首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
【目的】以我国稻麦轮作系统为对象,研究氮肥和小麦秸秆生物炭联合施用对CH4和N2O排放规律的影响;结合小麦和水稻总产量进而评估对该生态系统综合温室效应(GWP)和温室气体强度(GHGI)的影响,为生物炭在减缓全球气候变化及农业生产中的推广应用提供科学依据。【方法】生物炭通过小麦秸秆在300 500℃条件下炭化获得。田间试验于2012年11月至2013年10月进行,为稻麦轮作体系。采用静态暗箱—气相色谱法观测CH4和N2O排放通量;试验共设置不施氮肥不施生物炭(N0B0)、不施氮肥施20 t/hm2生物炭(N0B1)、施氮肥不施生物炭(N1B0)、氮肥与20 t/hm2生物炭配施(N1B1)、氮肥与40 t/hm2生物炭配施(N1B2)等5个处理,各处理3次重复。【结果】单施氮肥(N1B0)与不施氮肥(N0B0)处理相比,增加了稻麦轮作产量82.8%,增加了CH4排放0.6倍,增加了N2O排放5.5倍。单施生物炭(N0B1)与不施生物炭(N0B0)处理相比,显著增产25.4%,却不能减少CH4和N2O的排放。在施氮的同时,配施20 t/hm2生物炭与单施氮肥处理相比,显著增加稻麦轮作产量21.6%,小麦和水稻总产量也比配施40 t/hm2生物炭处理高;配施40 t/hm2生物炭与单施氮肥处理相比,显著降低稻麦轮作系统CH4排放11.3%和N2O排放20.9%,CH4和N2O排放量也比配施20 t/hm2生物炭的排放量低。随着生物炭配施量的增加,CH4和N2O减排效果更明显。单施生物炭并不能有效地减少GWP,但却可以显著增加作物产量,从而减小GHGI。对N0B0、N0B1、N1B0、N1B1四个处理进行双因素方差分析发现,氮肥和生物炭在CH4和N2O排放、作物产量、GWP和GHGI方面都不存在明显的交互作用。各处理在100 a时间尺度上总GWP由大到小的顺序为N1B0N1B1N1B2N0B0N0B1,GHGI值由大到小的顺序则为N1B0N1B1N0B0N1B2N0B1。单施生物炭与配施生物炭都能降低稻麦轮作系统的GWP和GHGI,配施40 t/hm2生物炭处理降低效果更好。【结论】稻田麦季施用不同水平生物炭都能在保产或增产的同时,降低稻麦轮作系统CH4和N2O的排放及GWP和GHGI。在当前稻麦轮作系统中,与20 t/hm2的生物炭施用量相比,40 t/hm2的生物炭施用量显著降低GWP,但增产效果不明显,因此二者GHGI相当,需要根据温室效应与作物产量权衡选择生物炭实际施用量。  相似文献   

2.
生物炭与氮肥配施对土壤肥力及红枣产量、品质的影响   总被引:15,自引:4,他引:11  
【目的】通过连续三年 (2013~2015 年) 田间试验,研究了生物炭与氮肥配施对华北平原枣区潮土土壤肥力及作物产量品质的影响,为华北平原枣区高效施肥和提高红枣产量品质及可持续发展提供理论依据。 【方法】以河南省濮阳市林科院田间试验为研究平台,15 年生扁核酸枣为供试材料,设置生物炭用量 4 个水平 (C0、C1、C2、C3,即 C 0、2.5、5、10 t/hm2)、氮肥用量 3 个水平 (N1、N2、N3,即 N 300、450、600 kg/hm2),采用“4 × 3”完全方案设计,加上完全空白处理 CK (不施生物炭和氮肥),共计 13 个处理。在 9 月底红枣采收后,采集新鲜红枣测定其产量及品质,同时取 0—20 cm 土壤样品测定不同处理的土壤肥力。 【结果】1) 生物炭与氮肥配合施用,显著提高了土壤有机质、全氮、全磷和全钾的含量。同时也提高了土壤中速效氮、磷、钾的养分含量。土壤养分含量随着生物炭施用量的增加而增加。其中全氮和速效磷养分含量以 C3N3 处理最高,与对照相比,分别增加了 80.28% 和 32.82%,全钾和全磷养分含量以 C3N1 处理增加幅度最大,增幅分别为 55.3% 和 27.9%;C3N2 处理的速效氮和速效钾含量最高,分别增加了 68.0% 和 41.0%。此外,培肥措施显著降低了土壤容重,C3N3 处理的土壤容重最低,为 1.22 g/cm3,降低了 15.86%。2) 生物炭与氮肥配施总体上提高了红枣的总糖、维生素 C、可溶性固形物、蛋白质及氨基酸的含量,但仅氨基酸含量达到显著差异 (P < 0.05),其中C3N1处理较对照增加100%。3) 不同施肥处理提高了扁核酸红枣的产量,较对照提高 4.5%~26.9%,其中 C3N1 处理增产效果最明显。 【结论】生物炭与氮肥配合施用,对华北平原枣区的土壤养分吸收、土壤质量和红枣产量及品质起到了积极作用,可作为改善该枣区红枣生产力和土壤肥力的一种有效措施。生物炭施入土壤后,提高土壤肥力的同时也可以减少化肥的投入。生物炭10 t/hm2配施,氮肥300 kg/hm2为该试验区最佳施肥量。  相似文献   

