首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 10-month study of surface waters in Canadian Creek (Ballarat, Victoria, Australia) showed the significant influence of historic gold mining waste material. The investigation focussed on the hydrogeochemistry of the surface waters and soils in order to: (1) document the levels and seasonal trends in major, minor and trace elements in the creek, (2) identify the process by which As is released from the soil/waste mining material to surface waters. For most dissolved major and trace elements (Na, Ca, Mg, K, and As) in surface waters, the concentrations decreased with the increasing rainfall and flow conditions except for Al and Fe. Two sites selected along the creek (< 1 km apart) allowed evaluation of the possibility that mining waste material is contributing to the elevated As concentrations (up to 145 μg/l) in downstream surface water. Arsenic concentration varied more than 28 fold seasonally and was highest in autumn and lowest in spring. Elevated concentrations of As (up to 1946 mg/kg) at the downstream site indicated the presence of a source of As concentration in both surface and subsurface soils. Oxidation of arsenic sulphides under aerobic conditions with redox fluctuations (7 to 201 mV) could cause elevated As levels in the creek. Significant statistical correlations among the major cations (Ca, Na and Mg) point to a common source(s) resulting in neutral to slightly alkaline (pH ~ 6.5 to 7.8) surface water. Fe and Al secondary phases under oxidising conditions are a significant controlling mechanism for the mobilization of As in highly contaminated soils (> 1500 mg/kg) in the study area. The large As adsorption capacity of Fe and Al could be limiting extreme mobilization into the water. Rainfall with relatively low pH is possibly causing mobilisation of Al, Fe and As from highly alkaline soils (pH ≈ 9.0) into the nearby creek.  相似文献   

2.
In this research, geological and hydrogeological studies were conducted to determine the source of high arsenic levels in the surficial aquifer of Simav Plain, Kutahya, Turkey. One of the two aquifer systems isolated in the study area was a deep confined aquifer composed of fractured metamorphic rocks that supply hot geothermal fluid. The other one was an unconfined alluvial aquifer, which developed within the graben area as a result of sediment deposition from the highlands. This aquifer serves as the primary water resource within the plain. A water quality sampling campaign conducted in 27 wells drilled in the surficial aquifer has yielded an average arsenic concentration of 99.1 µg/L with a maximum of 561.5 µg/L. Rock and sediment samples supported the fact that local metamorphic rocks contained significant amounts of sulfur minerals where arsenic-containing lenses are present inside. It was also determined that a Cu–Pb–Zn mine was operated in the past in the same formation. Arsenic-containing wastes of this mine were deposited near the Simav district center in an uncontrolled manner. This mined formation had arsenic levels reaching to levels as high as 660 mg/kg, which was found out to be the highest arsenic level in the area. Another potential arsenic source in the study area was the geothermal fluid that was used extensively in three geothermal fields with levels reaching to levels as high as 594 µg/L. Uncontrolled discharges of waste geothermal fluid and overexploitation of groundwater were also found to contribute to arsenic pollution in surface/subsurface waters of the plain. Thus, natural sources and anthropogenic influences of arsenic were found to create high concentrations in local water reserves of the area and influence human health. Consequently, death statistics from the 1995 to 2005 period collected from the area has revealed increased rates of gastrointestinal cancers above Turkish average.  相似文献   

