首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
根据猪繁殖与呼吸综合征病毒(PRRSV)核酸序列设计引物,用RT-PCR扩增出PRRSV甘肃株的核衣壳蛋白(N)基因,将N基因克隆至pGEM-T easy载体上,获得含N基因的阳性重组质粒pGEM-T easy-N.对质粒中的插入片段进行测序,应用DNAStar分析所测序列与GenBank中已登录的PRRSV毒株的同源性,再将其亚克隆至原核表达载体pGEX-4T-1中,得到重组表达载体pGEX-4T-1-N,转化E.coliBL21(DE3)细胞,用SDS-PAGE检测表达产物,并对其进行纯化.结果表明:PRRSV甘肃株N基因核甘酸序列与PRRSV-VR2332株的同源性为93.3%,与欧洲LV株的同源性为66.1%;构建的重组表达载体在大肠杆菌中获得了成功表达,表达产物为40ku的可溶性融合蛋白.  相似文献   

2.
 【研究目的】对猪传染性胃肠炎病毒S基因A抗原位点进行克隆和原核表达载体的构建。【方法】参考GenBank上公布的TGEV S基因A抗原位点序列,应用Primer6.0设计一对含酶切位点的引物,用于RT-PCR扩增A抗原位点目的片段,将扩增产物连接于paesy-T克隆载体上构建克隆载体,用EcoR I和Xhol I对表达载体PET-32a(+)和重组质粒进行酶切,将酶切产物亚克隆至PET-32a(+)多克隆位点上,连接、转化至BL21(DE3),构建A位点的原核表达载体,并对阳性重组质粒进行酶切、PCR和测序鉴定。【结果】所扩增的目的片段的大小为534bp,与原核表达载体连接后,经核苷酸及推导的氨基酸序列分析表明,该基因与其它猪传染性胃肠炎病毒相应基因具有很高的同源性,说明成功地构建了TGEV S 基因A抗原位点的原核表达载体。【结论】TGEV S 基因A抗原位点原核表达载体的成功构建,填补了中国国内单独针对此位点进行研究的空白,也为TGEV诊断方法的建立提供良好的技术基础。  相似文献   

3.
为开展猪轮状病毒(PRV)及其VP4蛋白相关特性研究,参照GenBank所收录的猪轮状病毒JL94、OSU等株序列设计一对特异性引物,从实验室分离鉴定的猪轮状病毒DN30209株扩增约2330 bp VP4全长基因,并成功构建重组质粒VP4-pMD18-T。重组质粒经测序、序列比对及分析。结果表明,DN30209株VP4全基因长2331 bp,与参考株JL94的核苷酸同源性为99.7%,氨基酸同源性为99.5%。将VP4基因连接到pGEX-6P-1原核表达载体中,构建并筛选出阳性原核表达载体重组质粒VP4-pGEX-6P-1。阳性重组质粒转化Rosetta宿主菌感受态细胞中,经IPTG诱导,获得以包涵体形式表达的重组蛋白,融合蛋白大小约为112 ku,与预期大小相符。回收、纯化并复性该蛋白,将其作为免疫原免疫大白兔,制备兔抗PRV VP4全长蛋白多克隆抗体,间接ELISA测定多抗效价到1??105,间接免疫荧光(IFA)和免疫印迹(Western blot)检测表明该多抗均可与PRV具有很好的抗原抗体反应性,为猪轮状病毒研究提供有效实验材料。  相似文献   

4.
根据GenBank公布的猪传染性胃肠炎病毒S基因的序列,设计合成1对特异性引物,通过RT-PCR从用细胞增殖的TGEV病毒液中扩增编码S基因B、C抗原位点的基因片段,然后将获得的片段克隆至pMD18-T载体上,构建重组质粒。通过PCR、酶切和测序鉴定重组质粒,将测序结果与GenBank公布的21个相关序列进行多序列比较并绘制进化树。所克隆的TGEV陕西分离株S基因B、C抗原位点基因片段长度为765 bp,与参考毒株的核苷酸同源性为96.1%~99.9%。进化树分析表明,分离株与中国的H株、HN2002株、TS株,美国的Miller M60株、Miller M6株及英国的FS772株亲缘关系较近,与H株的亲缘关系最近。  相似文献   