3.
秸秆生物炭配施氮肥对潮土土壤碳氮含量及作物产量的影响   总被引:17,自引:7,他引:10  
【目的】探讨玉米秸秆生物炭配施氮肥对华北潮土区土壤理化特性和作物产量的影响,阐明土壤和植株对生物炭和氮肥施用的响应,旨在为该区域秸秆资源高效利用、培肥土壤及作物增产提供科学依据。【方法】以华北冬小麦–夏玉米轮作区为研究对象,研究玉米秸秆生物炭 (缺氧条件下 450℃ 热裂解 1 小时获得) 配施氮肥对土壤养分含量、微生物量以及作物产量的影响。试验采用裂区设计,以秸秆生物炭施用量为主区,施氮量为副区。秸秆生物炭用量设 0、7.5 和 22.5 t/hm2 3 个水平 (以 BC0、BC7.5、BC22.5 表示);氮肥用量设 0、150、225 和 300 kg/hm2 4 个水平 (以 N0、N150、N225、N300 表示)。小麦在 2014 年 10 月 9 日播种,次年 6 月 8 日收获;玉米在 2015 年 6 月 10 日播种,当年 9 月 28 日收获。在作物成熟期进行产量测定,并采集 0—20 cm 土壤样品以及采用常规方法进行土壤有机碳 (SOC)、全氮 (TN)、可溶性有机碳 (DOC)、铵态氮 (NH4+-N)、硝态氮 (NO3–-N)、土壤微生物量碳 (MBC) 和微生物量氮 (MBN) 的测定。【结果】生物炭对土壤养分含量、微生物量碳氮及作物产量有极显著影响。生物炭用量增加,土壤 SOC、TN、DOC、NO3–-N 含量以及土壤 SOC/TN 比值均显著增加,较 BC0 最大增加幅度分别为 165.0%、74.1%、39.1%、75.1% 和 44.0%。MBC、MBN 含量和作物产量均以 BC7.5 处理达最大值,较 BC0 最大增加幅度分别为 49.2%、57.6% 和 46.1%,BC22.5 较 BC7.5 处理平均降低 12.1%、7.3% 和 9.7%;施用生物炭降低 NH4+-N 含量,BC7.5 和 BC22.5 处理较 BC0 分别下降 18.4% 和 23.7%。随着氮肥施用量的增加,SOC、DOC、NH4+-N、MBC、MBN 含量均先增后减,在施氮水平为 150 kg/hm2 时,其含量均达最大值,较 N0 最大增加幅度分别为 29.7%、22.9%、44.8%、79.4% 和 115.3%。所有施氮的处理作物产量较 N0 均显著增加,而三个施氮处理间其产量差异不显著 (P>0.05)。【结论】在维持作物产量不降低的情况下,短期内 N150BC7.5 处理对提升土壤肥力的效果最佳,是较为理想的施肥方式,但其有效机制及长期效果还需进一步试验研究。  相似文献   

4.
【目的】研究不同氮素形态对东北春玉米氮素利用和土壤肥效的影响,为氮素养分持续高效利用和培肥土壤提供理论依据。 【方法】2013~2015 年连续三年在东北典型春玉米种植区开展田间定位试验,在相同磷钾肥施用前提下,试验设 4 个处理:1) 50% 玉米秸秆氮 (N0);2) 100% 速效氮 165 kg/hm2 (N1);3) 60% 速效氮 + 20% 有机肥氮 + 20% 缓释氮,施氮量 165 kg/hm2 (N2);4) N2 + 生物炭,生物炭量相当于 50% 玉米秸秆 (N3)。收获期测定耕层土壤基本理化指标、作物产量及氮素利用率、基肥和追肥后土壤 N2O 排放量。 【结果】1) 三年玉米平均产量 N1、N2 和 N3 处理分别比 N0 处理显著增加了 62.7%、67.7% 和 80.1% (P < 0.05);N2 和 N3 处理分别比 N1 处理增产 3.0% 和 10.7%;N3 处理玉米产量可持续性指数 (SYI) 最高,产量可持续性最好。2) 与 N1 处理相比,2013 年和 2014 年累计化肥氮利用率 N2 和 N3 处理分别增加了 8.4% 和 12.7%、10.2% 和 15.5%,2015 年分别显著增加了 8.4% 和 12.7% (P < 0.05)。N2 和 N3 处理累计化肥氮利用率呈现逐年增加的趋势,且 N3 处理增加幅度大于 N2 处理,说明 N3 处理氮肥的后效更加明显。3) 施氮处理显著提高了土壤 N2O 累积排放量 (P < 0.05),N3 处理较 N1 处理显著降低了 53.2%;4) N3 处理的综合土壤肥力指数 (IFI) 最高,N3 处理在农学、土壤肥力和环境效应评价中最优。 【结论】在总氮施用量不变的前提下,以添加适宜比例生物炭、有机肥和缓释氮肥替代部分速效化肥氮,可协同实现东北春玉米持续稳产、氮素养分持续高效利用和土壤肥力的可持续改善。  相似文献   