3.
Substrates associated with two historic gold mining sites in north Westland, New Zealand, have locally very high arsenic concentrations (commonly 10–40 wt% As). The substrates consist of iron oxyhydroxide precipitates, and processing mill residues. Waters associated with some of these substrates have high dissolved arsenic (commonly 10–50 mg/L As). Natural revegetation of these very high arsenic sites has occurred over the past 50 years, although some areas of substrate remain bare. Revegetating species include native and adventive shrubs, adventive grasses, rushes, and mosses, and native ferns. Revegetation by higher plants follows initial colonization by mosses, and some shrubs are growing directly in high-arsenic substrate. Shrubs, especially manuka (Leptospermum scoparium), gorse (Ulex europaeus), tree fuchsia (Fuchsia excorticata) and broadleaf (Griselinia littoralis) largely exclude arsenic from their shoots (<?10 mg/kg dry weight) irrespective of the As content of the substrate. Likewise, most grasses, and reeds (Juncus spp.), have only modest As contents (typically <?100 mg/kg dry weight). However, mosses growing on high-arsenic substrates have strongly elevated arsenic contents (>?0.2% dry weight). In particular, the moss Pohlia wahlenbergii acts as a hyperaccumulator, with up to 3% (dry weight) As. Antimony (Sb) contents of all plants are about one thousandth of that of arsenic, reflecting the As/Sb ratio of the substrates. Plant establishment in the high-As substrates may be locally limited by low nutrient status, rather than arsenic toxicity. The shrubs, grasses, and reeds identified in this study are arsenic tolerant and largely exclude arsenic from their shoots so that revegetation with these species, can help to isolate the high-arsenic substrates from the surface environment. These species could be used as phytostabilisation agents on high-arsenic sites that are remote from human habitation. In contrast, the mosses, despite their high arsenic tolerance, are a less desirable component of revegetation of high-arsenic substrates because they actively transfer arsenic from the substrate to the biosphere.  相似文献   

4.
A total of 65 surface (0–20 cm) soil samples were collected in an effort to estimate the arsenic background values in Kavala area, Northern Greece. Arsenic was extracted by HNO3 from the <200?µm grain size fraction, and its concentrations were determined in all samples by inductively coupled plasma–mass spectrometry. Arsenic concentrations were log-transformed, and log-normal probability plots (Q–Q plots) were generated. The geochemical background was calculated as the values that lie between g/d and g?×?d (g, geometric mean; d, geometric standard deviation), which are 3.5 and 25.8 mg kg?1, respectively. The baseline value (g) was 9.5 mg kg?1. With the aid of GIS software, arsenic geochemical maps of the study area were created. The majority of the arsenic elevated concentrations were found in the proximity of the industrialized zone of Kavala.  相似文献   

5.
Abstract

The degree of antimony (Sb) and arsenic (As) pollution and their bioavailability in mining‐affected grassland soils were determined. Antimony and As concentrations in aboveground parts of plants, collected in three consecutive years, were measured to investigate their uptake capacity, food chain contamination, and ecological risks. Total Sb and As contents in soils ranged from 60 to 230 mg/kg and from 42 to 4530 mg/kg, respectively, indicating a high degree of pollution of soils. The mobile fractions of Sb (0.02–0.27% of the total Sb content) and As (0.02–0.70% of the total As content) in soils, which reflect the plant‐available portion, are extremely low compared to total Sb and As contents in soils. The Sb and As contents in plants were also very low in both study areas. This lower accumulation of Sb and As in the plants is attributed to the low bioavailability of Sb and As in mine soils. Antimony and As contents in some plants were lower than the controls, and the concentrations in some plants were slightly higher than the normal grass mean level but were less than the phytotoxic or toxic levels for human or livestock consumption. The results of this study demonstrate that the plants growing in these mining areas, which have evolved As and Sb tolerance and detoxification capacity, can be cultivated to phytostabilize the metalloid‐contaminated mining sites.  相似文献   

6.
A pot study was conducted to screen different basmati rice varieties for their accumulation of arsenic (As). Different amounts of arsenic (0–800 µg/L) were applied through irrigation water to four basmati rice varieties (Pusa basmati-1121, Pusa Punjab basmati-1509, Punjab basmati-2, and Punjab basmati-3). Highest arsenic concentration was found in the grains of Punjab basmati-3 and lowest in the grains of Pusa Punjab basmati-1509. In all varieties, grain As concentration ranged from 0.038 to 0.288 mg/kg, which was within the permissible limit of 1.0 mg/kg in rice grain recommended by World Health Organization (WHO). In husk, highest As concentration was found in Pusa basmati-1121 and lowest in Punjab basmati-2. Among the four varieties, highest content of As was accumulated in roots and straw of Pusa Punjab basmati-1509, whereas least was accumulated in Punjab basmati-2. The distribution of arsenic among plant parts was found in the order: roots > straw > husk > grain. The mean arsenic concentrations in grain, husk, straw, and root of basmati rice varieties increased with increasing concentration of arsenic in irrigation water. Highest grain yield was obtained in Pusa Punjab basmati-1509 variety due to lesser accumulation of arsenic compared with other varieties. Rice yield, plant height, root weight, straw weight, test weight, effective tiller, and filled grain per panicle decreased with increase in arsenic concentration in irrigated water.  相似文献   

