首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photolysis of metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] in a sunlight simulator under actinic radiation was investigated. The focus of the study was to determine the extent of monochloroacetic acid (MCA) production. MCA was concentrated and derivatized from photolysate as the n-propyl ester using propanol and sulfuric acid and then identified as the ester using GC/MS and GC/ECD. On the basis of regression analysis, it was shown that the direct photodegradation of approximately 10 microM metolachlor followed pseudo-first-order kinetics with respect to the metolachlor concentration, and the half-life of the herbicide ( approximately 74 h) was independent of the pH of the medium. Photolysis in synthetic field water (SFW) resulted in a significant reduction of photolysis time (t(1/2) approximately 9 h). Direct photolysis experiments indicate a 5.19 +/- 0.81% (n=3) conversion of metolachlor to MCA, while photolysis in synthetic field water and in a Don River water sample resulted in 29.8 +/- 4.6% (n = 3) and 12.6 +/- 4.1% (n = 3) conversion, respectively; MCA was shown to be hydrolytically stable over the time course of the photoreaction. The photodegradation of alachlor, butachlor and a model chloroacetanilide, 2-chloro-N-methylacetanilide, in SFW were also investigated.  相似文献   

2.
The oxidation of di-(2-ethylhexyl) phthalate (DEHP) in solution using UV/H2O2 and direct UV photolysis are analyzed in this study. It was found that DEHP was 100% removal in the solution by 180-min UV/H2O2 treatment and 73.5% removal by 180-min direct UV photolysis. The effect of different factors, such as DEHP concentration, H2O2 concentration, and UV light intensity, on photochemical degradation was investigated. The degradation mechanism of DEHP and the acute toxicity of intermediates were also studied. The photochemical degradation process was found to follow pseudo-first-order kinetics. The results of our study suggested that the concentration with 40 mg/L H2O2 and 5 μg/mL DEHP in the solution at pH 7 with 10.0?×?10?6 Einstein l?1?s?1 UV was the optimal condition for the photochemical degradation of DEHP. The photochemical degradation with UV/H2O2 can be an efficient method to remove DEHP in wastewater.  相似文献   

3.
Carbofuran (2,3-dihydro-2,2-dimethylbenzofuran-7-yl methylcarbamate) (CBF) is a widely used insecticide. Traditional methods like hydrolysis and direct photolysis cannot remove CBF effectively. In this study, the photodecay of 0.1 mM CBF in UV/H2O2, UV/S2O8(2-), and UV/H2O2/S2O8(2-) and sequential addition of a second oxidant were studied under UV light at 254 nm. The degradations of CBF follow pseudo-first-order decay kinetics. Direct photolysis was slow, but the corresponding degradation rate was increased with the addition of hydrogen peroxide (H2O2) or potassium peroxydisulfate (K2S2O8). In the UV/H2O2 reaction, the optimum reaction rate was 0.9841 min-1 at 10 mM H2O2 (pH 7); however, retardation is observed if H2O2 is overdosed. Such retardation is not observed in the UV/S2O8(2-) system, but a nonlinear increment of removal efficiency is identified. The UV/H2O2/S2O8(2-) process on the other hand shows the best performance in CBF degradation, but it has a less effective mineralization than that of the sole UV/S2O8(2-) reaction.  相似文献   

4.
The present work focused on treatment of eosin (EO) by photocatalysis (PC) combined with electrocatalysis (EC) process. Bismuth oxychloride/titanium dioxide (BiOCl/TiO2) hybrid particles, which were used as new heterogeneous photocatalysts, were exploited in a reverse microemulsion approach and were characterized by XRD, UV?CVis diffuse spectra, BET, and SEM technologies. All degradation experiments were performed using a self-assemble experimental setup, in which PC and EC could be carried out simultaneously or individually. The results indicated that BiOCl/TiO2 showed enhanced photocatalytic performance under UV irradiation, and 50% BiOCl/TiO2 exhibited the best photoactivity due to its high degree of crystallization, the mesoporous structure and corresponding large special surface area, improved absorption ability in UV region, and the heterojunction formed between two coupling particles. The combined degradation process displayed synergistic effect on the degradation of EO owing to the generation of H2O2 at graphite cathode. The parameters such as, pH, reaction current, and initial concentration of EO were monitored in order to optimize the operating conditions. Pseudo-first-order kinetics was proposed and roughly fitted the combined degradation of EO. The combined system in this work suggested a new research idea for the degradation of dye wastewater.  相似文献   

