首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A new race F of broomrape overcomes all known resistance genes in cultivated sunflower, but recently, sources of resistance against race F have been developed. The objective of the present research was to study the inheritance of resistance to race F in crosses between 12 resistant sunflower breeding lines, derived from three different sources of resistance, and the susceptible male‐sterile line P‐21. Parental lines and F1, F2, F3 and BC1 generations were evaluated for broomrape resistance. Segregations in the F2 and BC1 to resistant parent approached resistant to susceptible ratios of 1: 15 and 1: 3, respectively, in most of the crosses, suggesting a double dominant epistasis. However, segregations of 3: 13 and 1: 1 for F2 and BC1, respectively, indicating a dominant‐recessive epistasis, were also found. The F3 data confirmed these results. Owing to the recessive nature of this resistance, it must be incorporated into both parental lines for developing resistant hybrid cultivars.  相似文献   

2.
Parents and 318 F8 recombinant inbred lines (RILs) derived from the cross, TAG 24 × ICGV 86031 were evaluated for peanut bud necrosis disease (PBND) resistance and agronomic traits under natural infestation of thrips at a disease hotspot location for 2 years. Significant genotype, environment and genotype × environment interaction effects suggested role of environment in development and spread of the disease. Quantitative trait loci (QTL) analysis using QTL Cartographer identified a total of 14 QTL for six traits of which five QTL were for disease incidence. One quantitative trait locus q60DI located on LG_AhII was identified using both QTL Cartographer and QTL Network. Another QTL q90DI was detected with a high PVE of 12.57 using QTL Cartographer. A total of nine significant additive × additive (AA) interactions were detected for PBND disease incidence and yield traits with two and seven interactions displaying effects in favour of the parental and recombinant genotype combinations, respectively. This is the first attempt on QTL discovery associated with PBND resistance in peanut. Superior RILs identified in the study can be recycled or released as variety following further evaluations.  相似文献   

3.
Inheritance of black leaf mold resistance in tomato   总被引:1,自引:0,他引:1  
Summary Inheritance of black leaf mold (BLM) (caused by Pseudocercospora fuligena) resistance was studied in four crosses involving two resistant Lycopersicon accessions (PI134417, L. hirsutum and PI254655, L. esculentum) and four susceptible Asian Vegetable Research and Development Center tomato lines (CLN657BC1F2-267-0-3-12-7, CL143-0-10-3-0-1-10, CLN698BC1F2-358-4-13 and CL5915-93D4-1-0-3). For each cross, six generations, i.e. P1, P2, F1, F2, BC1F1 and BC1F2 were evaluated following inoculations with isolate Pf-2 of P. fuligena. Chi-square analyses of the data based on the ratio of resistant to susceptible plants in the F2 in three of four crosses gave a good fit to a segregation ratio of 1 R : 15 S, and BC1F2 data in three of four crosses gave an acceptable fit to the segregation ratio of 1 R : 63 S. The results indicate that resistance to BLM may be conditioned by two recessive genes acting epistatically in both PI134417 and PI254655.  相似文献   

4.
An experiment was conducted to study the genetics and nature of gene action of resistance to watermelon bud necrosis orthotospovirus (WBNV) in watermelon. The experimental materials comprised of two resistant (BIL‐53 and IIHR‐19) and one susceptible (IIHR‐140) parents. Each of the resistant parents was crossed with the susceptible parent to develop six generations (P1, P2, F1, F2, BC1 and BC2) to study genetics. The results of segregation in F2 and backcross progenies suggested that resistance is governed by a major dominant gene along with other background minor genes in both the crosses. BIL‐53 was found to possess higher degree of resistance with simple inheritance and hence may be of interest to breeders. Simple selection can be effective for improving the trait in the cross BIL‐53 × IIHR‐140 as additive gene action is prevalent.  相似文献   

