首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microalgae are often called “sustainable biofactories” due to their dual potential to mitigate atmospheric carbon dioxide and produce a great diversity of high-value compounds. Nevertheless, the successful exploitation of microalgae as biofactories for industrial scale is dependent on choosing the right microalga and optimum growth conditions. Due to the rich biodiversity of microalgae, a screening pipeline should be developed to perform microalgal strain selection exploring their growth, robustness, and metabolite production. Current prospects in microalgal biotechnology are turning their focus to high-value lipids for pharmaceutic, nutraceutic, and cosmetic products. Within microalgal lipid fraction, polyunsaturated fatty acids and carotenoids are broadly recognized for their vital functions in human organisms. Microalgal-derived phytosterols are still an underexploited lipid resource despite presenting promising biological activities, including neuroprotective, anti-inflammatory, anti-cancer, neuromodulatory, immunomodulatory, and apoptosis inductive effects. To modulate microalgal biochemical composition, according to the intended field of application, it is important to know the contribution of each cultivation factor, or their combined effects, for the wanted product accumulation. Microalgae have a vital role to play in future low-carbon economy. Since microalgal biodiesel is still costly, it is desirable to explore the potential of oleaginous species for its high-value lipids which present great global market prospects.  相似文献   

2.
External otitis is a diffuse inflammation around the external auditory canal and auricle, which is often occurred by microbial infection. This disease is generally treated using antibiotics, but the frequent occurrence of antibiotic resistance requires the development of new antibiotic agents. In this context, unexplored bioactive natural candidates could be a chance for the production of targeted drugs provided with antimicrobial activity. In this paper, microbial pathogens were isolated from patients with external otitis using ear swabs for over one year, and the antimicrobial activity of the two methanol extracts from selected marine (Dunaliella salina) and freshwater (Pseudokirchneriella subcapitata) microalgae was tested on the isolated pathogens. Totally, 114 bacterial and 11 fungal strains were isolated, of which Staphylococcus spp. (28.8%) and Pseudomonas aeruginosa (P. aeruginosa) (24.8%) were the major pathogens. Only three Staphylococcus aureus (S. aureus) strains and 11 coagulase-negative Staphylococci showed resistance to methicillin. The two algal extracts showed interesting antimicrobial properties, which mostly inhibited the growth of isolated S. aureus, P. aeruginosa, Escherichia coli, and Klebsiella spp. with MICs range of 1.4 × 109 to 2.2 × 1010 cells/mL. These results suggest that the two algae have potential as resources for the development of antimicrobial agents.  相似文献   

3.
Sulfated polysaccharides produced by microalgae, which are known to exhibit various biological activities, may potentially serve as natural antioxidant sources. To date, only a few studies have examined the antioxidant bioactivity of red microalgal polysaccharides. In this research, the effect of different salts on the antioxidant activities of two red microalgal sulfated polysaccharides derived from Porphyridium sp. and Porphyridium aerugineum were studied in a soy bean-based infant milk formula. Salt composition and concentration were both shown to affect the polysaccharides’ antioxidant activity. It can be postulated that the salt ions intefer with the polysaccharide chains’ interactions and alter their structure, leading to a new three-dimensional structure that better exposes antiooxidant sites in comparison to the polysaccharide without salt supplement. Among the cations that were studied, Ca2+ had the strongest enhancement effect on antioxidant activities of both polysaccharides. Understanding the effect of salts on polysaccharides’ stucture, in addition to furthering knowledge on polysaccharide bioactivities, may also shed light on the position of the antioxidant active sites.  相似文献   

4.
Microalgal cells serve as solar-powered factories that produce pharmaceuticals, recombinant proteins (vaccines and drugs), and valuable natural byproducts that possess medicinal properties. The main advantages of microalgae as cell factories can be summarized as follows: they are fueled by photosynthesis, are carbon dioxide-neutral, have rapid growth rates, are robust, have low-cost cultivation, are easily scalable, pose no risk of human pathogenic contamination, and their valuable natural byproducts can be further processed. Despite their potential, there are many technical hurdles that need to be overcome before the commercial production of microalgal pharmaceuticals, and extensive studies regarding their impact on human health must still be conducted and the results evaluated. Clearly, much work remains to be done before microalgae can be used in the large-scale commercial production of pharmaceuticals. This review focuses on recent advancements in microalgal biotechnology and its future perspectives.  相似文献   