7.
Experiments were conducted to evaluate the arsenic toxicity, its accumulation and phytoremediation potential of bean plants (Phaseolus vulgaris) grown in soils contaminated with different species of arsenic such as arsenite (As(III)), arsenate (As(V)) and dimethylarsinic acid (DMA). Bean plants were grown in soils amended by aqueous solutions of 20 and 50 mg kg?1 of As (III), As(V) or DMA. Arsenic species negatively affected the yield and growth of the plant. The study demonstrated arsenic accumulation in the plant parts. The concentration of arsenic compounds in the shoots decreased in the order arsenate > arsenite > dimethylarsinic acid while in the roots as arsenite > arsenate > dimethylarsinic acid. Most arsenic is accumulated in the roots with limited transfer to shoots. Thus, bean plants can be considered as an arsenic excluder and has the potential for phytostabilization of arsenic contaminated sites. The study also reveals that removal of arsenic by boiling the vegetables with excess of water is not possible.  相似文献   

8.
Fluorescent dissolved organic matters (FDOM) in the groundwater-river-lake environments were investigated using three-dimensional excitation-emission matrix (EEM) and measuring the dissolved organic carbon (DOC), inorganic anions and electric conductivity (EC) in shallow groundwater, river and lake waters. DOC concentrations were high and largely varied in groundwater, 16–328 μM C (mean 109?±?88 μM C), and in river waters, 43–271 μM C (mean 158?±?62 μM C) and were very low in the lake Biwa waters, 89–97 μM C (mean 93?±?2 μM C). The fluorescence properties of EEM showed that the fulvic-like components (peak C, peak A and peak M) were dominated in groundwater and river waters, but protein-like components (peak T) was in lake waters. The peak C was observed at $ {{\text{Ex}}} \mathord{\left/ {\vphantom {{{\text{Ex}}} {{\text{Em}}}}} \right. \kern-0em} {{\text{Em}}} = {320 \pm 9} \mathord{\left/ {\vphantom {{320 \pm 9} {424 \pm 5}}} \right. \kern-0em} {424 \pm 5}\;{\text{nm}} $ in groundwater, and 340?±?5/432?±?4 nm in river waters, but the lake waters detected the two peaks, 347?±?7/441?±?11 nm (peak C) as a minor peak and 304?±?2/421?±?8 nm (peak M) as a major peak. Emission wavelength of peak T was observed to shorten in wavelengths from groundwater to river and then lake waters. Peak T in lake waters showed at shorter in wavelengths (279?±?2/338?±?11 nm) at the middle point of Lake Biwa compared to those of lake shore site (283?±?3/350?±?7 nm). Photo-irradiation experiment on upstream waters suggested the changes in the fluorescence peaks of fulvic acid-like substances in lake waters, which might be caused by photo-degradation. DOC concentration was significantly correlated with inorganic anions and EC in river waters. However, such correlations were not observed in groundwater. Anion concentrations in lake waters were low with respect to DOC concentration. These results showed that the optical and chemical properties of FDOM are characteristically varied among groundwater, river and lake waters, indicating the impacts of environments to various FDOM at the same watershed level.  相似文献   

9.
Concerns have been raised of possible human food chain transfer of lead and arsenic from crops grown on orchard soils with histories of lead arsenate use. The objective of this study was to determine arsenic and lead uptake by three cultivars of carrots grown on four orchard soils with histories of lead arsenate use. Total concentrations of arsenic and lead in these soils ranged from 93 to 291 and from 350 to 961 mg kg?1 for arsenic and lead, respectively. Arsenic in peeled carrot ranged from 0.38 to 1.64 mg kg?1, while lead ranged from 2.67 to 7.3 mg kg?1 dry weight. This study demonstrated that carrots will accumulate arsenic and lead in the root, which may become a human health risk when consumed. However, further studies are needed to determine what fraction of arsenic and lead in these carrots are bioavailable to humans when consumed.  相似文献   

