首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The objective of this study was to investigate the effects of the application of rice husk biochar on selected soil physical properties, rice growth, including root extension, and methane (CH4) emissions from paddy field soil. Three replication experiments were conducted using outdoor pot experiments utilizing commercial rice husk biochar mixed with paddy soil at a rate of 0 (control), 2, and 4 % (weight biochar/weight soil) in which the rice was cultivated for 100 days under a continuously flooded condition. The physical properties of soils were analyzed before and after the growing periods. Some parameters of rice growth and CH4 emissions of paddy soils were monitored weekly during the experiment. Root extension was also analyzed after harvesting. The experiments showed that the application of rice husk biochar improved the physical properties of paddy soils. It led to a decrease in bulk density and an increase in saturated hydraulic conductivity, including the total pore volume as well as the available soil water content. The shoot height of rice plants was significantly higher in soil amended with 4 % biochar than that in the control soil. However, other plant growth parameters and root extension were only slightly affected by the application. It was also found that amending soil with biochar led to a reduction of the total CH4 emissions by 45.2 and 54.9 % for an application rate of 2 and 4 %, respectively, compared with the control. Our results showed that the higher the application rate, the stronger the effect of biochar was observed. More research is still necessary for a better understanding of the underlying mechanisms.  相似文献   

2.
While the application rate of nitrogen fertilizer is believed to dramatically influence rice fields and improve the soil conditions in paddy fields, fertilization with low use efficiency and nitrogen loss may cause environmental pollution. In this paper, 15N-labeled urea was used to trace the fate of nitrogen at four rates (0, 75, 225 and 375 kg N/ha) of urea fertilizer over three split applications in Hangzhou, Zhejiang, in 2014. Plant biomass, the soil nitrogen content of different layers, NH3 volatilization and N2O emissions were determined using the 15N abundance to calculate the portion from nitrogen fertilizer. The results indicated that rice yields increased with the application rate of nitrogen fertilizer. NH3 volatilization is the main nitrogen loss pathway, and N2O emissions were significantly associated with nitrogen application rates in the paddy. The percent of nitrogen loss by NH3 volatilization and N2O emissions increased with the nitrogen application rate. This study showed that the suitable N fertilizer in a loam clay paddy, considering the yield requirements and environmental issues, is approximately 225 kg N/ha in Hangzhou, with a distribution of 50.06% of the residual in the rice and soil and 48.77% loss as NH3 volatilization and N2O emissions. The nitrate from fertilization mainly remained in the 0–20 cm level of the topsoil.  相似文献   

3.
Water management is an important factor in regulating soil respiration and the net ecosystem exchange of CO2 (NEE) between croplands and atmosphere. However, how water management affects soil respiration and the NEE of paddy fields remains unexplored. Thus, a 2-year field experiment was carried out to study the effects of controlled irrigation (CI) during the rice season on the variation of soil respiration and NEE, with flooding irrigation (FI) as the control. A decrease of irrigation water input by 46.39% did not significantly affect rice yield but significantly increased irrigation water use efficiency by 0.99 kg m?3. The soil respiration rate of CI paddy fields was larger than that of FI paddy fields except during the ripening stage. Natural drying management during the ripening stage resulted in a significant increase of the soil respiration rate of the FI paddy fields. Variations of NEE with different water managements were opposite to soil respiration rates during the whole rice growth stages. Total CO2 emission of CI paddy fields through soil respiration (total R soil) increased by 11.66% compared with FI paddy fields. The increase of total R soil resulted in the significant decrease of total net CO2 absorption of CI paddy fields by 11.57% compared with FI paddy fields (p < 0.05). There were inter-annual differences of soil respiration and the NEE of paddy fields. Frequent alternate wetting and drying processes in the CI paddy fields were the main factors influencing soil respiration and NEE. CI management slightly enhanced the rice dry matter amount but accelerated the consumption and decomposition of soil organic carbon and significantly increased soil respiration, which led to the decrease of net CO2 absorption. CI management and organic carbon input technologies should be combined in applications to achieve sustainable use of water and soil resources in paddy fields.  相似文献   