5.
Photodegradation of four pharmaceuticals (i.e. carbamazepine, ibuprofen, ketoprofen and 17α-ethinylestradiol) in aqueous media was studied using a solar light simulator (Xe lamp irradiation) and sunlight experiments. These experiments were carried out in river and seawater and compared to distilled water. The latter was used to evaluate the direct photodegradation pathways. Irradiation time was up to 400 min and 24 days for the solar light simulator and sunlight assays, respectively. Pharmaceutical photodegradation followed a first-order kinetics and their half-lives calculated in every aqueous matrix. Moreover, the sensitizing effect of DOC was evaluated by comparison with the kinetics obtained in distilled waters. Ketoprofen was rapidly transformed via direct photolysis in all the waters under both sunlight (t 1/2?=?2.4 min) and simulated solar light simulator test (t 1/2?=?0.54 min). Under xenon lamp radiation, ibuprofen and 17α-ethinylestradiol were photodegraded at moderate rate with half-lives from 1 to 5 h. Finally, carbamazepine had the lowest photodegradation rate (t 1/2?=?8–39 h) attributable to indirect photodegradation. Indeed, its elimination was strongly dependent on the DOC concentration present in solution. Finally, several ketoprofen photoproducts were identified and plotted against solar light simulator irradiation time. Accordingly, the photodegradation pathway of ketoprofen was postulated.  相似文献   

6.
The recent introduction of imidazolinone-tolerant rice varieties allow imazethapyr to be used in commercial rice. Little is known about imazethapyr photodegradation in the rice field. Laboratory studies were conducted to determine the direct and indirect photolysis rates for imazethapyr and to evaluate the photolysis of imazethapyr in three rice paddy waters. The reaction quantum yield (phi I) for imazethapyr was determined to be 0.023 +/- 0.002, while the hydroxyl radical rate constant (K(I)*OH) was 2.8 x 10(13) M(-1) h(-1). These results show that imazethapyr is susceptible to both direct and indirect photolysis reactions in water. The results also show that imazethapyr photolysis in paddy water will be affected by turbidity because of its impact on the availability of sunlight to drive direct and indirect photolysis reactions.  相似文献   

7.
The photodegradation of the carboxamide acaricide hexythiazox in three different solvent systems (aqueous methanolic, aqueous isopropanolic, and aqueous acetonitrilic solutions) in the presence of H(2)O(2), KNO(3), and TiO(2) under ultraviolet (UV) light (λ(max) ≥ 250 nm) and sunlight (λ(max) ≥290 nm) has been assessed in this work. The kinetics of photodecomposition of hexythiazox and the identification of photoproducts were carried out using liquid chromatography-mass spectrometry. The rate of photodecomposition of hexythiazox in different solvents followed first-order kinetics in both UV radiation and natural sunlight, and the degradation rates were faster under UV light than under sunlight. Hexythiazox was found to be more efficiently photodegraded in the presence of TiO(2) than in the presence of H(2)O(2) and KNO(3). Two major photoproducts were separated in pure form using column chromatography and identified according to IR, (1)H NMR, and mass spectral information as cyclohexylamine and 5-(4-chlorophenyl)-4-methylthiazolidin-2-one. Another nine photoproducts were identified according to LC-MS/MS spectral information. The plausible photodegradation pathways of hexythiazox were proposed according to the structures of the photoproducts.  相似文献   

8.
Herbicides atrazine and metolachlor have been detected in water bodies across the world. The objective of this study was to assess the efficiency of 0‐m, 3‐m, 6‐m and 9‐m grass filter strips to reduce masses of dissolved metolachlor, atrazine and deethylatrazine (a degradation product of atrazine) exported in runoff. For that purpose, 16 uncultivated plots (3‐m wide × 65‐m long) with 0‐m‐, 3‐m‐, 6‐m‐ and 9‐m‐long grass filter strips were setup in a completely randomized block design. During four seasons, masses of dissolved atrazine, metolachlor and deethylatrazine were determined for the first four to five rain events, under natural rain conditions, after atrazine and metolachlor application. Generally, grass filter strips reduced exported herbicide masses by more than 90% and influenced atrazine and metolachlor dissipation kinetics in the field. The 3‐m grass filter strip (area ratio source/strip of 22:1) usually provided a reduction in exported herbicide masses similar to the 6‐ or 9‐m grass filter strips. Therefore, under the present experimental soil and climate conditions, a grass filter strip of 3 m would be a good compromise between environmental protection of surface waters against atrazine and metolachlor contamination and conservation of agricultural land use. Such an approach contributes to the acceptability by producers to implement optimized best management practices such as vegetated filter strips for the preservation of the quality of water resources.  相似文献   

