首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Soil alkalinisation generally constitutes a major threat to irrigated agriculture in the semi-arid regions of west Africa. The improvement of sodic soils is generally difficult and expensive. However, a recent study in the Niger valley in Niger, reveals that a natural de-alkalinisation is possible under natural conditions in a semi-arid climate. Transformation of non-saline sodic soil into brown steppe soil type was recorded. On the same site, the cultivation of a Sahelian fodder grass, locally known as ‘Burgu’ was used on the sodic soil/brown steppe soil transition zone to accelerate this natural de-alkalinisation and characterise its mechanisms. The geochemical properties of both soil types were monitored before cultivation and 1 year after continuous crop cultivation. After cultivation and regular irrigation, the chemical properties of the former sodic soils were close to those of the surrounding brown steppe soils, which are better suited for agriculture. This modification of the sodic soil properties can be attributed to (i) the large amount of water supplied during cultivation that induced salt leaching. This is the main phenomenon responsible for the changes observed; (ii) the root activity that modified the acid–base equilibrium and consumes alkalinity.

The residual alkalinity (RA) concept was used to select chemical tracers of the concentration/dilution of the soil solution. Here, sodium amount and calcite+fluorite residual alkalinity (RAcalcite+fluorite) were the most adequate ones. These two tracers decreased proportionally under the influence of leaching, but the exchanges between cations and protons changed the RAcalcite+fluorite, without modifying the sodium amount. Their combined use allowed us to separate and quantify the uptake of the plant from the leaching in the de-alkalinisation process. This study highlighted that reclamation of this type of sodic soils is feasible. The use of the RA concept is advisable to design a sustainable management system for irrigated sodic or saline soils.  相似文献   


2.
Water transmission characteristics under saturated and unsaturated conditions were studied in a sandy loam soil with (F1) and without (F0) long-term farmyard manure (FYM) treatments, in relation to sodium adsorption ratios (SAR) and electrolyte concentrations of water. The effect of FYM and ratios of Ca2+ : Mg2+ in water at a given SAR on sodication of the soil was also studied.Saturated hydraulic conductivity (k) and weighted mean diffusivity (D?) were slightly higher for F1 than for F0, whereas sodication indices like Gapon constant (KG), Krishnamoorthy-Davis-Overstreet constant (KKDO) and Vanselow constant (KV) were slightly smaller. The k and D? decreased with an increase of SAR and decrease of electrolyte concentration, the effect of SAR being more pronounced. There was proportionately a sharper decrease in the k and D? values at SAR 10 with total electrolyte concentrations of 10–40 meq 1?1. However, with a total electrolyte concentration of 80 meq 1?1, there was a smaller drop at SAR 10.A small difference in the build-up of exchangeable sodium percentage (ESP) in F1 and F0 treatments at a given SAR suggests that, apart from slightly improving water transmission parameters, the use of FYM also reduces the sodication hazard in a soil irrigated with sodic waters. An increase in the Ca2+ : Mg2+ ratio from 25:75 to 75:25 slightly decreased the values of KG, KKDO and KV, thus indicating somewhat more preference for Ca2+ to Mg2+ at a given SAR, which was more so in F1 soil. This fact could also be expressed in terms of a slight shift of thermodynamic exchange constant (K) and standard free energy change of the exchange reaction (ΔG0r). The presence of some unidentified Na+ releasing minerals in the soils studied was observed and correction for exchangeable Na+ determination applied.  相似文献   