5.
  【目的】  探究不同量生物炭与氮肥配合施用对北方稻田土壤氮含量、植株茎蘖生长、产量构成因素和氮肥的当季效应及后效的影响,为合理利用生物炭提高粳稻产量和氮素利用率提供理论依据。  【方法】  水稻定位试验于2019—2020年在沈阳农业大学水稻研究所进行。试验设置3个施氮水平:N0 (不施氮肥对照)、N180 (减施氮肥,N 180 kg/hm2)、N225 (常规施氮,N 225 kg/hm2); 3个生物炭施用量:B0 (不施生物炭)、B15 (低施炭量,生物炭15 t/hm2)、B45 (高施炭量,生物炭45 t/hm2),共组合为9个处理。氮肥每年按照基肥∶蘖肥∶穗肥比例3.6∶2.4∶4施用,生物炭于2019年施入,之后不再施用。于移栽后5天起,定期调查水稻茎蘖动态、生长状况和氮素含量,在收获期测产。在水稻主要生育期取样测定土壤养分含量的变化。  【结果】  1)生物炭提高了粳稻分蘖盛期和孕穗期稻田土壤全氮含量和碱解氮含量,对灌浆期全氮含量无显著影响,但降低了碱解氮含量。同一施氮量下,B15和B45之间全氮和碱解氮含量均无显著差异(P < 0.05)。2)施氮条件下,施用生物炭显著降低了最高分蘖数,但显著提高了有效分蘖数和成穗率(P < 0.05),获得了较高的总颖花数。在同一施氮水平下,相较于无炭处理,生物炭的增产效果均表现为低炭量好于高炭量。其中N180B15处理比N180B0处理增产4.4%,N225B15处理比N225B0处理增产3.2%,而N180B45与N180B0、N225B45与N225B0处理的产量水平无显著差异。氮肥减施后(N180)产量显著低于常规施氮处理(N225),配合B15处理产量显著增加,达到了常规施氮条件下的产量水平(P < 0.05),而配合B45处理较配合B15处理降低了产量。3)生物炭对粳稻的氮素积累量影响表现出年际差异,施用生物炭的第一年(2019年),在N180水平下,粳稻分蘖盛期至灌浆期的氮素积累量B15处理显著高于B45处理;在N225水平下,B15和B45处理间无显著差异。在2020年,B15和B45处理之间无论氮肥水平高低,氮素积累量均无显著差异(P < 0.05)。B45处理在第一年会降低生物炭的有益效果,其不利作用在第二年消失。4)生物炭促进了粳稻对氮素的吸收,提高了氮素利用率。其中氮素吸收利用率、农学利用率和偏生产力随施炭量增加呈先升高后降低趋势,且在N180B15处理下达到最高,两年趋势一致。  【结论】  适量的生物炭与氮肥组合在提高稻田土壤肥力、促进粳稻分蘖成穗和颖花分化方面有一定的正向耦合作用。高生物炭用量在施用当季不利于水稻生长和氮素吸收,但其增产和增效的后效与适宜生物炭用量没有明显差异。因此,减施氮肥(施氮量180 kg/hm2)条件下配合施炭15 t/hm2较为适宜。  相似文献   

6.
生物炭与氮肥配施改善枣区土壤微生物学特性   总被引:3,自引:1,他引:2  
【目的】 探究生物炭与氮肥配施对华北平原枣区土壤微生物学特性的影响,从微生物学角度揭示其对土壤质量的改良状况,为生物炭在果园地区的应用提供科学依据。 【方法】 2013―2015年,在位于华北平原枣区的河南省濮阳市林科院进行了生物炭与氮肥配合施用的田间定位试验。生物炭用量设0、2.5、5和10 t/hm2 4个水平 (以C0、C1、C2、C3表示),氮素用量设300、450和600 kg/hm2 3个水平 (以N1、N2、N3表示),加上1个完全空白处理CK (不施生物炭和氮肥),共计13个处理。在红枣收获后,采集0—20 cm土壤样品测定各配施处理下土壤微生物量、酶活性和微生物数量。 【结果】 生物炭对土壤微生物量碳、氮含量有极显著影响,且微生物量随生物炭用量的增加而增加。所有施生物炭处理的土壤微生物生物量较C0均显著增加。在2.5 t/hm2生物炭 (C1) 水平下,不同施氮处理间微生物生物量差异不显著;微生物量碳、氮含量分别以C3N2和C3N3处理增幅最大,分别较对照提高了208.6%和159.4%。与对照相比,土壤脲酶活性随生物炭与氮肥用量的增加而显著增加,最大增幅为91.7%,但生物炭与氮肥配合总体上对土壤碱性磷酸酶和蔗糖酶活性没有显著影响。生物炭用量、施氮水平及其交互作用对土壤细菌、真菌和放线菌均有极显著影响。与对照相比,细菌、真菌和放线菌的增幅分别为10.9%~80.4%、6.6%~143.1%和50.6%~115.2%。相关性分析表明,土壤微生物生物量、土壤酶活性及微生物数量三者之间存在显著或极显著的正相关关系。 【结论】 生物炭与氮肥配施总体上提高了枣区土壤微生物生物量、酶活性及微生物数量,三者共同促进了土壤微生物生态系统的改良,配施处理可作为改良枣区土壤质量的有效措施之一。综合试验结果及实际生产成本,10 t/hm2的生物炭,配施N 300 kg /hm2的氮肥为该地区最佳配比施肥量。   相似文献   