4.
Sodium adsorption ratio (SAR) is one of the water quality indexes that whose is important due to reuse or depletion to environment. Solutes in drain water can be controlled by adsorption, chemical or biological reaction, organic envelope of drainage. Rice husk is the common option of drainage envelops in paddy fields. In this study, the ability of reduction of SAR by rice husk was evaluated in batch scale and physical model of drain envelops. In the batch experiments, the adsorption of SAR parameters was investigated by adding 2 g of rice husk into a 100 ml of sodium chloride solution. The results indicated that rice husk absorbed calcium, magnesium and sodium, respectively. By increasing the temperature, contact time and pH, adsorption of calcium, magnesium and sodium was increased; however, the higher concentration of sodium in soil solution reduced the percentage of adsorption. In a more realistic state, physical models of subsurface drainage in the paddy fields were made. Drainage envelope treatments included of rice husk (H), combination of 20 and 60 % of husk with gravel (H20G80 and H60G40) and a pipe without envelope (NE). Due to higher drain discharge and more sodium removal (lower SAR in drain water), treatment H with the discharge of 16.2 ml/min and SAR of 1.27 (meq/l)0.5 was better in comparison with other treatments.  相似文献   

5.
This paper critically reviewed the current knowledge and challenges of rice husk biochar(RHB) production and its effects on soil properties, plant growth, immobilization of heavy metals, reduction of nutrient leaching and mitigation of greenhouse gas emissions. The characteristics of RHBs produced at various pyrolysis temperatures were discussed and compared to biochars derived from other agroindustrial wastes. RHBs produced at higher pyrolysis temperatures show lower hydrogen/carbon ratio, which suggests the presence of higher aromatic carbon compounds. The increase of pyrolysis temperature also results in production of RHBs with higher ash content, lower yield and higher surface area. RHB usually has higher silicon and ash contents and lower carbon content compared to biochars derived from other feedstocks at the same pyrolysis conditions. Although it depends on soil type, RHB application can improve soil organic carbon content, cation exchange capacity, available K concentration, bulk density and microbial activity. The effect of RHB on soil aggregation mainly depends on soil texture. The growth of different crops is also enhanced by application of RHB. RHB addition to soil can immobilize heavy metals and herbicides and reduce their bioavailability. RHB application shows a significant capacity in reduction of nitrate leaching, although its magnitude depends on the biochar application rate and soil biogeochemical characteristics. Use of RHB, especially in paddy fields, shows a promising mitigation effect on greenhouse gas(CH_4, CO_2 and N_2 O) emissions. Although RHB characteristics are also related to other factors such as pyrolysis heating rate and residence time, its performance for specific applications(e.g. carbon sequestration, p H amendment) can be manipulated by adjusting the pyrolysis temperature. More research is needed on long-term field applications of RHB to fully understand the advantages and disadvantages of RHB as a soil amendment.  相似文献   

6.
Soil and water pollution caused by organic waste is a concern for livestock-breeding areas. Nitrogen balance in a paddy-field water-purifying system in which cattle feces were applied was studied for 4 years to assess the suitability of the system for a subtropical area, Japan. Three successive harvestings using ratoon of forage rice following one rice transplanting were conducted with chemical fertilizer and high and low rates of cattle-feces application. Nitrogen load was 81.3–495.0 kg N ha?1 year?1, while nitrogen uptake was highly dependent on the yield of the first harvesting. Annual variation of forage rice yields was large, ranging from 15.5 to 26.8 Mg ha?1 owing to fluctuation in the yield at second and later harvestings. On average, nitrogen was lost by leaching at a rate of 2.3–3.4 kg N ha?1 year?1. The nitrogen content in soil at a depth of 0–5 cm increased up to 12.2 kg N ha?1 over the 4-year period compared with that before the field experiment. However, continuous application of cattle feces could slightly increase the nitrogen content in soil at a depth greater than 35 cm. Our results showed the ability of flooded forage rice to remove nitrogen at up to 320.1 kg ha?1 year?1 for a field to which cattle feces were applied. Further investigation is needed to produce a high and stable yield at second harvesting each year, to prevent the accumulation of soil nitrogen, and to assess gaseous nitrogen loss.  相似文献   