3.
The nature of water movement through freely draining saturated and field moist aggregates of saline sodic clay topsoil was studied using 200 mm long columns filled with soil aggregates. Water containing tritium as a tracer was supplied either by means of rainfall simulator or directly to the surface of the soil under a negative pressure head of 500 Pa.The proportion of macropore and micropore flow was elucidated. The micropores of the aggregates were shown to convey very little water (0.013 mm h) and hence, even at low rainfall intensities water was expected to move down through the macropores. In practice, at a low water application rate of 0.6 mm h drainage did not begin from the base of the column until the aggregates had become fully saturated due to mobile water in the macropores being continuously absorbed into the micropores. The results, however, indicated that extensive rapid bypassing does occur at medium and high rainfall intensities ( > 2.3 mm ) , with the result that a large proportion of the water falling on the unsaturated plough layers of clay soils is drained before the topsoil becomes saturated.The soil absorbed water continuously during the application of the equivalent of a wetter than average winter's rain (400 mm), the rate of absorption being directly proportional to the amount of salt leached.Tritium, used as a tracer, was found to be preferentially absorbed by the clay during the leaching process, the concentration in the soil water rising to 1.8 times that of the applied tritiated water.  相似文献   

4.
Performance of tomato when irrigated with sodic waters particularly under drip irrigation is not well known. A field experiment was conducted for 3 years to study the response of tomato crop to sodic water irrigation on a sandy loam soil. Irrigation waters having 0, 5 and 10 mmolc L−1 residual sodium carbonate (RSC) were applied through drip and furrow irrigation to two tomato cultivars, Edkawi (a salt tolerant cultivar) and Punjab Chhuhara (PC). High RSC of irrigation water significantly increased soil pH, ECe and exchangeable sodium percentage progressively; the increases were higher in furrow compared to drip irrigation. Effect of high RSC on increasing bulk density and decreasing infiltration rate of soil was also pronounced in furrow-irrigated plots. Higher soil moisture and lower salinity near the plant was maintained under drip irrigation than under furrow irrigation. Performance of the two cultivars was significantly different; pooled over 2002–03 and 2003–04 seasons, PC yielded 38.8 and 30.0 Mg ha−1 and Edkawi yielded 31.8 and 22.9 Mg ha−1 under drip and furrow irrigation, respectively. At RSC10, cultivar PC produced 38 and 46% higher fruit yield than cultivar Edkawi under drip and furrow irrigation, respectively. Reduction in fruit yield at higher RSC was due to lower fruit weight under drip irrigation and due to reduced fruit number as well as fruit weight under furrow irrigation. Decrease in fruit weight was more pronounced in cultivar Edkawi than in cultivar PC. Increase in RSC lowered quality of the fruits except the ascorbic acid content. High RSC under drip irrigation, in general, had lesser deteriorating effect on the fruit quality particularly for cultivar PC than under furrow irrigation. For obtaining high tomato yield and better-quality fruits using high RSC sodic waters, drip irrigation should be preferred over furrow irrigation. Better performance of local cultivar PC compared to Edkawi at medium and high RSC suggests that cultivars categorized as tolerant to salinity should be evaluated in the sodic environment particularly when irrigated with high RSC sodic waters.  相似文献   

5.
This paper deals with the prediction of the soil water retention h(S) and the soil unsaturated hydraulic conductivity K(S) functions of a clay-loam soil at a field scale (1 ha) where the variable S represents water saturation. The Van Genuchten model and the corresponding Mualem-Van Genuchten model were used to predict h(S) and K(S) functions respectively. The field data (tensiometric and neutron probe measurements) used in this study were provided by the soil water balance (four neutron sites, 0.35 to 1.55 m soil layer) of a soybean crop over a 78 days growing season. The advantages of the scaling approach for describing the field variability of the h(S) function were confirmed. The scaling approach accounted for 73% of the field variability of the soil matrix potential. A simple procedure was proposed in order to predict the K(S) function using scaling theory. This was done by simultaneously applying a ``zero flux method' and ``deep flux method' to compute the soil water balance and fit the saturated hydraulic conductivitiy (K sat), the only unknown parameter in K(S). Received: 15 November 1995  相似文献   