5.
Grain moulds are a major constraint to sorghum production and to adoption of improved cultivars in many tropical areas. Information on the inheritance of grain mould reaction is required to facilitate breeding of resistant cultivars. The genetic control of grain mould reaction was studied in 7 crosses of 2 resistant sorghum genotypes. P1, P2, F1, F2, BC1 and BC2 families of each cross were evaluated under sprinkler irrigation for field grade and threshed grade scores and subjected to generation mean analysis. Frequency distributions for grain mould reaction were derived and F2 and BC1 segregation ratios were calculated. Grain mould reaction in crosses of coloured grain sorghum was generally controlled by two or three major genes. Resistance to grain moulds was dominant. Significant additive gene effects were also found in all cross/season combinations. Significant dominance effects of similar magnitude to additive effects were also observed in five out of ten cross/season combinations. Gene interactions varied according to the parents with both resistant and susceptible parents contributing major genes. Choice of parents with complementary resistance genes and mechanisms of resistance will be critical to the success of resistance breeding. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Six blast‐resistant pearl millet genotypes, ICMB 93333, ICMB 97222, ICMR 06444, ICMR 06222, ICMR 11003 and IP 21187‐P1, were crossed with two susceptible genotypes, ICMB 95444 and ICMB 89111 to generate F1s, F2s and backcrosses, BC1P1 (susceptible parent × F1) and BC1P2 (resistant parent × F1) for inheritance study. The resistant genotypes were crossed among themselves in half diallel to generate F1s and F2s for test of allelism. The F1, F2 and backcross generations, and their parents were screened in a glasshouse against Magnaporthe grisea isolates Pg 45 and Pg 53. The reaction of the F1s, segregation pattern of F2s and BC1P1 derived from crosses involving two susceptible parents and six resistant parents revealed the presence of single dominant gene governing resistance in the resistant genotypes. No segregation for blast reaction was observed in the F2s derived from the crosses of resistant × resistant parents. The resistance reaction of these F2s indicated that single dominant gene conferring resistance in the six genotypes is allelic, that is same gene imparts blast resistance in these genotypes to M. grisea isolates.  相似文献   

7.
The objective of this work was to develop homozygous common bean lines carrying angular leaf spot resistance genes derived from the cultivars ‘Mexico 54’, ‘MAR 2’ and ‘BAT 332’ through marker‐assisted selection. Molecular markers SCAR OPN02890, RAPD OPE04500 and OPAO12950 linked to the resistance genes of ‘Mexico 54’, ‘MAR 2’ and ‘BAT 332’, respectively, were used in segregating backcross‐derived populations to selection. DNA fingerprinting was used to select homozygous BC2F3 and BC1F3 resistant plants genetically closer to the recurrent parent. Two homozygous BC2F2:3 and two and five BC1F2:3 families derived from ‘Ruda’ vs. ‘Mexico 54’ (RM), ‘MAR 2’ (RMA) and ‘BAT 332’ (RB) crosses were selected, respectively. After only one (RMA, RB) or two backcrosses (RM), five and eight BC1F3 lines derived from RMA and RB, respectively, and seven BC2F3 lines derived from RM, with 14.9–16.6, 16.9–18.6 and 9.3–11.1% of relative genetic distances to the recurrent parent were selected. This is the first report of lines resistant to angular leaf spot carrying genes of the cultivars ‘Mexico 54’, ‘MAR 2’ and ‘BAT 332’ developed with the aid of molecular markers.  相似文献   

8.
This study investigated the inheritance of resistance to Fusarium oxysporum f.sp. tracheiphilum (Fot) in cowpea lines. Resistant and susceptible cowpea lines were crossed to develop F1, F2 and backcross populations. Reaction to Fot was evaluated in 2015 and 2016 using seed soak and modified root‐dip inoculation methods. The expression of resistance reaction in the F1 and segregation in F2 generations indicated the role of dominant gene controlling Fot in cowpea. These results were further supported by the result of backcross (BC1P1F1 and BC1P2F1) progeny tests. The backcross of F1 with the resistant parent produced progeny that were uniformly resistant, whereas backcross of F1 with the susceptible parent produced progeny that segregated into 1:1 ratio. The F2 segregation ratio in the reciprocal cross showed no evidence of maternal effect in the inheritance of the resistance. Allelism test suggests that the gene for resistance in TVu 134 was the same in TVu 410 and TVu 109‐1. We also identified an SSR marker, C13‐16, that cosegregated with the gene conferring resistance to Fot in cowpea.  相似文献   