7.
Deep placement of urea supergranules in wetland rice (Oryza sativa L.) or correct urea band application enables to protect nitrogen (N) from various loss mechanisms, but recovering of fertilizer N by plants depends upon geometric and agronomic factors. The objective of this study was to characterize the diffusion of ammoniacal N from the two urea sources, point or line application, in a typical paddy soil. A model of ammonia diffusion was developed for the two geometries. The relation between the N application rate and the transplanting geometry was studied in two fields using probes attached to urea supergranule of different mass (2 and 4 g). The transplanting pattern was adapted for obtaining 58 or 116 kg N ha?1 in the 4 g application. The ammoniacal nitrogen concentration was compared to the diffusion model prediction. The values of the diffusion coefficient were found to be 1.160 and 1.107 cm2 d?1. Ammonia disappearance below 10 mmol L?1 did not follow the same kinetics in the two treatments corresponding to 4 g application. Relative to the 2 g treatment, root ammonia uptake in the 4 g treatment was delayed and slowed in the classical geometry of 20 cm × 20 cm (116 kg N ha?1) when it was mainly delayed in the geometry provided with 58 kg N ha?1. This manipulation of the source–sink relationship enables to foresee possibilities for the development of new fertilizers adapted to wetland rice cultivation.  相似文献   

8.
Manganese (Mn) deficiency is prevalent in rice-growing regions resulting in poor paddy yield and human health. In this study, role of Mn, applied through various methods, in improving the productivity and grain biofortification of fine grain aromatic rice was evaluated. Manganese was delivered as soil application (SA) (0.5 kg ha?1), foliar spray (FA) (0.02 M Mn), seed priming (SP) (0.1 M Mn) and seed coating (SC) (2 g Mn kg?1 seed) in conventional (puddled transplanted flooded rice) and conservation (direct seeded aerobic rice) production systems at two different sites (Faisalabad, Sheikhupura) in Punjab, Pakistan. Manganese application, through either method, improved the grain yield and grain Mn contents of fine grain aromatic rice grown in both production systems at both sites. However, Mn application as SC and FA was the most beneficial and cost effective in improving the productivity and grain biofortification in this regard. Overall, order of improvement in grain yield was SC (3.85 t ha?1) > FA (3.72 t ha?1) > SP (3.61 t ha?1) > SA (3.36 t ha?1). Maximum net benefits and benefit–cost ratio were obtained through Mn SC in flooded field at Faisalabad, which was followed by Mn SP in direct seeded aerobic rice at the same site. However, maximum marginal rate of return was noted with Mn SC in direct seeded aerobic rice at both sites. In crux, Mn nutrition improved the productivity and grain biofortification of fine grain aromatic rice grown in both conventional and conservation production systems. However, Mn application as seed treatment (SC or SP) was the most cost effective and economical.  相似文献   

9.
为评价呋虫胺在水稻生态系统中的残留消解行为和产生的膳食摄入风险,于2014年在海南、湖南和黑龙江进行了规范残留试验,建立了高效液相色谱法(HPLC)的分析方法检测呋虫胺在水稻糙米、稻壳、稻株、土壤、田水中的残留,并对我国不同人群的膳食暴露风险进行了评估。样品经乙腈提取,NH2柱层析净化,高效液相色谱-紫外检测器(HPLC-UV)检测,外标法定量。结果表明,在0.02~0.5 mg/kg添加水平下,呋虫胺的平均回收率在75%~114%之间,相对标准偏差(RSD)在0.5%~19.0%之间;呋虫胺的最低检测浓度(LOQ),稻株与稻壳中为0.1 mg/kg,糙米中为0.05 mg/kg,土壤与田水中为0.02 mg/kg;呋虫胺最小检出量(LOD)为0.08 ng。呋虫胺的消解基本符合一级动力学方程,半衰期在稻株中约0.5 d,田水中约1 d,土壤中约5 d。距末次施药后14 d糙米中呋虫胺的残留中值为0.058 mg/kg,最大残留值为0.13 mg/kg,低于我国规定的最大残留限量1 mg/kg。风险评估表明中国人群对稻米中呋虫胺长期膳食摄入的慢性风险较低。  相似文献   

10.
苯醚甲环唑在水稻和稻田中的残留   总被引:5,自引:0,他引:5  
  为明确苯醚甲环唑在稻田系统的使用安全性,调查了我国3个不同水稻种植区域(湖南长沙、吉林长春和浙江杭州)苯醚甲环唑在稻田系统中的残留消解动态以及在糙米、稻壳、水稻茎秆和土壤中的最终残留量。按高剂量(112.5 g/hm2)施药1次后,苯醚甲环唑在不同种植区域水稻植株、稻田水和土壤中的半衰期分别为6.1~8.9 d,5.3~6.2 d和3.8~4.1 d。各试验点最终残留结果表明,施药后28 d采样时糙米中苯醚甲环唑的最终残留量均<0.01 mg/kg,水稻茎秆中含量最高,土壤中均未检出苯醚甲环唑(<0.01 mg/kg)。结合生产实际,按该试验设计的施药剂量、施药次数和采收间隔期,糙米、水稻茎秆和稻壳中苯醚甲环唑的残留量是安全的,但若是稻渔共作种植方式,则应尽量避免该农药的使用,以免对鱼类造成不利影响。  相似文献   