6.
施加生物质炭对盐渍土土壤结构和水力特性的影响   总被引:7,自引:0,他引:7  
以江苏省沿海围垦区盐渍土为研究对象,基于Micro-CT图像扫描技术,分析施加生物质炭后改良盐渍土土壤孔隙度、土壤水分特征曲线以及非饱和导水率等土壤特性的变化,并建立分形模型预测土壤水力性质,以此揭示施用生物质炭对于海涂围垦区盐渍土土壤结构和水力特性的影响。试验设置0、2%、5%(与表层0~20 cm土壤质量比) 3个生物质炭添加水平,重复3次。结果表明:施加5%生物质炭显著降低盐渍土土壤容重,增加土壤总孔隙度和大孔隙度;大于0. 25 mm水稳性团聚体质量分数显著增加,增加土壤孔隙分形维数;提高土壤饱和含水率和饱和导水率;结合Micro-CT图像扫描技术和孔隙分形理论预测改良盐渍土土壤水分特征曲线和非饱和导水率,预测效果精度高,能够用于实际问题的研究。  相似文献   

7.
Coal bed natural gas (CBNG) extraction in the Powder River (PR) Basin of Wyoming and Montana produces modestly saline-sodic wastewater, which may have electrical conductivity (EC) and sodium adsorption ratios (SAR) exceeding accepted thresholds for irrigation (EC = 3 dS m−1, SAR = 12 (mmolc l−1)1/2. As an approach to managing large volumes of CBNG-produced water, treatment processes have been developed to adjust produced water salinity and sodicity to published irrigation guidelines and legislated in-stream standards. The objective of this laboratory study was to assess acute and chronic soil solution EC and SAR responses to various wetting regimes simulating repeated flood irrigation with treated CBNG product water, followed by single rainfall events. Fifty-four soil samples from irrigated fields in southeast Montana were subjected to simulated PR water or CBNG water treated to EC and SAR values accepted as thresholds for designation of saline × sodic water, in a single wetting event, five wetting–drying events, or five wetting–drying events, followed by leaching with distilled water. Resultant saturated paste extract EC (ECe) and SAR of soils having <33% clay did not differ from one another, but resulting ECe and SAR were all less than those for soil having >33% clay. Repeated wetting with PR water having EC of 1.56 dS m−1 and SAR of 4.54 led to SAR <12, but brought ECe near 3 dS m−1. Repeated wetting with water having salinity = 3.12 dS m−1 and SAR = 13.09 led to ECe >3 dS m−1 and SAR near 12. Subsequent inundation and drainage with distilled water, simulating rainfall-quality leaching, reduced ECe and SAR more often in coarse-textured, high salt content soils than in finer-textured, lower salt content soils. Decreases in ECe upon leaching with distilled water were of greater magnitude than corresponding decreases in SAR, reinforcing supposition of sodium-induced dispersion of fine-textured soils as a consequence of rainfall following irrigation with water having salinity and sodicity levels equal to previously published thresholds.  相似文献   

8.
Summary A simulation model of water uptake by a crop was developed to facilitate synthesis of field and laboratory observations with existing knowledge, and to analyze and predict affects of management practices, such as tillage, on water uptake from a drying soil. Radial water flow resistance in soil Rs was estimated by the single root flow model. Leaf stomata closure was represented by an observed minimal leaf water potential. Flow resistances, per unit root length Rr and in the plant Rp, were assumed to be constant and were evaluated together with an effective root length factor Frl, in the course of simulating a ten week period of observed soil water depletion by a crop of oats. Rr, Rp, and Frl were found to have similar values to those reported in the literature. Potential transpiration and evaporation and their ratio were estimated by the methods of Van Bavel (1966) and Denmead (1973). Evaporation reduction due to soil drying was estimated empirically.Cessation of soil water depletion (attainment of a permanent wilting soil water content) in the 0 – 20 cm soil layer, during the last ten-day period, was explained to be the net result of soil water extraction by the roots and backflow of water from the roots into the soil. Simulated onset of crop stress (closure of stomata) was found to be characterized by: (a) a steady decrease in average soil water potential, at a rate of about 500 cm-water per cm-soil water depletion; (b) a tenfold increase in the average soil resistance to radial flow, to about the same magnitude as average radial flow resistance in the roots; and (c) soil water diffusivities in the 0 – 50 cm layer being about 6 cm2/day. Sensitivity analyses showed that the ratio of actual to potential cumulative transpiration RCT depended primarily on potential evapotranspiration, rainfall, the unsaturated-to-saturated hydraulic conductivity exponent and plant cover. RCT was affected similarly by changes in Rr and in Rs. Under the conditions tested, zero tillage may increase RCT significantly only if it increases deep rooting beyond the 50 cm depth.Joint contribution from the Georg-August University, Göttingen, FRG, and the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel, A.R.O. No. 207-E, 1980 Series  相似文献   