9.
Atrazine and metolachlor are extensively used pesticides in agricultural activities in northwest Ohio. Adsorption coefficients are often used to model pesticide fate and transport. Many physical-chemical parameters, such as organic matter, clay content, pH, and ionic strength, affect pesticide adsorption. Adsorption kinetics and adsorption isotherms were studied by batch experiment. Effects of humic acid, solution pH, and ionic strength on atrazine and metolachlor adsorption were also approached. After 24 h, both atrazine and metolachlor reached adsorption equilibrium in three local soils. Adsorption isotherms were described by Freundlich equations. The Freundlich coefficient (Kf) ranged from 0.14 to 4.47 (L kg–1) for atrazine, and 0.04 to 5.30 (L kg–1) for metolachlor. Adsorption capacity decreased in the order Sloan loam > Del Rey loam > Ottokee fine sand. Koc values varied considerably for both pesticides: metolachlor > in Sloan loam, atrazine metolachlor in Del Rey loam, and atrazine > metolachlor in Ottokee fine sand. In addition to organic matter content, clay played a key role in adsorption in the Del Rey loam and Ottokee fine sand. Higher adsorption was observed at pH 5 for both pesticides. As pH decreased to 3 and increased to 11, adsorption decreased. Adsorption increased as ionic strength increased.  相似文献   

10.
The acaricide abamectin is a mixture of two colorless homologues in a molar ratio of at least 4:1 with the same structure of macrocyclic lactone. The kinetics of its degradation under direct (254 nm) and dye-sensitized (>400 nm) photoirradiation in methanol solution has been studied by UV-vis spectrophotometry, potentiometric detection of dissolved oxygen, stationary fluorescence, laser flash photolysis, and time-resolved detection of singlet molecular oxygen (O2((1)Delta(g))) phosphorescence. The results indicate that the degradation is very efficient under direct irradiation with UV light (254 nm), with a quantum yield of 0.23. On the contrary, under visible-light irradiation, using the natural pigment riboflavin or the synthetic dye rose bengal as sensitizers, the degradation is very inefficient and proceeds through a O2((1)Delta(g))-mediated mechanism, with a bimolecular rate constant for the overall O2((1)Delta(g)) quenching (the sum of physical and chemical quenching) of 5.5 x 10(5) M(-1) s(-1). This value is similar to those reported for the rate constants of the reactions of O2((1)Delta(g)) with isolated double bonds or conjugated dienes and points to similar processes in the case of abamectin.  相似文献   

11.
Volatilization is a critical pathway for herbicide loss from agricultural fields, and subsequently deposited downwind from the edge of the field. To better understand the volatilization process, field-scale turbulent volatilization fluxes of metolachlor (2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide) were quantified for 13 consecutive years using a combination of herbicide concentration profiles and eddy diffusivities derived from turbulent fluxes of heat and water vapor. Site location, type of herbicides, and agricultural management practices remained unchanged during this study in order to evaluate the effect of soil moisture on metolachlor volatilization. Twenty gravimetric surface soil moisture samples (0–5 cm) were collected immediately after herbicide application and then at 0430 hours each morning to determine the impact of surface moisture on herbicide volatilization. Five days after application, cumulative herbicide volatilization ranged from 5 to 63% of that applied for metolachlor. Metolachlor volatilization remained an important loss process more than 5 days after application when the soil surface was moist. Conversely, if the soil surface was dry, negligible volatilization occurred beyond 5 days. Furthermore, the total amount of metolachlor volatilized into the atmosphere increased exponentially with surface soil water content during application (r 2?=?0.78). Metolachlor volatility was found to be governed largely by surface soil moisture.  相似文献   

12.
Direct degradation of imazapic, an herbicide of the imidazoline family, has been investigated in aqueous solution at different concentrations, pH values, and temperatures. The efficiency of the photodegradation process has been evaluated through degradation rate constants that could be fitted best with pseudo-first-order kinetics ( Ct = C0 e(- kt )). Ultrahigh resolution mass spectrometry (FTICR/MS) was used in electrospray ionization mode as a tool to study the photolysis process on a molecular level, whereas UV-vis and high-performance liquid chromatography/mass spectrometry analysis were used to follow, by time, the evolution of the intermediates. Taking advantage of the high resolving power of FTICR/MS to perform precise formula assignments taking account of the natural abundance of isotopes, we herein propose and demonstrate an approach using 2D-derived van Krevelen visualization (O/C, H/C, m/z) to confirm the formation of imazapic intermediates. Such an approach allows a qualitative analysis of intermediates and elucidates the plausible reaction pathways of the photolysis process. More than eight photoproducts were separated and identified as a phototransformation of the imidazole ring. A mechanistical pathway was proposed.  相似文献   