11.
The effect of controlled irrigation and drainage on N leaching losses from paddy fields was investigated by controlling root zone soil water content and water table depth using a lysimeter equipped with an automatic water table control system. Three treatments that combined irrigation and drainage managements were implemented: controlled irrigation (CI) + controlled water table depth 1 (CWT1), CI + controlled water table depth 2 (CWT2), and flooding irrigation (FI) + actual field water table depth (FWT). Controlled irrigation and drainage had significant environmental effects on the reduction of NH4 +–N and NO3 ?–N leaching losses from paddy fields by decreasing water leakage. The NH4 +–N leaching losses from CI + CWT1 and CI + CWT2 were 3.68 and 4.45 kg ha?1, respectively, which significantly reduced by 59.2 and 50.7 % compared with FI + FWT (9.02 kg ha?1). The NO3 ?–N leaching losses from CI + CWT1 and CI + CWT2 were 0.88 and 0.43 kg ha?1 with a significant reduction of 45.2 and 73.2 %, respectively, compared with FI + FWT (1.61 kg ha?1). The application of CI + CWT1 can be a pollution-controlled water management method of reducing N leaching losses from paddy fields.  相似文献   

12.
Understanding the long-term and quantitative effects of different fertilization practices on carbon sequestration and nitrogen loss is important when establishing the best fertilization regime. In this study, the DeNitrification–DeComposition (DNDC) model was validated first for the change of soil organic carbon (SOC) at the site mode and at the regional mode, and then it was used to simulate the effects of three fertilization practices including rice straw (RS) returning, chemical fertilizer application (CF), and green manure planting (GM) on C and N dynamics in paddy soils from a subtropical area of China. The prevailing fertilization practices in the study area were set as the baseline scenario, and alternative scenarios were assigned by varying only one of the three fertilization practices. All three fertilization practices increased SOC content but had different effects on rice yield, N2O emission, and nitrate leaching loss. Compared with a baseline RS rate of 15 %, the SOC contents less than RS rates of 30, 50, and 80 % were increased on average by 12.84, 29.48, and 53.50 %, respectively. SOC content also increased as the CF rate rose from 70 to 130 % of the baseline scenario and then leveled off from 130 to 160 %. SOC contents under GM were higher than that without GM by 35.74 %. Both the N2O emissions and the nitrate leaching were increased with the increasing CF rate, while they decreased under GM treatment. However, RS increased the N2O emissions but decreased the nitrate leaching. The polygon-based modeling method with the DNDC could accurately evaluate the general trend of SOC dynamics and nitrogen loss from paddy soils.  相似文献   

13.
Arsenic contamination of shallow groundwater and related health problems are threats for the millions in endemic regions of West Bengal. Contamination of rice grain creates the food chain pathway of mineral arsenic besides drinking water contamination. Present study concentrated on association of arsenic concentration in irrigated water, paddy field soil and rice with the cropping seasons. Irrigated ground water arsenic concentration decreased significantly (p = 0.007) from summer (median 0.42 mg l?1) to winter (median 0.35 mg l?1). Carried over effect created significant decrease (p = 0.03) of paddy field soil arsenic concentration from summer (median 8.35 mg kg?1) to winter (median 6.17 mg kg?1). Seasonal variation was observed in rice straw (p = 0.03) but not in husk (p = 0.91). Arsenic concentration decreased significantly (p = 0.05) in the rice grains collected in winter season (median 0.23 mg kg?1) than the samples collected in the summer season (median 0.30 mg kg?1). In conclusion, seasonal effects need to be considered in case of human health risk assessment from arsenic consumption.  相似文献   