10.
The potential of ferrihydrite-modified diatomite as a phosphorus co-precipitant was investigated at a laboratory scale. Ferrihydrite-modified diatomite was demonstrated to effectively remove phosphorus from lake water as well as strongly bind phosphorus in sediment under anoxic conditions. Phosphorus removal from the lake water proceeded primarily through phosphorus adsorption onto ferrihydrite-modified diatomite and further phosphorus consumption by stimulated diatom growth. A total phosphorus removal efficiency of 85% was achieved when lake water was dosed with 250 mg/L ferrihydrite-modified diatomite; the residual total phosphorus concentration was 17.0 µg/L, which falls within the range for oligotrophic phosphorus levels. During a 30-day anoxic incubation period, total phosphorus concentrations in lake water treated with 400, 500, or 600 mg/L of ferrihydrite-modified diatomite slightly decreased and maximum total phosphorus concentrations remained below 15 µg/L. Addition of ferrihydrite-modified diatomite resulted in a marked increase in the iron-bound phosphorus fraction, a pronounced decrease in labile phosphorus and organic-bound phosphorus fractions, and stable aluminum-bound phosphorus, calcium-bound phosphorus, and residual phosphorus fractions in the anoxic sediments. Comparable iron-bound phosphorus concentration in the sediment treated by 400 mg/L of ferrihydrite-modified diatomite relative to that of the sediment treated by the combination of 400 mg/L of ferrihydrite-modified diatomite and alum solution at the concentration less than 532 mg/L indicated that ferrihydrite-modified diatomite exhibited a stable phosphorus-binding capacity when dosed at a similar amount. Ferrihydrite-modified diatomite had the potential to be used as an effective phosphorus co-precipitant.  相似文献   

11.
In recent years, arsenic (As) has received increased attention as humans may be exposed to it through occupational and environmental exposure. Tobacco (Nicotiana tabacum L.) like other crops can uptake this element from the soil, which may lead to human exposure. Here, we report on a survey on arsenic in cured or processed tobacco leaves obtained from Africa, Asia, Europe, South and North America. A total of 1,431 leaf samples of flue-cured, burley, and Oriental tobaccos were obtained from various sampling locations during 2002 to 2004. Arsenic concentration in the samples averaged 0.4?±?0.6 μg g?1 as determined by inductively coupled plasma-mass spectrometry. Recorded values from most samples showed that concentrations of arsenic were usually found at the lower end of the distribution. Significant differences were found among tobacco types, sampling locations, and crop years. Arsenic concentrations were rather low in the majority of regions investigated, which is compatible with data from the literature. However, sample size was small and sampling geographically restricted. Our results would need to be validated with a larger dataset.  相似文献   

12.
Diazinon Mitigation in Constructed Wetlands: Influence of Vegetation   总被引:1,自引:0,他引:1  
In intensively cultivated areas, agriculture is a significant source of pesticides associated with storm runoff. When these pollutants enter aquatic receiving waters, they have potential to damage nearby aquatic ecosystems. Constructed wetlands are a best management practice (BMP) designed to help alleviate this potential problem. A constructed wetland system (180?×?30 m) comprised of a sediment retention basin and two treatment cells was used to determine fate and transport of a simulated storm runoff event containing the insecticide diazinon and suspended sediment. Wetland water, sediment, and plant samples were collected spatially and temporally over 55 d. Results indicated that 43% of the study’s measured diazinon mass was associated with plant material, while 23 and 34% were measured in sediment and water, respectively. Mean diazinon concentrations in water, sediment, and plants for the 55-d study were 18.1?±?4.5 μg/l, 26.0?±?8.0 μg/kg, and 97.8?±?10.7 μg/kg, respectively. Aqueous concentrations fluctuated in the wetlands between 51–86 μg/l for the first 4 h of the experiment; however, by 9 h, aqueous concentrations were approximately 16 μg/l. During the 55 d experiment, 0.3 m of rainfall contributed to fluctuations in diazinon concentrations. Results of this experiment can be used to model future design specifications for mitigation of diazinon and other pesticides.  相似文献   