5.
为了给河北地区预防和控制猪繁殖与呼吸综合征提供理论数据。应用RT-PCR方法特异性扩增HB-3(cz)株的ORF7(N)基因片段,将扩增片段克隆入pMD-T载体后测序,应用DNAstar分析软件对序列进行分析,并与GenBank中发表的PRRSV毒株序列进行比较。结果显示:HB-3(cz)株与高热病毒株JXA1、HUB2等及传统河北分离株HB-1(sh)氨基酸同源性高达97.6%,属美洲型毒株。将目的片段克隆入原核表达载体pGEX-6P-1,重组质粒pGEX-N转化大肠杆菌BL21(DE3),在IPTG诱导下成功获得表达,经Western-blot-ting分析表明:表达的融合蛋白分子量约为39.5 kDa,能与PRRSV的阳性血清发生特异性反应,为PRRSV血清学诊断方法的建立奠定了基础。  相似文献   

6.
根据GenBank公布的PRRSVORF3基因的核苷酸序列,设计并合成一对特异性引物,用RT-PCR方法扩增PRRSV陕西分离株ORF3基因,将其克隆入pGEM-T载体中,测序并进行序列分析。再将ORF3基因亚克隆入pET-32a中,构建原核表达载体。结果扩增到765 bp的PRRSV全长ORF3基因,序列分析结果表明,分离株与SY0608亲缘关系较近,而与CH-2、HB-2关系较远。重组原核表达质粒经酶切鉴定正确后命名为pET-GP3,为进一步研究GP3蛋白的原核表达、免疫特性、结构与功能奠定了基础。  相似文献   

7.
对SARS病毒核蛋白(N)基因进行了克隆和序列测定。根据GenBank中已发表的SARS全基因组序列,设计合成了1对特异性引物,对SARS病毒N蛋白基因进行了RT—PCR扩增。将PCR产物纯化后与pGEM—T连接得到重组质粒pGEM—N,进行核苷酸序列测定。结果该基因全长1269bp,编码422个氨基酸。与Tor2、Urbani和TW1株相比,核苷酸和推导的氨基酸序列的同源性均为100%。将pGEM—N双酶切.回收目的基因片段并克隆到大肠杆菌表达载体pE328a中,构建了重组质粒pET—N;将其转化表达菌BI21(DE3)用IPTG进行诱导表达。SDS—PAGE结果表明:重组菌可表达相对分子量约为53kD的蛋白。Westem—blotting证实,重组N蛋白可以与SARS免疫血清发生特异性反应。经凝胶薄层扫描分析,重组N蛋白表达量约占菌体蛋白的43%。  相似文献   

8.
[目的]对猪繁殖与呼吸综合征病毒HBKM2毒株核蛋白编码基因ORF7进行研究,为进一步了解其编码蛋白的功能和研制新的血清学诊断方法奠定基础。[方法]采用RT—PCR方法扩增HBKM2株的DR胛基因,然后利用DNAStar软件包对克隆的序列进行序列分析,将ORF7基因克隆到大肠杆菌原核表达载体pGEX—KG上,构建重组表达质粒pKG—N。将重组质粒转化到大肠杆菌B121。并经IPTG诱导表达,最后利用Western-blot对表达蛋白的免疫反应活性进行鉴定。[结果]HBKM2毒株的0R刀基因长约372bp;序列分析表明与高致病性猪繁殖与呼吸综合征病毒的同源性达99%以上;SDS—PAGE表明克隆的0R几基因在大肠杆菌中获得了高效融合表达:Western-blot分析表明,重组蛋白GST—N能够与PRRSV高免猪血清发生特异性的免疫反应。[结论]成功地扩增了ORF7基因。且GST-N融合蛋白能在大肠杆菌中高效表达。  相似文献   