14.
Three methods of rice cultivation were compared in a field experiment at New Delhi, India during 2012 for their water use and changes in nutrient availability of soil. The experiment was laid out in a split plot design with conventional transplanting (CT), system of rice intensification (SRI), and aerobic rice (AR) cultivation technologies. Five doses of nitrogen included 100 % (120 kg N ha?1), 125, and 150 % recommended dose of N(RDN) through urea, 75 % of RDN through urea (90 kg N ha?1) + 25 % of RDN (30 kg ha?1) through farm yard manure (FYM), and 100 % of RDN through FYM. Results revealed that status of available N in soil under rice at 45 and 90 days after sowing (DAS) was significantly higher in CT and SRI compared to AR method. Application of the highest dose of nitrogen through urea resulted in the highest availability of N (188.9, 174.2, and 135.2 kg ha?1 for 45 and 90 DAS and at harvest stage, respectively). The soil under AR recorded significantly low availability of phosphorus and iron. However, availability of K in soil was not affected significantly under adopted production techniques and nitrogen management. The recorded irrigation water productivity was maximum in AR cultivation (9.16 kg ha mm?1) followed by SRI (7.02 kg ha mm?1) with irrigation water saving of 54 and 36 %, respectively compared to CT.  相似文献   

15.
In order to increase the efficacy of water and control the losses of fertilizer, it is necessary to assess the influence of level of fertilization on crop responses, movement and balance of water and solutes from fertilizers in the root zone. With this goal, the reported study was undertaken to determine the effect of fertilization on crop responses and fertilizer solute transport in rice crop field in a sub-humid and sub-tropical region. Field experiment was conducted on rice crop (cultivar IR 36) during the years 2003, 2004, and 2005. The experiment included four fertilizer treatments comprising different levels of fertilizer application. The fertilizer treatments during the experiment were: F1 = control with N:P2O5:K2O as 0:0:0 kg ha?1; F2 = fertilizer application of N:P2O5:K2O as 80:40:40 kg ha?1; F3 = fertilizer application of N:P2O5:K2O as 120:60:60 kg ha?1 and F4 = fertilizer application of N:P2O5:K2O as 160:80:80 kg ha?1. The results of the investigation revealed that the magnitudes of crop parameters such as grain yield, straw yield, and maximum leaf area index increased with increase in fertilizer application rate. The levels of fertilization had very little effect on water loss via deep percolation and water use by the crop. The levels of fertilization had considerable effect on N leaching loss and uptake of N whereas it had no significant impact on leaching loss of water-soluble phosphorus. This indicated that PO4-P leaching loss was very low in the soil solution as compared to nitrogen due to fixation of phosphorus in soils. The results also revealed that increase in level of fertilization increased water use efficiency considerably by increased crop yield. From the observed data of nutrient use efficiency, crop yield and environmental pollution, the fertilization rate of N:P2O5:K2O as 80:40:40 kg ha?1 (F2) was the most suitable fertilizer treatment for rice crop among studied treatments.  相似文献   

16.
The agricultural fields were contaminated by the radionuclides 134Cs and 137Cs after the nuclear power plant accident in Fukushima. Prior to the accident, local farmers had successfully established sustainable agriculture in Iitate Village using natural farming practices and recycling. Since 2011, decontamination work such as stripping-off the top soil has been ongoing on agricultural land. Although decontamination is essential, it could cause an unfortunate decrease in soil fertility. Here, we examined the use of organic matter as a means to quickly recover the fertility of the agricultural top soil. We transplanted rice crops into three paddy plots: one received rice straw that had been harvested there last year, another received composted manure, and the third (control) received no additives after decontamination. We applied 40 kg/10a of basal fertilizer and 20 kg/10a of KCl each plot. The rates of Cs concentration in unhulled rice/rice straw were around 0.001. Tendency of plant heights increase and leaf chlorophyll content decrease were similar in the three treatment plots. However, the numbers of stems on 111 days after the transplant were 21, 15, and 19, unhulled rice yield were 513, 462, and 310 g/m2, in the rice straw, cattle manure compost, and control plots, respectively. Soil properties of three plots were similar. Radioactive Cs concentrations in the new rice from each treatment plots were lower than the maximum allowed level set by the Japanese government. These results revealed that treating soil with rice straw might have great potential to aid the recovery of a paddy field after stripping-off the top soil. Notably, this treatment significantly improved the yield of rice and supplied organic matter without additional labor.  相似文献   