13.
Enzyme-linked immunosorbent assay (ELISA) data from surface water reconnaissance were compared to data from samples analyzed by gas chromatography for the pesticide residues cyanazine (2-[[4-chloro-6-(ethylamino)-1,3,5-triazin-2-yl]amino]-2-methylpropanenitrile) and metolachlor (2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide). When ELISA analyses were duplicated, cyanazine and metolachlor detection was found to have highly reproducible results; adjusted R2s were 0.97 and 0.94, respectively. When ELISA results for cyanazine were regressed against gas chromatography results, the models effectively predicted cyanazine concentrations from ELISA analyses (adjusted R2s ranging from 0.76 to 0.81). The intercepts and slopes for these models were not different from 0 and 1, respectively. This indicates that cyanazine analysis by ELISA is expected to give the same results as analysis by gas chromatography. However, regressing ELISA analyses for metolachlor against gas chromatography data provided more variable results (adjusted R2s ranged from 0.67 to 0.94). Regression models for metolachlor analyses had two of three intercepts that were not different from 0. Slopes for all metolachlor regression models were significantly different from 1. This indicates that as metolachlor concentrations increase, ELISA will over- or under-estimate metolachlor concentration, depending on the method of comparison. ELISA can be effectively used to detect cyanazine and metolachlor in surface water samples. However, when detections of metolachlor have significant consequences or implications it may be necessary to use other analytical methods.  相似文献   

14.
Atrazine and metolachlor degradation in subsoils   总被引:6,自引:0,他引:6  
Degradation of atrazine [2-chloro-4-etylamino-6-isopropylamino-1,3,5-triazine] and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)-acetamide] in sterile and non-sterile soil samples collected at two different soil depths (0-20 and 80-110 cm) and incubated under aerobic and anaerobic conditions was studied. Under aerobic conditions, the half-life of atrazine in non-sterile surface soil was 49 days. In non-sterile subsoil, the half-life of atrazine (119 days) was increased by 2.5 times compared in surface soils and was not statistically different from half-lives in sterile soils (115 and 110 days in surface soil and subsoil, respectively). Metolachlor degradation occurred only in non-sterile surface soil, with a half-life of 37 days. Under anaerobic conditions, atrazine degradation was markedly slower than under aerobic conditions, with a half-life of 124 and 407 days in non-sterile surface soil and non-sterile subsoil, respectively. No significant difference was found in atrazine degradation in both sterile surface soil (693 days) and subsoil (770 days). Under anaerobic conditions, degradation of metolachlor was observed only in non-sterile surface soil. Results suggest that atrazine degraded both chemically and biologically, while metolachlor degraded only biologically. In addition, observed Eh values of soil samples incubated under anaerobic conditions suggest a significant involvement of soil microorganisms in the overall degradation process of atrazine under anaerobic conditions.  相似文献   

15.
The aerobic aquatic metabolism of flumioxazin was studied in two water-sediment systems under illumination and in darkness to investigate its degradation profiles. (14)C-Flumioxazin separately labeled at the 1- and 2-positions of the tetrahydrophthalimide moiety or uniformly labeled at the phenyl ring was applied to a overlying water at a rate equivalent to 600 g ai/ha by assuming uniform distribution in the water layer to a depth of 100 cm. Flumioxazin was rapidly degraded at 20 °C in the overlying waters irrespective of irradiation with half-lives of 0.1-0.4 day. Both various modes of liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) spectroscopy analyses showed four major degradates under irradiation. Two of them were formed via successive hydrolysis of the cyclic imide ring, and the others were 2-arizidinone derivatives via photoinduced rearrangement. The presence of sediment under illumination greatly reduced the formation of these degradates and accelerated their degradation. The partitions of flumioxazin and its degradates to the bottom sediment not only reduced their fractions in the water layer subjected to hydrolysis and photolysis but also enhanced their microbial degradation in the sediment. The illuminated water-sediment systems were considered to more adequately represent the behavior of flumioxazin and its degradates in the environment than the corresponding studies of aqueous photolysis and water-sediment in darkness.  相似文献   