9.
Grain molds in rainy season sorghums can cause poor grain quality resulting in economic losses. Grain molds are a major constraint to the sorghum production and for adoption of the improved cultivars. A complex of fungi causes grain mold. Information on genetics of grain mold resistance and mechanisms is required to facilitate the breeding of durable resistant cultivars. A genetic study was conducted using one white susceptible, three white resistant/tolerant sources, and one colored resistant source in the crossing programme to obtain four crosses. P1, P2, F1, BC1, and BC2, and F2 families of each cross were evaluated for the field grade and threshed grade scores, under sprinkler irrigation. Generation mean analyses and frequency distribution studies were carried out. The frequency distribution studies showed that grain mold resistance in the white-grained resistance sources was polygenic. The additive gene action and additive × additive gene interaction were significant in all the crosses. Simple recurrent selection or backcrossing should accumulate the genes for resistance. Epistasis gene interactions were observed in colored resistance × white resistance cross. Gene interaction was influenced by pronounced G × E. Pooled analysis showed that environment × additive gene interaction and environment × dominant gene interaction were significant. The complex genetics of mold resistance is due to the presence of different mechanisms of inheritance from various sources. Evaluation of segregating population for resistance and selection for stable derivatives in advanced generations in different environments will be effective.  相似文献   

10.
The genetics of resistance of common vetch (Vicia sativa L.) to broomrape (Orobanche crenata Forsk.) was studied for two years by using the P1, P2, F1, BC1, BC2, F2 F3, and F4 generations obtained from crosses between resistant and susceptible lines. Resistant lines were selected by screening a world collection m a naturally infested plot. Resistance was tested both under field and greenhouse conditions. The best index to measure resistance was the number of emerged broomrapes per host plant. The results fit the additive-dominance model. The main component of the variation was additivity; dominance and interaction effects seemed to depend on the environment. When dominance is expressed, a low number is dominant over a high number of broomrapes per host plant.  相似文献   

11.
Sunflower lines RHA‐274, HA‐61 and RHA‐325 were studied for their resistance to race 330 of downy mildew (Plasmopara halstedii). The same inbred line, with normal (HA‐89) or sterile cytoplasm (cmsHA‐89) was used in all the crosses as susceptible parent, and, in each cross, only one genotype of the resistant parent was studied. The resistant‐to‐susceptible ratios obtained in the BC1 and F2 progenies from the crosses of the lines RHA‐274 and HA‐61 to cmsHA‐89 and HA‐89, respectively, suggested that, in each resistant line, two dominant genes are responsible for resistance to this downy mildew race. One of the genes (A) is epistatic to the other (B), and the recessive allele b in homozygosity is also epistatic to aa, with plants carrying aabb genotypes being resistant. Resistance to race 330 seemed to be controlled by two complementary genes in the sunflower inbred line RHA‐325, the dominant allele of one of them being present in cmsHA‐89. In the genotypes HA‐89 or cmsHA‐89, the existence of genes that modify the expected segregations following the crosses with resistant parents is proposed. It is concluded that, although major genes have been described as responsible for monogenic resistance to downy mildew, other types of regulation of this character, such as complementarity and epistatic relationships, do occur.  相似文献   