5.
Many cytotoxic compounds of therapeutic interest have been isolated from marine invertebrates, and some of them have been reported to be of microbial origin. Pyridoacridine alkaloids are the main compounds extracted from the ascidian Cystodytes dellechiajei. Here we describe the in vitro antiproliferative activity against different tumor cell lines of the ascidian extracts and provide some insights on the role of the microbial community associated with the tunicate in the production of these compounds. C. dellechiajei extracts showed remarkably high antiproliferative activity (IC50 ≤5 μg/mL) in human lung carcinoma A-549, colon adenocarcinoma H-116, pancreatic adenocarcinoma PSN-1 and breast carcinoma SKBR3 cell lines. Moreover, we found that the maximum activity was located in the tunic tissue of the colony, which harbours a microbial community. In order to ascertain the involvement of this community in the synthesis of the bioactive compounds different approachs that included culture and culture independent methods were carried out. We undertook a screening for antiproliferative activities of the bacterial isolates from the ascidian, as well as a comprative analysis of the cytotoxic activities and the microbial communities from two color morphs of the ascidian, green and blue. In addition, the changes of the antiproliferative activities and the composition of the microbial communities were studied from ascidians kept in aquaria and treated with antibiotics for one month. Our data obtained from the different experiments did not point out to bacteria as the source of the cytotoxic compounds, suggesting thus an ascidian origin.  相似文献   

6.
Marine alkaloids comprise a class of compounds with several nitrogenated structures that can be explored as potential natural bioactive compounds. The scientific interest in these compounds has been increasing in the last decades, and many studies have been published elucidating their chemical structure and biological effects in vitro. Following this trend, the number of in vivo studies reporting the health-related properties of marine alkaloids has been increasing and providing more information about the effects in complex organisms. Experiments with animals, especially mice and zebrafish, are revealing the potential health benefits against cancer development, cardiovascular diseases, seizures, Alzheimer’s disease, mental health disorders, inflammatory diseases, osteoporosis, cystic fibrosis, oxidative stress, human parasites, and microbial infections in vivo. Although major efforts are still necessary to increase the knowledge, especially about the translation value of the information obtained from in vivo experiments to clinical trials, marine alkaloids are promising candidates for further experiments in drug development.  相似文献   

7.
微藻生物量与油脂产量偏低是目前微藻油脂难以商业化生产的主要原因之一,新型基因编辑技术TALEN和CRISPR/Cas9在解析油脂合成代谢的关键基因以及进一步遗传改造产油藻株方面有巨大潜力。本文主要介绍了TALEN和CRISPR/Cas9技术的基本原理,以及它们在产油微藻中的研究进展,并展望了两种技术在研究产油微藻功能基因和构建工业株系方面的应用前景。  相似文献   

8.
Microalgae as sources of carotenoids   总被引:1,自引:0,他引:1  
Marine microalgae constitute a natural source of a variety of drugs for pharmaceutical, food and cosmetic applications-which encompass carotenoids, among others. A growing body of experimental evidence has confirmed that these compounds can play important roles in prevention (and even treatment) of human diseases and health conditions, e.g., cancer, cardiovascular problems, atherosclerosis, rheumatoid arthritis, muscular dystrophy, cataracts and some neurological disorders. The underlying features that may account for such favorable biological activities are their intrinsic antioxidant, anti-inflammatory and antitumoral features. In this invited review, the most important issues regarding synthesis of carotenoids by microalgae are described and discussed-from both physiological and processing points of view. Current gaps of knowledge, as well as technological opportunities in the near future relating to this growing field of interest, are also put forward in a critical manner.  相似文献   