9.
Irrigation with effluents can detrimentally affect soil physical and chemical properties and impact plant growth and development. Excessive irrigation can leach salts from the root zone; which can be accomplished by precipitation in some areas. This study was conducted to examine the effect of applications of Kraft pulp mill effluent (KPME) with and without distilled water (DW) to simulate precipitation would have on soil chemical properties and growth of hybrid poplar (Populus deltoides × P. petrowskyana L. cv. Walker). Distilled water (DW), KPME, and a 50% combination (v/v; COMB) of DW and KPME were applied at rates of 6 and 9 mm day−1. COMB resulted in heights, biomasses, and leaf areas that were greater than those for KPME and comparable to those for DW. Diluted KPME treatments (i.e., COMB) still significantly increased soil electrical conductivity and sodium adsorption ratio compared to DW. Leachate collected from KPME 9 mm day−1 had concentrations of HCO3 , SO4 2−, Cl, Ca2+, K+, and Mg2+ comparable to those collected from COMB 9 mm day−1, but Na+ concentrations were three times higher in KPME than COMB 9 mm day−1. Results indicate that precipitation or additional irrigation water could potentially provide the leaching necessary to prevent salt accumulation within the rooting zone; however, irrigating with saline or sodic effluents requires careful management.  相似文献   

10.
利用SAR和pH分析脱硫石膏改良碱(化) 土壤的机理   总被引:11,自引:0,他引:11  
通过对碱土和强碱化2种土壤施加不同数量脱硫石膏进行改良的大田试验研究,探讨了土壤N a+吸附比SAR以及土壤溶液pH值的变化规律。研究结果表明:经过1年的大田试验后,2种土壤的在(0~15 cm的SAR以及pH值较对照均有了明显的降低,且不同处理的试验效果差异较大。1年的大田试验对15 cm以下土层的pH值影响甚微。这说明经过1年的大田试验后,根区活动层范围内的土壤钠碱化度明显降低,土壤理化性质在一定程度得到了改善。由于供试土壤的渗透性较差,经过N a+-C a2+交换后,0~15 cm土乘代换出的盐分不能全部被淋洗排出土体,在土体下层附集,这无疑说明了碱土改良是一个较漫长的过程。在改良的初始阶段,强度碱化土壤的改良效果要优于碱土区的改良效果,这是由土壤原有的碱化程度以及土壤的理化性质决定的。  相似文献   

11.
A field experiment was conducted on a red-brown earth (Natrixeralf) to find the effectiveness of spontaneously dispersed clay from sodic soils and mechanically dispersed clay (by puddling) from calcic and sodic soils in reducing the seepage loss of water from a series of small dams (pits). The effect of inoculating algae in the pits on reducing seepage was also investigated. A plastic lined pit was used for water balance control to measure incoming rainfall and evaporative loss.The results showed the effectiveness of dispersed soil clay in sealing the surface soil materials in the banks and beds of the pits. The dispersed clays from sodic soils were very effective in reducing the seepage to zero. When the clay concentration was above 8 g L−1 the sealing was complete, irrespective of spontaneous or mechanical dispersion from sodic soils. The mechanically dispersed clay from calcic soils were less effective in sealing because of the deposition of flocculated materials in the pore systems formed domains and generated microporosity. In calcic pits, the inoculation of algae reduced the seepage by 13 to 23% and increase in biopolymer (chlorophyll and polysaccharide) production was only small.  相似文献   