7.
生物炭和有机肥施用提高了华北平原滨海盐土微生物量   总被引:2,自引:0,他引:2  
【目的】研究施加不同量生物炭和有机肥对山东滨州滨海盐地土壤微生物量碳、氮 (MBC、MBN) 含量的影响,为改善盐地土壤环境质量和盐地的可持续利用提供科学依据。【方法】试验共设置6个处理:CK (无机肥)、C1[生物炭5 t/(hm2·a)]、C2[生物炭10 t/(hm2·a)]、C3[生物炭20 t/(hm2·a)]、M1[有机肥7.5 t/(hm2·a)]、M2[有机肥10 t/(hm2·a)]。各处理均施加等量的N[200 kg/(hm2·a)]和P2O5[120 kg/(hm2·a)],生物炭和有机肥处理不足部分由尿素和磷酸二铵补充。生物炭、有机肥和基肥均分为玉米、小麦两季人工施入,每个处理3次重复,小区随机排列。在玉米和小麦的不同生育期,取0—20 cm和20—40 cm土样,测定土壤MBC和MBN、土壤pH、土壤含水量、硝态氮和铵态氮含量。【结果】施加生物炭和有机肥均可增加土壤MBC和MBN。施用基肥5天后,生物炭和有机肥显著增加了土壤MBC和MBN含量,而追肥对土壤MBC和MBN的影响并不显著。生物炭处理土壤MBC变化范围在64.1~570.0 μg/g,有机肥处理变化范围在90.6~451.3 μg/g之间。C3、M1、M2处理均显著增加了0—40 cm土壤MBC (增幅在40.9%~118.4%之间) ,而C1、C2仅显著增加20—40 cm土层的MBC含量 (增幅分别为47.7%、60.0%) 。生物炭处理MBN含量在5.3~92.5 μg/g之间,与CK相比差异不显著;有机肥处理变化范围为4.2~163.9 μg/g,M1和M2显著增加了土壤MBN含量,增加幅度达56.4%~162.3%。生物炭和有机肥的施加对土壤pH影响显著,生物炭显著降低了20—40 cm的土壤pH,而有机肥显著降低了0—40 cm的土壤pH。相关分析表明,土壤pH与土壤MBC和MBN均呈极显著的负相关关系。土壤MBC和MBN均与土壤矿质氮表现出显著正相关关系。除M1处理玉米产量显著降低外,生物炭和有机肥的施加对玉米和小麦产量均没有产生显著影响。玉米季前期以细菌为主,后期则以真菌为主。小麦季MBC/MBN波动较大。【结论】施加生物炭和有机肥对土壤MBC和MBN含量影响显著,对盐地土壤MBC和MBN均具促进作用。土壤MBC和MBN与土壤pH具有显著的负相关关系,与土壤矿质氮呈显著正相关关系,说明生物炭和有机肥的施加能够降低盐地土壤pH,增加土壤矿质氮,有利于盐地土壤环境质量的改善。  相似文献   

8.
生物炭和氮肥配施提高土团聚体稳定性及作物产量   总被引:1,自引:1,他引:0  
【目的】通过田间定位试验,探讨生物炭和氮肥配施对土耕层土壤水稳性团聚体组成、稳定性、有机碳土层分布及冬小麦–夏玉米轮作体系下产量的影响,为生物炭在关中地区农业生产中的应用提供科学依据。【方法】本试验设置4个生物炭水平和2个氮肥水平,生物炭水平分别为0、1000、5000、10000 kg/hm2,依次记为B0、B1、B2、B3;氮肥水平包括两季总氮量480 kg/hm2(NT) 和两季总氮量减半240 kg/hm2(NH),共组成8个处理。采集0—10 cm、10—20 cm土层土壤样品,利用TTF-100土壤团聚体分析仪湿筛获得5种粒级的团聚体 (> 2 mm、1~2 mm、0.5~1 mm、0.25~0.5 mm、< 0.25 mm),用 > 0.25 mm团聚体含量 (R0.25)、平均重量直径 (MWD)、几何重量直径 (GMD) 表示水稳性团聚体的的稳定性,并测定了不同粒级团聚体中有机碳的含量及小麦–玉米两季作物总产量。【结果】与不施生物炭 (B0NT、B0NH) 相比,施用生物炭的处理显著增加了 > 2 mm、1~2 mm粒级水稳性大团聚体的百分含量 (P < 0.05),两粒级增幅范围分别为3.5%~180.3%、9.4%~98.9%。施用生物炭10000 kg/hm2(B3NT、B3NH) 时,MWD、GMD和R0.25增幅最高,分别增加了12.5%~112.5%、25.0%~65.7%、20.0%~65.0%。施用生物炭显著提高了土壤各粒级水稳性团聚体有机碳含量,与不施生物炭处理相比,> 2 mm、1~2 mm、0.5~1 mm 和0.25~0.5 mm粒级团聚体有机碳含量增幅分别为6.3%~30.5%、0.2%~28.2%、0.2%~41.6%和4.6%~39.1%。与0—10 cm土层相比,10—20 cm土层氮肥减量降低了土壤团聚体的稳定性,而施用生物炭10000 kg/hm2(B3NH) 可改善土壤团聚体的稳定性,改变有机碳分布。在10—20 cm土层,与B0NT处理相比,B0NH处理土壤水稳性团聚体的R0.25、MWD、GMD显著下降,三者分别降低了79.2%、25.7%、30.0%,而B3NH与B3NT处理之间无显著差异。与B0NT相比,B0NH处理 < 0.25 mm粒级微团聚体对土壤有机碳分配比例显著增加了17.4%,而B3NH处理与B3NT相比,< 0.25 mm粒级微团聚体对土壤有机碳分配比例无显著差异。此外,施用生物炭显著提高作物总产量,B2NT、B3NT和B3NH处理下两季作物总产量较高,分别较B0NT提高了27.0%、23.6%、27.9%,且三个处理之间无显著差异。从各指标相关分析可知,水稳定大团聚体的GMD与土壤全土有机碳以及两季作物总产量之间有着显著的正相关关系。【结论】生物炭配施氮肥显著提高了土壤水稳性大团聚体含量和团聚体稳定性,且提高小麦—玉米两季作物总产量。减施氮肥有利于有机碳向大团聚体中分配,供试条件下,生物炭10000 kg/hm2配施氮肥240 kg/hm2对提高土耕层团聚体稳定性、土壤有机碳及两季作物总产量效果最佳。  相似文献   