12.
Two transgenic Bt rice lines, KMD1 and KMD2, both containing a synthetic cry1Ab gene from Bt, were crossed with conventional rice varieties. The inheritance of resistance to SSB of KMD1 and KMD2was investigated through LSB and field examination of their progenies, e.g. F1, BC1 and F2 populations. In LSBs, 100.0% of newly hatched SSB larvae died on the second day after feeding on leaf tissues of F1 and GUS positive BC1 plants, of which the area of leaf tissues consumed by SSB is also similar to that of transgenic parents. These results imply that the resistance of Bt rice to SSB is dominantly controlled and could be easily exploited in hybrid rice production. Field evaluation showed that segregation ratios for SSB resistance to susceptibility in BC1 populations fit the ratio of 1:1, which was also confirmed by LSBs. However, in F2 populations, the ratio was significantly smaller than 3:1 for resistant to susceptible plants in all 6 indica × japonica (KMD1 and KMD2) crosses, though it fitted 3:1 in all 4 japonica × japonica crosses. The results implied that the resistance of Bt rice to SSB was controlled by a dominant gene which was present in a homozygous condition in both KMD1 and KMD2, but the inheritance could be affected by other factors. Assays for Cry1Ab protein showed that, in most crosses, the content of Cry1Ab is significantly higher in leaves of GUS positive F1, BC1 and F2 plants than that in transgenic Bt parent plants, which accounts for the high resistance observed in these plants to SSB. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
A set of 21 monosomic (2n ‐ 1) and the disomic (2n) lines of the ‘Chinese Spring’ cultivar were crossed with ‘Chirya‐3′, the CIMMYT synthetic wheat line which has been identified as highly resistant for Helminthosporium leaf blight disease (HLB), in order to locate the genes governing disease resistance. The F1 and segregating populations were challenged and screened against the most virulent pure mono‐conidial HLB isolate KL‐8 (Karnal, India). The F1 progenies of the crosses were found to be susceptible because of the recessive nature of resistance. The F2 progeny of the control cross (‘Chinese Spring’בChirya‐3’), segregated in the ratio of 1: 15 (resistant: susceptible), indicating that resistance to HLB was controlled by a pair of recessive genes. While the F2 progeny of 19 monosomic crosses segregated in the ratio of 1: 15 (resistant: susceptible), the progeny of the remaining two crosses, 7B and 7D, deviated significantly from the ratio, revealing that 7B and 7D were the critical chromosomes for resistance genes that were located one on each chromosome. Moreover, the critical lines, 7B and 7D, confirmed the digenic complementary recessive nature of gene action by fitting well with the overall pooled F2 segregation ratio of 13: 51 (resistant: susceptible) as expected for digenic complementary recessive resistance. The F3 segregation ratios of the critical crosses, based on their pooled F2 analysis, was estimated as 19: 32: 13 (non‐segregating susceptible: segregating as susceptible and resistant: non‐segregating resistant). F3 progenies when tested with these ratios showed goodness‐of‐fit, confirming that the two pairs of recessive resistance genes were located on chromosomes 7B and 7D.  相似文献   

14.
P.K. Singh    G.R. Hughes 《Plant Breeding》2006,125(3):206-210
Tan spot of wheat is caused by the fungus Pyrenophora tritici‐repentis. On susceptible hosts, P. tritici‐repentis induces two phenotypically distinct symptoms, tan necrosis and chlorosis. This fungus produces several toxins that induce tan necrosis and chlorosis symptoms in susceptible cultivars. The objectives of this study were to determine the inheritance of insensitivity to necrosis‐inducing culture filtrate of P. tritici‐repentis, race 2, and to establish the relationship between the host reaction to culture filtrate and spore inoculation with respect to the necrosis component. The F1, F2, and BC1F1 plants and F2:8 lines of five crosses involving resistant wheat genotypes ‘Erik’, ‘Red Chief’, and line 86ISMN 2137 with susceptible cultivars ‘Glenlea’ and ‘Kenyon’ were studied. Plants were spore‐inoculated at the two‐leaf stage. Four days later, the newly emerged uninoculated third leaf was infiltrated with a culture filtrate of isolate Ptr 92–164 (race 2). Reactions to the spore inoculation and the culture filtrate were recorded 8 days after spore inoculation. The segregation observed in the F2 and BC1F1 generations and the F2:8 lines of all crosses indicated that a single recessive gene controlled insensitivity to necrosis caused by culture filtrate. This gene also controlled resistance to necrosis induced by spore inoculation.  相似文献   

15.
G.-L. Jiang    R. W. Ward 《Plant Breeding》2006,125(5):417-423
Fusarium head blight (FHB or scab) caused by Fusarium graminearum is a worldwide serious disease in wheat. Exploitation and genetic studies of elite resistance sources can speed up the development of resistant cultivars. To characterize the inheritance of host plant resistance in two new lines, ‘CJ 9306’ and ‘CJ 9403’, developed from a recurrent selection programme in China, six generations P1, P2, F1, F2, B1 and B2 of four crosses and 137 F6 : 7 recombinant inbred lines (RILs) from one cross were evaluated in the greenhouse for scab resistance using single‐floret inoculation. The data of area under disease progress curve (AUDPC) in F2, backcross (BC) and RIL populations exhibited mono‐modal distributions without clear‐cut demarcations and skewing towards resistance. An additive–dominance model was well‐fitted, additive effects played a predominating role, and dominance effects were also significant. Continuous distributions with two major peaks and one minor peak for the number or percentage of scabby spikelets (NSS or PSS) in segregating populations implied the existence of major genes or quantitative trait loci (QTL) for resistance. The estimates of broad‐sense and narrow‐sense heritabilities based on the six‐generation experiment were 56–76% and 26–67% respectively. The estimates of broad‐sense heritabilities based on anova with RILs were 89–90%. These two improved lines with excellent scab resistance and good agronomic traits are of interest for wheat breeding and production.  相似文献   

