown in the mesocosms in a greenhouse for 3 weeks. Litter, earthworms, shoots, roots and bulk and burrow soil were analyzed for total N and 15N. Plant and earthworm biomass were also determined. Earthworms had no significant effect on the N content of shoots, roots or bulk soil. Recovery of 15N ranged from 92.6 to 101.9% in CTRL and 60.2 to 83.2% in the WORM treatment. The 15N content of bulk soil in the WORM treatment was significantly higher than in CTRL and increased with pre-incubation time. Excess at.% 15N of burrow soil was 10–100 times higher than in bulk soil. Incorporation of 15N by shoots and roots was significantly higher in the WORM treatment and increased significantly with pre-incubation time only in the WORM treatment. In WORM mesocosms pre-incubated for 3 weeks, the distribution of added 15N was 9.8% in litter, 6.5% in plant, 31.5% in soil, 12.0% in earthworms and 39.8% presumably lost as gas; in CTRL mesocosms, the values were 75.7% in litter, 3.2% in plant, 13.7% in soil and 7.4% in presumed gas losses. The activities of L. terrestris altered the distribution of plant residue N significantly, increasing the transfer of N to plants and soil and enhancing losses of N in the gas phase as pre-incubation time increased.  相似文献   

17.
A field experiment was conducted to elucidate ecosystem services provided by earthworms on the repression of phytopathogenic and toxinogenic fungi. The study focussed on decomposing Fusarium culmorum-infected and deoxynivalenol (DON)-contaminated wheat straw remaining on the soil surface as part in conservation tillage. Mesocosms were established in the topsoil of a winter wheat field located in Northern Germany, where conservation tillage has been practised for 20 years. Besides a non-earthworm treatment, two earthworm species were inoculated in the mesocosms either separately or combined: Lumbricus terrestris (anecic, detritivorous) and Aporrectodea caliginosa (endogeic, geophagous). The earthworms were exposed either to artificially Fusarium-infected wheat straw highly contaminated with DON or to non-infected straw serving as a control. The experiment was conducted during an eight week period after harvest from mid August to mid October. For both species, the artificially Fusarium-infected and DON-contaminated wheat straw was a more attractive food source than the non-infected control. In contrast to A. caliginosa, L. terrestris incorporated infected straw faster into the soil compared to control straw. Furthermore, the reduction of Fusarium biomass and DON concentration in wheat straw was significantly higher in the presence of L. terrestris than in treatments with A. caliginosa and without earthworms. Here, no significant differences could be measured between the Fusarium biomass and DON concentration in wheat straw. A. caliginosa seems not to be relevant for the reduction of Fusarium biomass and DON concentration. We concluded that amongst earthworms, anecic detritivorous species are the drivers to compensate possible negative consequences (like crop infection) of conservation tillage. They take an important role in the control of phytopathogenic and toxinogenic fungi surviving on plant residues and in the degradation of their mycotoxins.  相似文献   

18.
《Applied soil ecology》2009,42(3):269-276
Earthworms can be used to remove polycyclic aromatic hydrocarbons (PAHs) from soil, but this might affect their survival and they might accumulate the contaminants. Sterilized and unsterilized soil was contaminated with phenanthrene (Phen), anthracene (Anth) and benzo(a)pyrene (BaP), added with or without Eisenia fetida, sewage sludge or vermicompost. Survival, growth, cocoon formation and concentrations of PAHs in the earthworms were monitored for 70 days. Addition of sewage sludge to sterilized or unsterilized soil maintained the number of earthworms and their survival was 94%. The addition of sludge significantly increased the weight of earthworms 1.3 times compared to those kept in the unamended soil or in soil amended with vermicompost. The weight of earthworms was significantly lower in sterilized than in unsterilized soil. Cocoons were only detected when sewage sludge was added to unsterilized soil. A maximum concentration of 62.3 μg Phen kg−1 was found in the earthworms kept in sterilized soil amended with vermicompost after 7 days and 22.3 μg Phen kg−1 when kept in the unamended unsterilized soil after 14 days. Concentrations of Phen in the earthworms decreased thereafter and ≤2 μg kg−1 after 28 days. A maximum Anth concentration of 82.5 μg kg−1 was found in the earthworms kept in sterilized soil amended with vermicompost and 45.8 μg Anth kg−1 when kept in the unamended unsterilized soil after 14 days. A maximum concentration of 316 μg BaP kg−1 was found in the earthworms kept in sterilized soil amended with vermicompost after 56 days and 311 μg BaP kg−1 when kept in the unsterilized soil amended with vermicompost after 28 days. The amount of BaP in the earthworm was generally largest after 28 days, but after 70 days still 60 μg kg−1 was found in E. fetida when kept in the sterilized soil amended with sewage sludge. It was found that E. fetida survived in PAHs contaminated soil and accumulated only small amounts of the contaminants, but sewage sludge was required as food for its survival and cocoon production.  相似文献   

19.
Earthworms burrow through the soil thereby accumulating many lipophilic organic pollutants from the surrounding environment, so they could be used to remove polycyclic aromatic hydrocarbons (PAHs) from soil. Sterilized and unsterilized soil was contaminated with phenanthrene (Phen), anthracene (Anth) and benzo[a]pyrene (BaP), with or without added Eisenia fetida and biosolid or vermicompost. Concentrations of PAHs were monitored in soil and earthworms for 70 days. Removal of PAHs increased in soil with earthworms added as 91% of Anth, 16% BaP and 99% Phen was dissipated compared to 42%, 3% and 95% in unamended soil. The microorganisms in the gut of the earthworm contributed to PAHs removal and 100% of Phen, 63% of Anth and 58% of BaP was removed from sterilized soil with E. fetida added. Biosolid and to lesser extent vermicompost accelerated removal of PAHs from soil. Applying earthworms to a contaminated site might be an environmentally friendly way to remove hydrocarbons from soil. However, a limitation might be the cost of the large amounts of earthworms required to remove PAHs from soil and the necessity to supply them with sufficient substrate while maintaining the water content of the soil high enough for their normal functioning.  相似文献   

20.
Soil organic matter (SOM) plays a central role in the functioning of ecosystems, and is beneficial from agronomic and from environmental point of view. Alternative cultural systems, like direct seeding mulch-based cropping (DMC) systems, enhance carbon (C) sequestration in agricultural soils and lead to an increase in soil macrofauna. This study aimed at evaluating in field mesocosms the effects of earthworms on SOM dynamics and aggregation, as influenced by residue quality and management.In the highlands of Madagascar, buckets were filled with 2 mm-sieved clayey Inceptisol. The effects of earthworm addition (Pontoscolex corethrurus), residue addition (rice, soybean, and no addition), and localization of the residues (mulched or buried) were studied. After 5 months, soil from mesocosms with earthworms had significantly lower C concentration and higher proportion of large water-stable macroaggregates (>2000 μm) than those without earthworms, because of the production of large macroaggregates by earthworms. Earthworm effect on soil aggregation was greater with rice than with soybean residues. Casts (extracted from mesocosms with earthworms) were slightly enriched in C and showed significantly higher mineralization than the non-ingested soil (NIS), showing that at the time scale of our study, the carbon contained in the casts was not protected against mineralization. No difference in microbial biomass was found between casts and NIS.Complementary investigations are necessary to assess long-term effects of earthworm addition on SOM dynamics, the conditions of occurrence of physical protection, and the impact of earthworms on the structure of the microbial community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号