12.
CaSO4在改良碱化土壤过程中对其理化性质的影响   总被引:21,自引:1,他引:20  
通过室内土柱混合置换试验探讨了不同CaSO4浓度水平下土壤淋溶液的理化性质的变化规律。试验设置2个处理,CaSO4浓度分别为0.5 g/L和1.5 g/L。结果表明:碱化土壤经过不同浓度的CaSO4溶液淋溶,土壤的pH值、电导率和饱和水力传导度得到了不同程度的降低,同时,CaSO4溶液浓度高的淋溶效果要比浓度低的变化明显。在土壤表层,2种处理的pH分别由初始的9.71和9.26降低到8.06和8.03;电导率分别由初始的14.49ds/m和14.39 ds/m降低到0.82 ds/m和1.67 ds/m。这说明土壤的理化性质得到了改善,碱化土壤改良效果显著。  相似文献   

13.
Summary Efficiency of sodic soil reclamation is thought to vary with types of chemicals used. This study examined the effects of five inorganic (H2SO4, CaCl2 · 2H2O, CaSO4 · 2H2O, FeSO4, Al2(SO4)3) and two organic compounds (polyacrylamide, and trihydroxy glutaric acid) on the rate and the extent of salt and Na leaching in moderately Na-affected saline soils: Saneli silty clay loam (Vertic Torrifluvents, ESP=17.5%) and Glendale silty clay (Typic Torrifluvents, ESP=13.5%). Air-dry soil samples (<2mm) were packed in columns, and chemicals, except H2SO4, were incorporated into the surface 5 cm of the soils, and in selected cases, to 30 cm. H2SO4 was surface-applied. Application rates of the inorganic chemicals were 3.57 and 10.7 mmol(+) kg-1 (2.5 and 7.5 Mg ha-1 in gypsum equivalent weight) in the silty clay loam, and 8 and 24 mmol(+) kg-1 in the silty clay, and the organic compounds were applied at rates of less than 620 kg ha-1. The soils were then leached with simulated Rio Grande water (EC = 1.1 dS m-1, SAR = 3.5) under continuous ponding. The tested inorganic compounds removed approximately equivalent amounts of exchangeable Na after approximately 35 cm of water application. However, the rate of water percolation (consequently the rate of salt leaching) from CaCl2 treated columns, became progressively slow after about 20 cm of water intake. The combined effect of rapid electrolyte leaching and insufficient replacement of Na in the surface layer seemed to be responsible for the flow reduction. Gypsum and H2SO4 treatments provided lower ratios of sodicity to salinity in percolating solutions and relatively uniform hydraulic gradients throughout the soil depth. Incorporation of chemicals to the surface 30 cm did not alter performance, except in CaCl2 treatments where water intake rates became even slower. The tested organic amendments improved initial water infiltration, but neither increased subsequent percolation rates nor improved salt and Na leaching. The fastest reclamation may be attained when chemicals are chosen and applied to yield an electrolyte concentration that is high enough to overcome Na effects at any depth of soil profiles throughout the leaching period.Contribution from Texas Agr. Expt. Sta. Texas A & M University System. This project was supported in part by the Binational Agricultural Research and Development (BARD) Fund and the Expanded Research Area Fund of the Texas Agricultural Experiment Station.  相似文献   