9.
生物炭配施氮肥改善表层土壤生物化学性状研究   总被引:4,自引:0,他引:4  
【目的】 探讨生物炭配施氮肥对土壤碳氮、生物学性质及春玉米产量的影响,阐明生物炭配施氮肥后,土壤碳氮含量及生化性质变化规律,旨在为合理培肥、改善土壤环境、增加春玉米产量提供科学依据。 【方法】 在内蒙古西部 (包头) 和东部 (通辽) 2个试验点进行大田试验,设生物炭用量0、8、16、24 t/hm2 4个水平 (分别记作C0、C8、C16、C24) ,设施氮量 0、150、300 kg/hm2 3个水平 (分别记作N0、N150、N300) ,于成熟期测产,并于收获后分3个土层 (0—10 cm、10—20 cm、20—40 cm) 测定土壤碳氮含量、微生物量及酶活性。 【结果】 生物炭和氮肥对2个试验点0—10 cm、10—20 cm和20—40 cm土层有机碳、碳氮比、微生物量及酶活性均有极显著影响 (P < 0.01) ,且两者交互作用极显著。3个土层有机碳含量以及0—10 cm和10—20 cm土层全氮含量在各施氮水平随生物炭施用量的增加而增加。施加生物炭和氮肥均能显著提高3个土层的微生物量碳、微生物量氮、蔗糖酶活性、脲酶活性以及总体酶活参数,且随炭、氮施入量的增加呈先增后减的趋势;施用生物炭后0—10 cm和10—20 cm土层的微生物量碳、微生物量氮以及蔗糖酶、脲酶活性均显著高于20—40 cm土层。生物炭配施氮肥可显著提高春玉米穗粒数、百粒重及产量,2试验点产量均以C 8N150最大,包头和通辽分别为15.51 t/hm2和16.43 t/hm2。通过相关分析可知,春玉米产量主要与0—10 cm和10—20 cm土层的微生物量及酶活性有关。 【结论】 适量生物炭配施氮肥能够增加土壤碳氮储量、微生物量和酶活性,改善土壤微生态环境。炭氮配施能够提高土壤肥力,减少氮肥用量,本试验中以8 t/hm2生物炭配施150 kg/hm2氮肥为最佳施肥量。   相似文献   

10.
  【目的】  研究生物炭性质与氮肥用量对河套灌区春玉米田温室气体排放和产量的影响,为河套灌区高效利用生物炭固碳减排提供理论支撑。  【方法】  试验采用室内培养与田间试验相结合的方法,供试材料为秸秆生物炭和竹炭。田间试验设常规施氮300 kg/hm2对照(N)、常规氮量配施秸秆炭(SB+N)、常规氮量配施竹炭(BB+N)、减氮50%配施秸秆炭(SB+50%N)、减氮50%配施竹炭(BB+50%N)。采用静态暗箱–气象色谱法测定春玉米田温室气体排放量,并测定玉米产量。室内培养试验中分别制备热解温度为200℃、400℃和600℃的秸秆炭(S)和竹炭(B)加入土壤中,平衡3天后施入N 300 kg/hm2开始恒温恒湿培养,共培养14天。监测了不同培养时间土壤中N2O、CO2及CH4气体的排放通量。  【结果】  与N处理相比,SB+N、BB+N、SB+50%N和BB+50%N处理0—5 cm深土壤温度分别提高了0.50℃、1.84℃、0.35℃和1.37°C,0—10 cm深土壤温度分别提高了0.43℃、1.83℃、0.39℃和1.11°C;0—10 cm土壤含水率分别提高13.70%、8.90%、12.33%和8.90%。与N处理相比,在春玉米整个生育期内SB+N、BB+N、SB+50%N和BB+50%N处理的土壤N2O累积排放量分别减少了21.91%、23.16%、25.98%和28.17% (P<0.05);SB+N和BB+N处理的CO2累积排放量分别提高了7.96%和9.94% (P<0.05),而SB+50%N和BB+50%N处理的分别降低了11.54%和10.74% (P<0.05);整个春玉米生育期各生物炭处理的CH4累积排放量为负值,显著低于N处理(P<0.05);SB+N、BB+N、SB+50%N和BB+50%N处理土壤的全球增温潜势(GWP)分别降低了23.26%、23.98%、27.00%和29.14%,温室气体排放强度(GHGI)分别降低了27.24%、28.97%、32.57%和34.68% (P<0.05)。生物炭添加能够提高玉米产量,SB+N、BB+N、SB+50%N和BB+50%处理较N处理分别增加5.47%、7.01%、8.26%和8.47% (P<0.05)。培养试验发现生物炭能够减少土壤N2O和CO2的排放。N2O和CO2的排放通量随生物炭热解温度升高而减少,在相同热解温度下,竹炭的减排效果优于秸秆炭。各处理下土壤CH4的排放均表现为碳汇,其中600°C制备的竹炭对CH4的吸收量最高。  【结论】  施用生物炭能够改善土壤温度和土壤含水率,并显著降低N2O和CH4累积排放量,但常规施氮量下施用生物炭会提高CO2累积排放量。施用生物炭能够显著提高春玉米的产量并降低春玉米田GWP和GHGI。培养试验进一步说明了竹炭的减排效果优于秸秆炭,高热解温度的生物炭减排效果优于低热解温度生物炭,综合考虑田间与室内培养试验的结果、环境效益和经济效益,减氮50%配施竹炭的处理是河套灌区春玉米田提高产量并减少温室气体排放较为合适的措施。  相似文献   