9.
为比较山羊痘病毒贵州分离株P32基因与国内外分离株的关系,并获得P32蛋白,应用PCR方法从贵州山羊痘病毒分离株的核酸样本中扩增出P32基因片段,将PCR产物克隆至pMDl8-T载体,对重组质粒进行了基因序列测定.将测定的P32基因核苷酸序列和推导的氨基酸序列与GenBank中相应序列作比较,同源性分别达到99.4%和98.4%,表明山羊痘病毒的P32基因具有高度保守性.将P32基因克隆至原核表达载体pET-28a,成功构建重组表达质粒pET-28a-P32/LD,转化至大肠杆菌BL2l(DE3)进行诱导表达.SDS-PAGE检测显示,重组细菌在35.5 kDa处表达一条特异性的蛋白带,而阴性对照未见这条蛋白带;Western-Blotting检测证实,这条蛋白带能与山羊痘高免血清反应而显示其免疫学活性.  相似文献   

10.
根据已发表的IL-18蛋白cDNA序列保守区设计一对特异性引物,应用RT-PCR技术从ConA活化的牛外周血单核细胞中扩增到编码牛IL-18蛋白基因,其大小为582 bp。将该基因克隆到pMD18-T载体中,经序列测定表明该基因与gengbank上发表的牛白细胞介素-18基因序列同源性为98%。将该基因从重组pMD-gIL-18质粒中亚克隆到表达载体pET-32 a(+)质粒中,构建原核表达重组质粒,经酶切和PCR鉴定后表明构建的重组质粒为阳性。  相似文献   

11.
12.
猪传染性胃肠炎病毒SC-Y株N基因的克隆及原核表达   总被引:1,自引:0,他引:1  
通过PCR方法扩增猪传染性胃肠炎病毒SC-Y株核衣壳蛋白(N)基因,然后将重组到pMD18-T载体中的约1174 bp的基因片段亚克隆到PET-32a( )表达载体上,通过酶切及PCR鉴定阳性的重组质粒命名为PET-N,核苷酸及推导的氨基酸序列分析表明,该基因与其他猪传染性胃肠炎病毒相应基因具有很高的同源性,将阳性重组质粒转化BL21(DE3),经IPTG诱导可表达分子量约66 kD的融合蛋白,N基因的表达可为传染性胃肠炎病毒的诊断提供良好的物质材料。  相似文献   

13.
应用RT-PCR技术克隆了猪传染性胃肠炎病毒TGEV-JL株S基因全序列,将其连接到pMD18-T载体。经SacⅠ和BamHⅠ酶切鉴定,其产物全长4320bp。测序后与TH-98等8个TGEV毒株的S基因序列进行比对,同源性为97.6%~99.8%。将该基因插入植物表达载体pBI121的CaMV35S启动子下游,构建高效植物表达载体,转入根癌农杆菌EHA101中。结果表明:成功构建了重组植物表达载体pBI121-S,获得农杆菌工程菌。  相似文献   

14.
坏死梭杆菌白细胞毒素是坏死杆菌病的主要致病因子,白细胞毒素基因(lkt)是其编码基因。以分离到的国内牛源坏死梭杆菌FN(A)菌株F4基因组DNA为模板,应用PCR方法扩增白细胞毒素基因SH片段,克隆至pMD18-T载体上,以BamHⅠ和HindⅢ酶切的目的片段SH与相应酶切的pET32a载体连接构建pET32a-SH重组表达质粒,经转化E coli BL21(DE3)后用IPTG进行蛋白诱导,SDS-PAGE检测重组蛋白表达情况。结果表明:扩增基因序列大小为1800bp,SDS-PAGE检测重组蛋白有效表达,表达得到大小为80.2kDa的目的蛋白,采用镍柱亲和层析方法纯化SH重组蛋白,获得了纯度达95%的重组蛋白;经West-ern-blot证实,该蛋白对抗坏死杆菌阳性血清具有反应活性。  相似文献   