16.
Summary Genetics for speed of plumule emergence was studied using six generations (P1, P2, F1, BC1(P1), BC2(P2) and F2) in three crosses. Two of the crosses which had parents of different emergence speed were controlled by two genes with duplicate epistasis. The third cross which involved parents of little difference for speed, indicated incomplete dominance for one gene of bit fast parent over the slow one. In all the crosses F2 segregation pattern was confirmed by the segregation pattern of back crosses. The gene symbols were designated as Sp1Sp1 Sp2Sp2 for fast speed parents: sp1sp1 sp2sp2 for slow parent and sp1sp1 Sp2Sp2 for the parent with bit fastness for speed of plumule emergence.  相似文献   

17.
Understanding of mungbean yellow mosaic disease resistance is crucial to develop resistant varieties to combat worldwide threat of the disease epidemics. This study was aimed to determine nature of disease resistance in terms of number of genes governing it and genetics of related traits. Experimental site was located on 31.43°N and 73.06°E with an elevation of 186 m, and evaluation trials were conducted during spring season due to high disease epidemics in this season. Two contrasting genotypes, that is, NM 6‐68‐2 (resistant) and NM 1‐32‐1 (highly susceptible), were crossed to raise six populations, that is, P1, P2, F1, F2, BC1 and BC2 for evaluation under protected and unprotected field conditions using chi‐square test and generation mean and variance analysis. It was discovered that disease resistance was governed by two major genes with additive effects. Disease resistance can easily be incorporated through backcrossing and direct selection following hybridization. Direct selection should be practised at earlier generation for plant height, chlorophyll contents and number of seeds per pod due to preponderance of additive effects whereas at later generations for seed yield per plant, 100 seed weight, harvest index, number of pods per plant and pod length due to involvement of duplicate epistasis.  相似文献   

18.
In this study, the inheritance of resistance to Beet necrotic yellow vein virus (BNYVV) in accessions Holly-1-4and WB42 was investigated. Crosses between both resistant sources and susceptible parents were carried out and F1F2 and BC1 populations were obtained. Virus concentrations in WB42and its F1 populations were lower than in Holly-1-4. Observed ratios of susceptible and resistant plants in segregating populations of Holly-1-4 as well as WB42 were in agreement with hypothesis of one dominant major gene. Segregation of plants in F2 populations obtained from crosses betweenHolly-1-4 and WB42 revealed that the resistance genes in Holly-1-4 and WB42 were nonallelic and linked loci. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Summary Six chickpea lines resistant to Ascochyta rabiei (Pass.) Lab. were crossed to four susceptible cultivars. The hybrids were resistant in all the crosses except the crosses where resistant line BRG 8 was involved. Segregation pattern for diseases reaction in F2, BCP1, BCP2 and F3 generations in field and glasshouse conditions revealed that resistance to Ascochyta blight is under the control of a single dominant gene in EC 26446, PG 82-1, P 919, P 1252-1 and NEC 2451 while a recessive gene is responsible in BRG 8. Allelic tests indicated the presence of three independently segregating genes for resistance; one dominant gene in P 1215-1 and one in EC 26446 and PG 82-1, and a recessive one in BRG 8.Research paper No. 3600  相似文献   

20.
Summary Three triticale lines, Siskiyou, M2A-Beagle, and OK 77842 have been reported to possess resistance to bacterial leaf streak caused by Xanthomonas campestris, pv. translucens (Xct.). The three resistant lines were crossed to susceptible lines and crossed with each other. F2, BC1-F1, BC2-F1 plants were inoculated with a mixture of two Xct strains. The segregation data indicate the presence of a single dominant gene in each of the three resistant lines to bacterial leaf streak. These three genes are either the same or closely linked herein designated as Xct1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号