11.
许欣  陈晨  熊正琴 《土壤学报》2016,53(6):1517-1527
基于稻田中氮肥配施生物炭的田间定位试验,研究了施用生物炭与氮肥对旱季稻田土壤理化性质、甲烷氧化与产生潜势及甲烷氧化菌和产甲烷菌丰度的影响。田间试验共设置5个处理:单施生物炭、单施氮肥、氮肥配施生物炭(生物炭设置两个水平)以及对照。结果表明:施用生物炭三年后显著提高了有机碳和微生物生物量碳含量(p﹤0.05),与单施氮肥处理相比,氮肥配施生物炭后可显著提高土壤pH。与对照相比,单施生物炭显著提高土壤甲烷氧化潜势。在施氮条件下,甲烷氧化潜势与生物炭施用量之间存在正相关关系,与氮肥配施20 t hm-2处理相比,40 t hm-2生物炭处理甲烷氧化潜势增长53.8%。氮肥配施高倍生物炭与配施低倍生物炭处理相比产甲烷潜势由0.001提高至0.002 mg kg-1 h-1;氮肥施用一定程度上抑制了甲烷氧化菌数量的增长,单施氮肥处理中产甲烷菌数量较对照处理显著增加了3.0%;单施或配施低水平生物炭显著增加土壤甲烷氧化菌数量。氮肥显著降低了甲烷氧化菌与产甲烷菌基因丰度比(pmoA/mcrA)。而在同氮肥水平下施加生物炭显著增加了土壤pmoA/mcrA比值,即生物炭对甲烷氧化菌的促进作用显著高于产甲烷菌,提高了旱季稻田土壤的甲烷氧化能力,因此有助于减少稻田土壤甲烷的排放。  相似文献   

12.
【目的】探索玉米秸秆炭对东北黑土土壤肥力特性和氮素农学效应的影响,可为东北玉米集约化生产区秸秆资源利用和培肥土壤提供理论和实际应用基础。【方法】本研究以东北典型黑土区春玉米种植体系为研究对象,通过连续两年的田间原位试验,研究了添加500℃厌氧条件热解的玉米秸秆炭对土壤养分含量、 微生物和酶活性的影响及玉米秸秆炭对作物产量和氮素农学效应的影响。试验设三个处理: 1)PK+4 t/hm2秸秆还田(CK); 2)NPK+4 t/hm2秸秆还田; 3)NPK+4 t/hm2秸秆还田+2 t/hm2秸秆生产秸秆碳,在玉米成熟期取020 cm土壤样品和植株样品,采用常规方法进行相关项目的测定。【结果】 1)土壤养分分析结果。与秸秆还田相比,秸秆炭处理在2013和2014年土壤碱解氮含量(AN)分别提高了10.1%和9.7%,均达到显著水平(P0.05); 土壤速效磷含量(AP)分别提高了13.7%和27.3%,在2014年达到显著水平(P0.05); 土壤微生物量碳含量(SMBC)分别提高了13.5%和26.9%,土壤脲酶活性(URE)分别提高了22.3%和31.8%,2014年SMBC和URE升高均达显著(P0.05)。秸秆炭对土壤有机质(OM)、 全氮(TN)、 速效钾(AK)、 土壤微生物量氮(SMBN)和蔗糖酶活性(SUC)的提升效果在两年试验中均没有达到显著水平, 2)氮素农学效应影响结果。与处理2相比,处理3肥料氮偏因子生产力(PFPN)分别提高了3.3%和9.6%,肥料氮经济效益(EBN)分别提高了12.9%和27.5%,均在2014年表现出显著提高(P0.05); 而两年间处理3的玉米产量分别提高3.3%和9.5%、 肥料氮利用率(UEN)分别提高了3.9%和14.0%、 肥料氮农学效率(AEN)分别提高了11.6%和23.9%,但均未达显著水平。【结论】2年试验初步表明施用玉米秸秆炭可以提高土壤微生物活性和土壤酶活性,调节土壤与作物之间的养分供需,改善土壤养分状况,对提升氮素农学效应有作用。因此,玉米秸秆炭可作为秸秆资源高效利用的有效形式,其长期效果还需进一步试验。  相似文献   