9.
The rise of human populations and the growth of cities contribute to the depletion of natural resources, increase their cost, and create potential climatic changes. To overcome difficulties in supplying populations and reducing the resource cost, a search for alternative pharmaceutical, nanotechnology, and energy sources has begun. Among the alternative sources, microalgae are the most promising because they use carbon dioxide (CO2) to produce biomass and/or valuable compounds. Once produced, the biomass is ordinarily harvested and processed (downstream program). Drying, grinding, and extraction steps are destructive to the microalgal biomass that then needs to be renewed. The extraction and purification processes generate organic wastes and require substantial energy inputs. Altogether, it is urgent to develop alternative downstream processes. Among the possibilities, milking invokes the concept that the extraction should not kill the algal cells. Therefore, it does not require growing the algae anew. In this review, we discuss research on milking of diatoms. The main themes are (a) development of alternative methods to extract and harvest high added value compounds; (b) design of photobioreactors; (c) biodiversity and (d) stress physiology, illustrated with original results dealing with oleaginous diatoms.  相似文献   

10.
N-3 polyunsaturated fatty acids (n-3 PUFAs), and especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential compounds for human health. They have been proven to act positively on a panel of diseases and have interesting anti-oxidative, anti-inflammatory or anti-cancer properties. For these reasons, they are receiving more and more attention in recent years, especially future food or feed development. EPA and DHA come mainly from marine sources like fish or seaweed. Unfortunately, due to global warming, these compounds are becoming scarce for humans because of overfishing and stock reduction. Although increasing in recent years, aquaculture appears insufficient to meet the increasing requirements of these healthy molecules for humans. One alternative resides in the cultivation of microalgae, the initial producers of EPA and DHA. They are also rich in biochemicals with interesting properties. After defining macro and microalgae, this review synthesizes the current knowledge on n-3 PUFAs regarding health benefits and the challenges surrounding their supply within the environmental context. Microalgae n-3 PUFA production is examined and its synthesis pathways are discussed. Finally, the use of EPA and DHA in food and feed is investigated. This work aims to define better the issues surrounding n-3 PUFA production and supply and the potential of microalgae as a sustainable source of compounds to enhance the food and feed of the future.  相似文献   

11.
Antioxidant activity of Hawaiian marine algae   总被引:1,自引:0,他引:1  
Marine algae are known to contain a wide variety of bioactive compounds, many of which have commercial applications in pharmaceutical, medical, cosmetic, nutraceutical, food and agricultural industries. Natural antioxidants, found in many algae, are important bioactive compounds that play an important role against various diseases and ageing processes through protection of cells from oxidative damage. In this respect, relatively little is known about the bioactivity of Hawaiian algae that could be a potential natural source of such antioxidants. The total antioxidant activity of organic extracts of 37 algal samples, comprising of 30 species of Hawaiian algae from 27 different genera was determined. The activity was determined by employing the FRAP (Ferric Reducing Antioxidant Power) assays. Of the algae tested, the extract of Turbinaria ornata was found to be the most active. Bioassay-guided fractionation of this extract led to the isolation of a variety of different carotenoids as the active principles. The major bioactive antioxidant compound was identified as the carotenoid fucoxanthin. These results show, for the first time, that numerous Hawaiian algae exhibit significant antioxidant activity, a property that could lead to their application in one of many useful healthcare or related products as well as in chemoprevention of a variety of diseases including cancer.  相似文献   

12.
Marine microalgae have been used for a long time as food for humans, such as Arthrospira (formerly, Spirulina), and for animals in aquaculture. The biomass of these microalgae and the compounds they produce have been shown to possess several biological applications with numerous health benefits. The present review puts up-to-date the research on the biological activities and applications of polysaccharides, active biocompounds synthesized by marine unicellular algae, which are, most of the times, released into the surrounding medium (exo- or extracellular polysaccharides, EPS). It goes through the most studied activities of sulphated polysaccharides (sPS) or their derivatives, but also highlights lesser known applications as hypolipidaemic or hypoglycaemic, or as biolubricant agents and drag-reducers. Therefore, the great potentials of sPS from marine microalgae to be used as nutraceuticals, therapeutic agents, cosmetics, or in other areas, such as engineering, are approached in this review.  相似文献   