15.
根据GenBank中公布的牛BMAP-28基因mRNA序列设计引物,利用RT-PCR技术从牛骨髓总RNA中扩增出BMAP-28基因片段,将其克隆到pMD-18载体上,通过PCR、酶切和测序分析鉴定,获得重组克隆载体pMD18-T-BMAP28.以重组质粒为模板,扩增BMAP-28基因的去信号肽片段,转入原核表达载体PE...  相似文献   

16.
利用PCR技术,从E.coli C83902中扩增出不含信号肽序列的K88ac菌毛蛋白亚基基因片段,将其克隆到表达载体pQE-30中,构建了原核表达载体pQE30-K88ac,并转入E.coli XL1-Blue中。经IPTG诱导后,由T5启动子调控表达了氨基端带6个连续组氨酸残基的以包涵体形式存在的K88ac蛋白,在变性条件下对目的蛋白进行纯化,并获得了高纯度的融合蛋白。  相似文献   

17.
根据产肠毒素大肠杆菌(Enterotoxigenic Escherichia coli,ETEC)K99菌毛蛋白的全基因序列设计产肠毒素大肠杆菌主要菌毛K99的一对引物。PCR扩增K99菌毛蛋白的全基因序列大小为546bp。将PCR扩增的目的片断克隆于pMD18-T载体、pET-32a载体中,分别转化大肠杆菌,经酶切鉴定、PCR鉴定及DNA序列分析,筛选出阳性克隆。经过序列比对,所克隆的外源基因与报道的K99菌毛蛋白结构基因序列同源性达99.3%。成功克隆分离到的产肠毒素大肠杆菌菌毛的K99基因,为当地产肠毒素性大肠杆菌病疫苗的选择及基因疫苗的研制提供了坚实的理论基础,为产肠毒素性大肠杆菌病检测、预防及基因工程疫苗的研制开辟新的途径。  相似文献   

18.
丙酮酸羧化酶(PEP)是控制油菜蛋白质/油脂含量比例的一个关键酶,抑制种子中pepc基因的表达,使其底物(丙酮酸)更多地朝生成油脂的方向流动,对提高种子的含油量,增加油菜的经济价值具有重要的意义、利用PCR技术从甘蓝型油菜湘油15号基因组中扩增了PEP基因片段,并将其克隆到pGEM-T Easy载体上进行测序.测序结果表明:扩增片段长576bp,与Yannai报道的PEP基因相应区域的同源性为95%.用扩增引物上设计的BamHI和SacI两位点酶将PEP基因片段切下,反向插入到pBII21.N质粒的Napin启动子之后,构建了种子特异性反义PEP表达载体,并通过农杆菌介导法将反义PEP基因转化到湘油15号中。  相似文献   

19.
文章以人胎脑cDNA为模板,采用巢式PCR方法扩增人Neurturin成熟蛋白基因,并将其插入到质粒pGEM-T,构建克隆载体pGEM-T-hNTN。对阳性重组子进行鉴定和序列测定,并与已克隆的人Artemin成熟蛋白基因进行同源性分析。结果表明,所克隆DNA片断与文献发表序列(GenBank NM004558)完全一致,人Neurturin成熟蛋白基因与Artemin同源性为58.5%。  相似文献   

20.
【目的】为了避免在制备基因治疗或基因免疫的质粒时使用动物源性的核糖核酸酶A(RNase A)。【方法】提取牛胰腺总RNA,利用RT-PCR扩增出牛核糖核酸酶A cDNA,RT-PCR产物克隆到pGEM-T载体测序验证后,将此cDNA亚克隆到大肠杆菌分泌型表达载体pEZZ18中。【结果】SDS-PAGE电泳显示其转化菌经温度诱导后能表达预计的大小为28 kD重组蛋白。用渗透法释放出表达产物,将其加入到经碱裂解粗提的质粒DNA中并孵育0.5 h,琼脂糖凝胶结果表明表达产物能很好地去除细菌的RNA并且不降解超螺旋质粒DNA。【结论】在质粒的纯化过程中,重组牛核糖核酸酶可以替代动物源性的RNase A。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号