13.
To determine and characterize the initial background concentrations of heavy metals, a total of 50 sediment samples were collected from the largest lake at the International Crops Research Institute for the Semi-arid Tropics (ICRISAT) in Patancheru, India. The finely ground sediment samples were digested using a microwave-assisted digestion method and analyzed for 15 heavy metals using inductively coupled plasma–optical emission spectrometry (ICP-OES). The results showed that the concentrations of the heavy metals varied greatly with metal and sediment sample, but in general the concentrations were low. Our results suggest that the sediments from this lake (15 ha in area) at the ICRISAT center do not appear contaminated with the heavy metals evaluated, and they indeed reflect normal background concentrations of these metals released through the natural process of weathering.  相似文献   

14.
A greenhouse study was conducted to evaluate and compare arsenic accumulation from four arsenic contaminated soils by two arsenic hyperaccumulators, Pteris vittata and Pteris cretica. After growing in soils for six weeks, the plants were harvested and separated into above- and below-ground biomass. Total As, P, Ca, K, glutathione and biomass were measured for the plants, and total As, Mehlich-3 P and As, exchangeable K and Ca, and arsenic fractionation were performed for the soils. Pteris vittata had significantly higher total biomass (14 g/plant) and As accumulation than P. cretica. Arsenic accumulation in both ferns followed the arsenic concentrations in the soil. The P/As molar ratio in the fronds, growing in arsenic contaminated soils, ranged from 80 to 939 in P. vittata and 130 to 421 in P. cretica. Plant arsenic concentrations were significantly positively correlated with Mehlich-3 arsenic in the soils. Soil pH was also significantly correlated with Mehlich-3 arsenic before and after plant uptake. Plant As uptake was significantly correlated with exchangeable potassium in the soil before plant uptake. Glutathione availability was not implicated as a major detoxification mechanism in these ferns. Though both plants were effective in taking up arsenic from various arsenic contaminated soils, P. vittata was overall a better candidate for phytoremediation of arsenic contaminated soils.  相似文献   

15.
The relationships between heavy metal concentrations and physico-chemical properties of natural lake waters and also with chemical fractions of these metals in lake sediments were investigated in seven natural lakes of Kumaun region of Uttarakhand Province of India during 2003–2004 and 2004–2005. The concentrations of Cr, Mn, Fe, Ni, Cu, Zn, Cd and Pb in waters of different lakes ranged from 0.29–2.39, 10.3–38.3, 431–1407, 1.0–6.6, 5.3–12.1, 12.6–166.3, 0.7–2.7 and 3.9–27.1 μg l?1 and in sediments 14.3–21.5, 90.1–197.5, 5,265–6,428, 17.7–45.9, 13.4–32.0, 40.0–149.2, 11.1–14.6 and 88.9–167.4 μg g?1, respectively. The concentrations of all metals except Fe in waters were found well below the notified toxic limits. The concentrations of Cr, Mn, Ni, Cu, Zn, Cd and Pb were positively correlated with pH, electrical conductivity, biological oxygen demand, chemical oxygen demand and alkalinity of waters, but negatively correlated with dissolved oxygen. The concentrations of Cr, Ni, Zn, Cd and Pb in waters were positively correlated with water soluble + exchangeable fraction of these metals in lake sediments. The concentrations of Zn, Cd and Pb in waters were positively correlated with carbonate bound fraction of these metals in lake sediments. Except for Ni, Zn and Cd, the concentrations of rest of the heavy metals in waters were positively correlated with organically bound fraction of these metals in lake sediments. The concentrations of Cr, Mn, Ni, Cu and Zn in waters were positively correlated with reducible fraction of these metals in lake sediments. Except for Cd, the concentrations of rest of the metals in waters were positively correlated with residual fraction and total content of these heavy metals in lake sediments.  相似文献   