13.
Adaptive laboratory evolution (ALE) has been widely utilized as a tool for developing new biological and phenotypic functions to explore strain improvement for microalgal production. Specifically, ALE has been utilized to evolve strains to better adapt to defined conditions. It has become a new solution to improve the performance of strains in microalgae biotechnology. This review mainly summarizes the key results from recent microalgal ALE studies in industrial production. ALE designed for improving cell growth rate, product yield, environmental tolerance and wastewater treatment is discussed to exploit microalgae in various applications. Further development of ALE is proposed, to provide theoretical support for producing the high value-added products from microalgal production.  相似文献   

14.
Microalgae are microorganisms with a singular biochemical composition, including several biologically active compounds with proven pharmacological activities, such as anticancer, antioxidant and anti-inflammatory activities, among others. These properties make microalgae an interesting natural resource to be used as a functional ingredient, as well as in the prevention and treatment of diseases, or cosmetic formulations. Nevertheless, natural bioactives often possess inherent chemical instability and/or poor solubility, which are usually associated with low bioavailability. As such, their industrial potential as a health-promoting substance might be severely compromised. In this context, encapsulation systems are considered as a promising and emerging strategy to overcome these shortcomings due to the presence of a surrounding protective layer. Diverse systems have already been reported in the literature for natural bioactives, where some of them have been successfully applied to microalgae compounds. Therefore, this review focuses on exploring encapsulation systems for microalgae biomass, their extracts, or purified bioactives for food, pharmaceutical, and cosmetic purposes. Moreover, this work also covers the most common encapsulation techniques and types of coating materials used, along with the main findings regarding the beneficial effects of these systems.  相似文献   

15.
In this review, we aim to explore the potential of microalgal biodiversity and ecology for biotechnological use. A deeper exploration of the biodiversity richness and ecophysiological properties of microalgae is crucial for enhancing their use for applicative purposes. After describing the actual biotechnological use of microalgae, we consider the multiple faces of taxonomical, morphological, functional and ecophysiological biodiversity of these organisms, and investigate how these properties could better serve the biotechnological field. Lastly, we propose new approaches to enhancing microalgal growth, photosynthesis, and synthesis of valuable products used in biotechnological fields, mainly focusing on culture conditions, especially light manipulations and genetic modifications.  相似文献   

16.
Astaxanthin, a powerful antioxidant, is a good candidate for the prevention of intracellular oxidative stress. The aim of the study was to compare the antioxidant activity of astaxanthin present in two natural extracts from Haematococcus pluvialis, a microalgae strain, with that of synthetic astaxanthin. Natural extracts were obtained either by solvent or supercritical extraction methods. UV, HPLC-DAD and (HPLC-(atmospheric pressure chemical ionization (APCI)+)/ion trap-MS) characterizations of both natural extracts showed similar compositions of carotenoids, but different percentages in free astaxanthin and its ester derivatives. The Trolox equivalent antioxidant capacity (TEAC) assay showed that natural extracts containing esters displayed stronger antioxidant activities than free astaxanthin. Their antioxidant capacities to inhibit intracellular oxidative stress were then evaluated on HUVEC cells. The intracellular antioxidant activity in natural extracts was approximately 90-times higher than synthetic astaxanthin (5 µM). No modification, neither in the morphology nor in the viability, of vascular human cells was observed by in vitro biocompatibility study up to 10 µM astaxanthin concentrations. Therefore, these results revealed the therapeutic potential of the natural extracts in vascular human cell protection against oxidative stress without toxicity, which could be exploited in prevention and/or treatment of cardiovascular diseases.  相似文献   