16.
Abstract

Metolachlor (2‐chloro‐N‐(2‐ethyl‐6‐methylphenyl)‐N‐(2‐meth‐oxy‐1‐methylethyl)acetamide) is being considered for control of eastern black nightshade (Solarium ptycanthum Dun.) in cabbage (Brassica oleracea L. var. capitata), broccoli (B. oleracea L. var. Botrytis) and tomato (Lycopersicon esculentum Mill.). We have developed a rapid, sensitive method to determine metolachlor residues in these commodities to ensure its absence in the edible tissue. The crop material was extracted with methanol, the extract partitioned with hexane, then passed through a silica cartridge and analysed for metolachlor by GC/MSD in selected ion mode at m/z 161. Recovery of metolachlor from fortified plant material was greater than 84%. The method detection limit was calculated to be 0.6 ppb for tomato, 1.1 ppb for cabbage, and 4.2 ppb for broccoli. Metolachlor residues were below the detection limit in all commodities harvested from treatments which received 2 or 3 kg metolachlor/ha.  相似文献   

17.
Phototransformation of propiconazole in aqueous media.   总被引:2,自引:0,他引:2  
The photolysis of propiconazole in pure water, in water containing humic substances, and in natural water was investigated. The reaction rates were determined, and the main photoproducts were identified with the help of HPLC-mass spectrometry and by NMR. The quantum yield for direct photolysis was 0.11 +/- 0.01 at the maximum of absorption (269 nm). Photocyclization after HCl elimination and photohydrolysis of the cyclized intermediate were the main reaction pathways at 254 nm. By contrast, oxidation prevailed over dechlorination in simulated or natural solar light. Humic substances (10 mg x L(-)(1)) and naturally occurring chromophores contained in natural water enhanced the rate of propiconazole photodegradation in solar light. Half-life in June in Clermont-Ferrand (latitude 46 degrees N) was found to be 85 +/- 10 h in pure water and 60 +/- 10 h in natural water; showing that photodegradation of propiconazole in natural waters involves both direct photolysis and photoinduced reactions.  相似文献   

18.
The photodegradation of three triazines, atrazine, simazine, and prometryn, in aqueous solutions and natural waters using UV radiation (lambda > 290 nm) has been studied. Experimental results showed that the dark reactions were negligible. The rate of photodecomposition in aqueous solutions depends on the nature of the triazines and follows first-order kinetics. In the case of the use of hydrogen peroxide and UV radiation, a synergistic effect was observed. The number of photodegradation products detected, using FIA/MS and FIA/MS/MS techniques, suggests the existence of various degradation routes resulting in complex and interconnected pathways.  相似文献   

19.
The environmental photochemical kinetics of tylosin, a common veterinary macrolide antibiotic and growth promoter, were investigated under simulated sunlight. An efficient, reversible photoisomerization was characterized using kinetic, mass spectrometry, and proton nuclear magnetic resonance data. The photoisomerization was confirmed to occur by a rotation about the distal alkene of the ketodiene functionality. Concurrent forward (quantum yield = 0.39 +/- 0.09) and back (quantum yield = 0.32 +/- 0.08) reactions lead to a photochemical equilibrium near a tylosin/photoisomer ratio of 50:50, completed in less than 2 min under a spectrum equivalent to noontime, summer sunlight. The activity of the isomer for the inhibition of Escherichia coli DH5alpha growth was observed to be less than that of tylosin. On a longer time scale than that of isomerization, the isomer mixture undergoes photolysis with a quantum yield of (1.4 +/- 0.3) x 10(-3). The observed quantum yields and UV-vis absorbance data allow for the prediction of the photochemical behavior of tylosin in most environmental systems. Indirect photosensitization was not a significant loss process in solutions of Suwannee River fulvic acid with concentrations from 1 to 20 mg L(-1).  相似文献   

20.
Metabolism of metolachlor by fungal cultures.   总被引:5,自引:0,他引:5  
Metabolism of metolachlor was studied using a mixed fungal culture isolated from a metolachlor-acclimated field soil. The culture rapidly degraded metolachlor with a half-life of 3.5 days in broth. Aspergillus flavus and A. terricola purified from the mixed culture also metabolized metolachlor effectively. Five metabolites obtained were identified by co-chromatography on HPLC by comparing with authentic standards and by GC-MS. Hydrolytic dechlorination, N-dealkylation, and amide bond cleavage appeared to be the dominant transformations involved in the metabolism. Metabolites, 6-methyl 2-ethyl acetanilide and 6-methyl 2-ethyl aniline, identified in this study are new metabolites of metolachlor being reported from any mixed or pure microbial cultures. The mixed culture could degrade 99% of metolachlor at a fortification level as high as 100 microg mL(-)(1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号