14.
Soil column studies were conducted with two soils to assess the effects of irrigation with wastewater on soil and groundwater quality. Upon the application of wastewater, exchange occurred between solution sodium (Na+) and exchangeable cations (Ca2+, Mg2+, K+), whereby these cations were released into solution. The average exchangeable sodium percentage (ESP) of the soils increased during leaching from 9 to 21 and 28.8 to 29.7 after applying 5.0 and 3.5 l (about 7 and 6 pore volumes) of wastewater to the soils columns, respectively. Adverse effect of high Na+ concentration in the wastewater on raising ESP was less pronounced in the soil having initial high ESP than in the soil with low initial ESP. Salinity of the soils was also increased with the application of wastewater and Mg2+ and K+ were leached from the soils. These losses would be more severe on soils having a low cation exchange capacity and if, uncorrected could lead eventually to their deficiencies for plant growth. When the soil columns were leached with distilled water the flow rate of one soil decreased to zero after 2.2 pore volume indicating damage to soil structure. Irrigation with wastewater, which is generally more sodic and saline than regional groundwater, increases the rate of soil sodification of shallow groundwater. A relatively simple chromatographic model was used to estimate final ESP profiles in the soils assuming the condition of local equilibrium. This approach had a limited success for one of the soil. Since the final leached concentrations are in good agreement with those of wastewater, we attribute these differences to non-uniform flow through the column. In terms of practical soil and water management, our study reveals that relatively simple means can be useful to predict the water quality in soils, their discharge to ground water, and the hazard of soil structure deterioration.  相似文献   

15.
Irrigation with treated wastewater (TWW) is gaining importance due to declining water availability in dry regions. TWW irrigation has various potential adverse effects on soil quality such as hydrophobic effects on soil surfaces, reducing initial sorptivity and promoting the formation of preferential flow paths. In May and June 2010, in situ infiltration measurements using mini disk tension infiltrometer were deployed in five different orchard plots in Israel to assess the impact of different irrigation water qualities on the soil water repellency index R. In most plantations, long-term test sites were accessed to compare adjacent plots irrigated with fresh water (FW) or TWW. Topsoil samples were analyzed for selected physical and chemical characteristics. The mean R values increased at all TWW sites, from +15 up to +55 % compared with FW sites. The water drop penetration time (WDPT) increased up to 30 fold at three of five TWW sites compared with FW sites. Subsequent U tests and multilevel analysis indicated an impact of the type of irrigation water on R and WDPT. Moreover, soil electrical conductivity and exchangeable sodium percentage were consistently higher at all TWW sites. These results show that irrigation water quality clearly influences physical and chemical properties of the soil.  相似文献   

16.
Irrigation with saline–sodic water imposes sodic conditions on the soil and reduces the soil’s productivity. We hypothesized that replacing saline–sodic irrigation water with lesser saline–sodic treated waste water (TWW), albeit with higher loads of organic matter and suspended solids, might help sodic soils regain their structure and hydraulic conductivity. We studied hydraulic conductivity (HC), aggregate stability and clay swelling of a soil from the Bet She’an Valley, Israel using samples taken from a non-cultivated field (control), and plots irrigated with TWW, saline–sodic Jordan River (JR) water, and moderately saline–sodic spring (SP) water. Soil samples were taken at the end of the irrigation season (autumn 2005) and at the end of the subsequent rainy season (spring 2006). In the HC and the aggregate stability determinations, for both sampling seasons, the TWW-irrigated samples gave significantly higher values than the SP- and JR-irrigated samples, but lower than the samples from the control plot. The autumn samples exhibited, generally, higher HC and lower swelling levels compared with the spring samples. Conversely, aggregate stability of the spring samples was higher than that of the autumn samples. These seasonal changes in the results of the three tests were associated with seasonal changes in the salinity and sodicity of the soils. Contributions from the Agricultural Research Organization, The Volcani Center, Bet-Dagan 50250, Israel. No. 601/2007 series.  相似文献   