17.
Microalgae are excellent biological factories for high-value products and contain biofunctional carotenoids. Carotenoids are a group of natural pigments with high value in social production and human health. They have been widely used in food additives, pharmaceutics and cosmetics. Astaxanthin, β-carotene and lutein are currently the three carotenoids with the largest market share. Meanwhile, other less studied pigments, such as fucoxanthin and zeaxanthin, also exist in microalgae and have great biofunctional potentials. Since carotenoid accumulation is related to environments and cultivation of microalgae in seawater is a difficult biotechnological problem, the contributions of salt stress on carotenoid accumulation in microalgae need to be revealed for large-scale production. This review comprehensively summarizes the carotenoid biosynthesis and salinity responses of microalgae. Applications of salt stress to induce carotenoid accumulation, potentials of the Internet of Things in microalgae cultivation and future aspects for seawater cultivation are also discussed. As the global market share of carotenoids is still ascending, large-scale, economical and intelligent biotechnologies for carotenoid production play vital roles in the future microalgal economy.  相似文献   

18.
The marine environment is an important source of structurally-diverse and biologically-active secondary metabolites. During the last two decades, thousands of compounds were discovered in marine organisms, several of them having inspired the development of new classes of therapeutic agents. Marine mollusks constitute a successful phyla in the discovery of new marine natural products (MNPs). Over a 50-year period from 1963, 116 genera of mollusks contributed innumerous compounds, Aplysia being the most studied genus by MNP chemists. This genus includes 36 valid species and should be distinguished from all mollusks as it yielded numerous new natural products. Aplysia sea hares are herbivorous mollusks, which have been proven to be a rich source of secondary metabolites, mostly of dietary origin. The majority of secondary metabolites isolated from sea hares of the genus Aplysia are halogenated terpenes; however, these animals are also a source of compounds from other chemical classes, such as macrolides, sterols and alkaloids, often exhibiting cytotoxic, antibacterial, antifungal, antiviral and/or antifeedant activities. This review focuses on the diverse structural classes of secondary metabolites found in Aplysia spp., including several compounds with pronounced biological properties.  相似文献   

19.
Microalgae tend to accumulate lipids as an energy storage material in the specific organelle, oleosomes. Current studies have demonstrated that lipids derived from microalgal oleosomes are a promising source of biofuels, while the oleosome formation mechanism has not been fully elucidated. Oleosome-associated proteins have been identified from several microalgae to elucidate the fundamental mechanisms of oleosome formation, although understanding their functions is still in infancy. Recently, we discovered a diatom-oleosome-associated-protein 1 (DOAP1) from the oleaginous diatom, Fistulifera solaris JPCC DA0580. The DOAP1 sequence implied that this protein might be transported into the endoplasmic reticulum (ER) due to the signal sequence. To ensure this, we fused the signal sequence to green fluorescence protein. The fusion protein distributed around the chloroplast as like a meshwork membrane structure, indicating the ER localization. This result suggests that DOAP1 could firstly localize at the ER, then move to the oleosomes. This study also demonstrated that the DOAP1 signal sequence allowed recombinant proteins to be specifically expressed in the ER of the oleaginous diatom. It would be a useful technique for engineering the lipid synthesis pathways existing in the ER, and finally controlling the biofuel quality.  相似文献   

20.
Some microbial species are chemically homogenous, and the same secondary metabolites are found in all strains. In contrast, we previously found that five strains of P. luteoviolacea were closely related by 16S rRNA gene sequence but produced two different antibiotic profiles. The purpose of the present study was to determine whether such bioactivity differences could be linked to genotypes allowing methods from phylogenetic analysis to aid in selection of strains for biodiscovery. Thirteen P. luteoviolacea strains divided into three chemotypes based on production of known antibiotics and four antibacterial profiles based on inhibition assays against Vibrio anguillarum and Staphylococcus aureus. To determine whether chemotype and inhibition profile are reflected by phylogenetic clustering we sequenced 16S rRNA, gyrB and recA genes. Clustering based on 16S rRNA gene sequences alone showed little correlation to chemotypes and inhibition profiles, while clustering based on concatenated 16S rRNA, gyrB, and recA gene sequences resulted in three clusters, two of which uniformly consisted of strains of identical chemotype and inhibition profile. A major time sink in natural products discovery is the effort spent rediscovering known compounds, and this study indicates that phylogeny clustering of bioactive species has the potential to be a useful dereplication tool in biodiscovery efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号