13.
长期有机无机肥配施对冬小麦籽粒产量及氨挥发损失的影响   总被引:13,自引:2,他引:11  
【目的】黄淮海地区作为华北平原重要的农业生产区,氮肥投入量大、利用率低的现象较为普遍,氮肥损失和农业面源污染严重。本研究在长期肥料定位试验基础上,连续多年监测不同施肥处理下冬小麦田氮素挥发损失量及其规律,探讨减少黄淮海地区麦田氨挥发的有效施肥方式,为提高冬小麦产量及肥料利用效率提供科学依据。 【方法】2011~2015 年利用水肥渗漏研究池进行试验,以石麦 15 (SM15) 为材料,以不施氮肥 (CK) 为对照处理,在同等施氮量下设置单施尿素 (U)、单施牛粪 (M) 和尿素牛粪 1∶1 配施 (U + M) 3 种氮肥配比处理,随机区组设计。采用通气法连续 4 年原位监测不同施肥处理下小麦氨挥发损失量、小麦籽粒产量及氮肥利用率。 【结果】2011~2015 年氨挥发损失量年际间变化较大,最大变幅可达 19.69 kg/hm2,年际间施肥后氨挥发速率变化规律趋势相似。不同施肥处理对土壤氨挥发有显著影响,冬小麦季氨挥发主要发生在施肥后 15 d 内,拔节期追肥的氨挥发速率显著高于播种期施用基肥。四年间氨挥发损失量平均达 7.26~42.40 kg/hm2,与不施氮肥相比,施氮处理的氨挥发损失量升高 1.40~4.84 倍,表明施用氮肥显著促进土壤氨挥发;施氮处理的氮肥损失率以 U 处理最高,达到 19.5%,M 处理最低,为 5.7%,U + M 处理为 12.3%,介于两处理之间,U + M 处理和 M 处理的氮肥损失率较 U 处理四年平均分别降低了 37.0% 和 71.1%,表明单施有机肥或有机无机肥配施可显著抑制氨挥发损失。2011~2015 年各施肥处理冬小麦产量均以 U + M 处理最高,达 9461.5 kg/hm2,较 U 和 M 处理分别增产 6.8% 和 9.1%。各处理的冬小麦籽粒吸氮量、地上部吸氮量同样以 U + M 处理最大,较 U 和 M 处理分别提高 7.1%、12.6% 和 5.4%、12.9%。U + M 处理的氮肥利用率在四年均最高,达 41.96%,较 U 和 M 处理分别提高 16.5%~19.6% 和 38.6%~58.7%。 【结论】综合籽粒产量及氮素利用效率,有机无机肥配施比单施化肥能显著降低氨挥发损失,提高籽粒产量和氮肥利用率,有利于实现冬小麦高产与肥料高效的协同,可作为黄淮海区域小麦生产中的增产增效的优化施肥方式。  相似文献   

14.
生物质炭添加量对伊乐藻堆肥过程氮素损失的影响   总被引:11,自引:4,他引:7  
为探讨高温堆肥中氮素损失的有效控制技术,研究以生物质炭为添加剂对伊乐藻与稻草混合堆肥过程中氮素损失的影响,通过静态高温好氧堆肥试验,设置了6个处理,即:CK(不添加生物质炭)、5个生物质炭不同添加量处理(以CK为基础,生物质炭添加量分别为CK堆体干基质量的6%、18%、30%、42%、54%),监测了伊乐藻与稻草混合堆肥过程中堆温、氨挥发速率等相关指标的变化。结果表明,与 CK 相比,添加生物质炭可以提高堆温、延长高温期天数、缩短堆肥周期,堆肥周期减少天数与生物质炭添加量呈极显著的对数曲线相关(P<0.01);添加生物质炭可以显著降低堆肥过程中的氨累积挥发量(P<0.05),但与CK相比,生物质炭添加量为6%、18%处理的氨累积挥发量分别增加了26.58%、6.34%,同时,氮素损失率亦高于CK处理;堆肥过程中氮素损失率与生物质炭添加量关系密切,呈显著的一元三次曲线相关(P<0.05),生物质炭的适宜添加量为27.11%~45%;根据不同影响因子的标准偏回归系数,对堆肥体氮素损失率的影响,由大到小依次为全氮、铵态氮、有机碳。  相似文献   

15.
靳鹏辉  陈哲  王慧  徐乔  胡天龙  周蓉  蔺兴武  刘琦  谢祖彬 《土壤》2023,55(5):964-973
为了评估麦季多年连续秸秆还田和生物质炭施用对稻麦轮作系统下稻田N2O排放的影响,于2010年麦季开始开展了为期11 a的麦季秸秆还田和生物质炭施用定位试验。试验共包括5个处理:无玉米秸秆还田和生物质炭施用(CK);6 t/(hm2·a)玉米秸秆还田(CS);2.4 t/(hm2·a)生物质炭施用(BC1);6 t/(hm2·a)生物质炭施用(BC2)和12 t/(hm2·a)生物质炭施用(BC3)。结果表明,BC2和BC3处理较CK均显著提高了土壤碱解氮、有效磷、速效钾、易氧化碳、可溶性有机氮和土壤微生物生物量氮含量。CS、BC1和BC2处理水稻生长季N2O总排放量与CK没有显著差异,但是BC3处理的N2O总排放量比CK提高了245.31%,并显著高于其他处理。BC3处理的N2O总排放量和施氮肥后N2O排放高峰期的累积排放量分别比CK提高了3.84 kg/hm2和3.3...  相似文献   