17.
Soil erosion is the main cause of soil degradation in northern Vietnam. In this study, soil erosion was measured in 2 m2 field plots, a 19.1-ha sub-watershed, and a 248.9-ha main watershed in Tam Quan commune, Tam Duong district, northern Vietnam during 2 years, i.e., 2004–2005. The main watershed includes lowland paddy fields, and is representative for watersheds in the northern Vietnamese landscape. Soil erosion was measured for eight events, at all the three scales to increase our understanding of erosional processes and to assess the effects of paddy fields within the main watershed. The results show that total discharge and sediment yield in both sub-watershed and main watershed were much lower than those in the field plots. Total discharge per unit area in the main watershed was higher than in the sub-watershed, because during the growing season, the paddies are filled with water and any rainfall on them therefore becomes runoff. Sediment yield in the main watershed fluctuated, depending on the soil erosion contribution from many sub-watersheds. Annual rainfalls in 2004 and 2005 were 1,172 and 1,560 mm, respectively, resulting in corresponding total discharges of 54 and 332 mm and total soil losses of 163 and 1,722 kg ha?1 year?1. High runoff volumes occurred in July, August, and September, but April, June, the last 10 days of September and October, were the susceptible periods for soil erosion in the study area because of low plant cover and many agricultural activities during these periods.  相似文献   

18.
Alternate wetting and drying (AWD) irrigation is widely adopted to save water in rice production. AWD practice shifts lowland paddy fields from being continuously anaerobic to being alternately anaerobic and aerobic, thus affecting nitrogen (N) transformations in paddy field soils. Using the barometric process separation technique, a large number of soil cores sampled from lowland paddy field soil profiles were measured for gross nitrification and denitrification rates under different temperature and soil moisture conditions. The gross nitrification and denitrification rates vary with rice growth stages and range between 1.18–30.8 and 0.65–13.54 mg N m?3 h?1, respectively. Results indicate that both gross nitrification and denitrification rates increased with the increase in temperature in all three studied soil layers. Gross nitrification rates significantly decrease with increasing soil moisture while denitrification rates increase, and different soil layers demonstrated different rates of variation to the increase in soil moisture. Gross nitrification rates in the cultivated horizon layer decreased more sharply with the increase in soil moisture. High soil water content is favorable to denitrification of all soil layers.  相似文献   

19.
Application of sand can ameliorate rice paddy fields converted from saline–sodic land. However, the requirement of huge amount of sand has been limiting its practical application. In this study, flushing during saline sodic-sensitive stages of rice plant growth was incorporated into the ameliorating system to reduce the sand usage. A split-plot design was adopted with sand application (SA) with two levels as main plots and flushing during the sensitive stages (FL) with two levels as subplots in a hard saline–sodic soil, Northeast China. Four treatments included CK (no-sand, no-flush flooding), NF (non-sand, flush flooding), SN (sand, no-flush flooding), and SF (sand, flush flooding). The results showed that both SA and FL significantly affected all the investigated yield parameters. The combined effect of SA and FL on the grain yield was additive in the first year in respect of the effect on panicle density and seed weight per panicle; while it showed synergistic effect on the seed weight per panicle and grain yield in the second year. The rice yield in different treatments was in the order of SF > SN > NF > CK in both years, with the highest yield (4.37 t ha?1) obtained by SF treatment in the second year. Our results demonstrate that half the traditional amount of sand in combination with water-flushing during the saline–sodic-sensitive growth stages of rice is sufficiently effective in ameliorating saline–sodic soil and thereby enhancing rice grain yield in saline–sodic paddy fields.  相似文献   

20.
Despite being a major domain of global food supply, rice?Cwheat cropping system is questioned for its contribution to carbon flux. Enhancing the organic carbon pool in this system is therefore necessary to reduce environmental degradation and maintain agricultural productivity. A field experiment (November 2002?CMarch 2006) evaluated the effects of soil management practices such as tillage, crop residue, and timing of nitrogen (N) application on soil organic carbon (SOC) sequestration in the lowland of Chitwan Valley of Nepal. Rice (Oryza sativa L.) and wheat (Triticum aestivum L.) were grown in rotation adding 12?Mg?ha?1?y?1 of field-dried residue. Mung-bean (Vigna radiata L.) was grown as a cover crop between the wheat and the rice. Timing of N application based on leaf color chart method was compared with recommended method of N application. At the end of the experiment SOC sequestration was quantified for five depths within 50?cm of soil profile. The difference in SOC sequestration between methods of N application was not apparent. However, soils sequestered significantly higher amount of SOC in the whole profile (0?C50?cm soil depth) with more pronounced effect seen at 0?C15?cm soil depth under no-tillage as compared with the SOC under conventional tillage. Crop residues added to no-tillage soils outperformed other treatment interactions. It is concluded that a rice?Cwheat system would serve as a greater sink of organic carbon with residue application under no-tillage system than with or without residue application when compared to the conventional tillage system in this condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号