17.
Summary Field studies were conducted for a period of ten years (1974 to 1984) on Typic Ustochrept to determine the sustained effects of saline irrigation water electrical conductivity (EC iw ) 3.2 dS/m, sodium adsorption ratio (SAR) 21 (mmol/1)1/2 and residual sodium carbonate (RSC) 4me/1, on the build up of salinity in the soil profile and yield of crops grown under fixed rice-wheat and maize/millet-wheat rotations. Saline waters were continuously used with and without the addition of gypsum (at the rate needed to reduce RSC to zero) applied at each irrigation. In maize/millet-wheat rotation, two additional treatments viz. (i) irrigation with 50% extra water over and above the normal 6 cm irrigation, and (ii) irrigation with good water and saline water alternately, were also kept. The results showed that salinity increased rapidly in the profile during the initial years but after five years (1979–1984) the average soluble salt concentration in 0–90 cm soil profile did not appreciably vary and the mean EC e values under saline water treatment remained almost similar to EC iw , under both the crop rotations.Saline water irrigation increased pH and Na saturation of the soil, reduced water infiltration rate and decreased yields of maize, rice and wheat. The differences in the build up of salinity and ESP of the soil under the two cropping sequences seemed to be related with the differences in leaching that occurred under rice-wheat and maize/millet-wheat rotations. Application of gypsum increased the removal of Na from the profile, appreciably decreased the pH and Na saturation and improved water infiltration rate and raised crop yields. Application of non-saline and saline waters alternately was found to be a useful practice but irrigation with 50% extra water to meet the leaching requirement did not control salinity and hence lowered crop yields.  相似文献   

18.
High levels of soil sodicity, resulting from intensive irrigation with saline-sodic waters, lead to an increased soil susceptibility to seal formation and to severe problems of runoff and soil erosion. The objective of this study was to investigate the efficacy of the addition of small amounts of an anionic polyacrylamide (PAM) to the irrigation water in controlling seal formation, runoff and soil erosion. Two predominantly montmorillonitic soils were studied, a grumusol (Typic Haploxerert) and a loess (Calcic Haploxeralf), having naturally occurring exchangeable sodium percentage (ESP)>12. The soils were exposed to 60 mm of simulated irrigation with commonly used tap water (TW, electrical conductivity=0.8 dS m–1; sodium adsorption ratio (SAR)=2), or saline water (SW, electrical conductivity=5.0 dS m–1; SAR>12). PAM effectiveness in controlling runoff and erosion from the sodic soils was compared with runoff and erosion levels obtained from untreated soils having low ESPs (<4). For both soils and for both water qualities and polymer concentrations in the irrigation water, PAM was efficient in controlling runoff at low ESP levels and inefficient at high ESP levels. At moderate ESP levels, PAM's efficacy in controlling runoff was inconsistent and varied with water quality and polymer concentration. Conversely, in general, soil loss originating from rill erosion, was significantly and effectively reduced in moderate and high ESP soils by addition of PAM to the irrigation water, irrespective of water quality and polymer concentration. PAM was more effective in reducing rill erosion than in reducing runoff in the moderate and high ESP samples, because the energy involved in generating runoff is much higher than that involved in rill erosion. PAM treated surface aggregates were not stable against the distructive forces leading to seal formation and runoff production; but they were stable enough to resist the hydraulic shear exerted by the runoff flow.  相似文献   

19.
Hydraulic conductivity (K) and soil water diffusivity (D) characterizing water flow under saturated and unsaturated conditions, respectively, were determined for a sandy loam and a clay loam soil, using water with different combinations of total electrolyte concentrations, C (i.e., 20, 40, 80, 125 and 250 meq 1?1) and sodium adsorption ratios, SAR (i.e., 0, 20, 30, 40, 80 and ∞ mmole l?12). Both K and D were found to increase with C and decrease with SAR. In low sodium adsorption ratio ranges (i.e., up to 20) the requirement of electrolyte concentration to maintain relative hydraulic conductivity = 0.5 was relatively more for sandy loam than for clay loam soil. However, the trend for electrolyte concentration requirements for the two soils was reversed at high sodium adsorption ratios (i.e. > 20). A spline function was used to draw the best fitting line through the data points of horizontal absorption experiments.  相似文献   

20.
A sodic clay soil (a Vertisol) was instrumented from a 5 m deep pit to avoid the problems of preferential cracking around surface installations. Infiltration rates and changes in water content and vertical swelling at a number of depths in the soil profile were measured during prolonged ponding (139 and 160 days on separate plots). Essentially no deep percolation in one plot contrasted with a substantial amount (6.6 mm day?1) in the second, gypsum-treated plot, with obvious consequences for changes in ground-water level. A method of calculating deep percolation is presented which takes into account the effects of swelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号