16.
施用生物质炭是提高作物产量和氮肥利用效率的潜在有效措施。以菠菜为供试作物开展盆栽试验,研究了生物质炭与氮肥配施对菠菜产量、组织中硝酸盐含量及养分(氮磷钾)含量的影响。生物质炭设3个水平:C0(0g·kg-1)、C5(5g·kg-1)和C10(10g·kg-1),氮素3个水平分别为N0(0mg·kg-1)、N1(90mg·kg-1)和N2(120mg·kg-1)。试验结果表明,在N0和N1水平下,施用生物质炭显著提高了菠菜产量,增幅为16.6%~57.3%,而在N2水平下,生物质炭对菠菜产量无显著影响(P〉0.05)。同时,在N1水平下,与C0处理相比,C5和C10处理菠菜组织中硝酸盐含量分别增加了198.7%和233.4%;而在N2水平下,C5和C10处理的硝酸盐增幅分别为8.8%和46.3%。在不同氮素水平下,生物质炭的施用增加了菠菜对氮和钾的吸收,而对磷素吸收的影响不明显。总之,生物质炭与氮肥配施可以提高菠菜产量,明显增加氮肥当季利用效率。  相似文献   

17.
硝化抑制剂影响小麦产量、N2O与NH3排放的研究   总被引:5,自引:1,他引:4  
孙海军  闵炬  施卫明  祝介贵 《土壤》2017,49(5):876-881
通过田间小区试验研究不同施氮水平下,施用硝化抑制剂CP对小麦产量、氮素利用率、氧化亚氮(N_2O)排放与氨(NH_3)挥发的综合影响规律。结果表明:在施氮水平为140 kg/hm2与180 kg/hm2时,施用CP促使小麦产量分别显著增加17.8%和15.4%,在同一施氮水平下,施用CP促进小麦氮素利用率提高11.3%~25.2%。施用硝化抑制剂CP可以降低麦季(特别是基肥与穗肥施用时期)土壤N_2O的排放速率,并显著减少39.3%~53.7%的累积N_2O排放量。但是在两个施氮水平下,施用CP导致麦季NH_3挥发量增加1.46~1.75倍,而且此效应主要发生于基肥与穗肥观测期。本研究说明:在麦季施用硝化抑制剂CP可以提高氮素利用率,从而提高小麦产量,并且能减少N_2O排放,但同时会导致一定程度的NH_3挥发增加,需加以控制。  相似文献   

18.
生物炭对植烟土壤氮素形态迁移及微生物量氮的影响   总被引:2,自引:0,他引:2  
为了在植烟土壤中施加生物炭,以及在不同氮素水平下验证生物炭对土壤氮素的淋洗及迁移的影响.采用大田试验,设计5个处理,在磷肥和钾肥施用量相同的基础上,除对照(CK)处理不施生物炭与氮肥外,其余4个处理都添加1 600 kg/hm2的生物炭,施氮量分别为(N0)0、(N1)37.5、(N2)52.5和(N3) 67.5 kg/hm2,对植烟土壤氮素在0~20、20 ~ 40和40 ~ 60 cm土层施加生物炭,研究全氮、碱解氮、硝态氮和铵态氮质量分数的影响及其迁移规律,以及0~20cm土层微生物量氮的变化特征.结果表明:植烟土壤施用生物炭降低了0~ 20 cm以下土壤氮素质量分数,提高了植烟土壤对氮素的固定能力.与CK相比,增施生物炭的N0在0~20 cm以下土层,土壤全氮、碱解氮、硝态氮和铵态氮质量分数降低率最高达到11.21%、49.07%、42.29%和31.35%.而施氮量对植烟土壤全氮、碱解氮和铵态氮的影响,主要集中在0 ~ 20 em土层,且土壤氮素质量分数随施氮量的增加而增加,以N3处理各氮素指标质量分数相对最高,其全氮、碱解氮和铵态氮质量分数最高分别为2.10 g/kg、261.86 mg/kg和49.80 mg/kg.土壤硝态氮质量分数随土层加深而下降,在0 ~ 20 cm土层,以N3处理最高,达264.90 mg/kg;但不同氮水平下,硝态氮质量分数在20 ~ 40 cm土层差异较其他土层更显著.施用氮肥对植烟土壤氮素的影响主要表现在烟草移栽后前30 d.增施生物炭可以提高烟草移栽后60 d时土壤微生物量氮;而施氮量对微生物量氮熵的影响主要表现在烟草移栽30 d之后.施氮量对植烟土壤氮素的影响主要表现在0~20 cm土层,且在烟草生育前期效果显著.生物炭可以明显抑制植烟土壤本身及低量氮肥施用下氮素淋失迁移,但在高量氮肥施用下的抑制作用不明显.在豫中烟区,以生物炭配施氮肥67.5 kg/hm2施肥措施,最利于植烟土壤氮素提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号