16.
广州市蔬菜和菜地土壤砷含量及其健康风险研究   总被引:3,自引:0,他引:3  
测定了广州市郊区菜地土壤(n=120)、菜地蔬菜(n=109)和市售蔬菜(n=237)中砷含量,结合广州居民蔬菜消费情况,分析了砷对广州居民的健康风险影响.结果表明:不同类型菜地土壤砷含量不同,为菜园土(12.94±9.78)mg/kg>水稻土(8.67±10.24)mg/kg>赤红壤(4.17±3.70)mg/kg,土壤质量主要属于二级标准以内;菜地蔬菜砷含量范围为ND~0.179 mg/kg,均值为(0.017±0.024)mg/kg;市售蔬菜砷含量范围为ND-0.314 mg/kg,含量变化为豆类(0.038±0.047)mg/kg)>根茎类(0.027±0.031)mg/kg>茄类(0.025±0.030)mg/kg>叶菜类(0.024±0.022)mg/kg>葱蒜类(0.019±0.025)mg/kg>瓜类(0.017±0.020)mg/kg,所有蔬菜均没有超过我国食品中砷的限量卫生标准(GB-4810-94).广州市居民从蔬菜中摄入的砷为0.045 mg/d,叶菜类和根茎类蔬菜是主要的贡献者.  相似文献   

17.
Uranium mining activity in Cunha Baixa (Portugal) village has left a legacy of polluted soils and irrigation water. A controlled field experiment was conducted with lettuce (Lactuca sativa L.) in an agricultural area nearby the abandoned mine in order to evaluate uranium uptake and distribution in roots and leaves as well as ascertain levels of uranium intake by the local inhabitants from plant consuming. Two soils with different average uranium content (38 and 106 mg/kg) were irrigated with non-contaminated and uranium contaminated water (<20 and >100 μg/l). A non-contaminated soil irrigated with local tap water (<1 μg/l uranium) was also used as a control. Uranium in lettuce tissues was positively correlated with soil uranium content, but non-significant differences were obtained from contaminated soils irrigated with different water quality. Uranium in plants (dry weight) growing in contaminated soils ranged from 0.95 to 6 mg/kg in roots and 0.32 to 2.6 mg/kg in leaves. Lettuce bioconcentration is more related to available uranium species in water than to its uranium concentration. Translocated uranium to lettuce leaves corresponds to 30% of the uranium uptake whatever the soil or irrigation water quality. A maximum uranium daily intake of 0.06 to 0.12 μg/kg bodyweight day was estimated for an adult assuming 30 to 60 g/day of lettuce is consumed. Although this value accounts for only 10% to 20% of the recommended Tolerable Daily Intake for ingested uranium, it still provides an additional source of the element in the local inhabitants’ diet.  相似文献   

18.
Lake Hallstättersee is a holomictic alpine lake, which is influenced by salt mining since the middle Bronze Age. Beside the constant saline waste water load, two massive brine spills loaded the lake with additional 16,900 tons sodium chloride (??10,250 tons Cl?) from 1977 to 1979 and 3,000 tons salt (??1,820 tons Cl?) in 2005. The effect of waste water intrusions from salt mining on stratification of Lake Hallstättersee was analysed over a period of 40 years. Water density, dissolved oxygen and total phosphorus (TP) concentrations were measured and an exponential model was fitted to describe the wash-out of chloride from Lake Hallstättersee after the brine spills. Furthermore, the time required returning to holomixis and steady chloride content after the second brine spill was estimated. During the whole sampling period the minimum and maximum volume-weighted annual mean chloride concentrations were 23.58 mg/L in 1979 and 3.19 mg/L in 1998. However, the mixing regime of Lake Hallstättersee, as well as the chloride concentrations, varied considerably and exhibited three holomictic and three meromictic periods between 1970 and 2009. Holomictic periods were observed when the yearly density gradient was below 0.06 kg/m3, deepwater oxygen in spring above 4 mg/L and consequently declining TP concentration in the deepest water layer below 60 mg/m3, otherwise meromictic periods were observed. Our study showed that Hallstättersee was 13 years ectogenic meromictic and 27 years holomictic during the study period.  相似文献   

19.
Over 250 years of metal smelting in Swansea (South Wales) left metal-rich slag across the Nant-y-Fendrod valley floor and aerial metal pollution over the wider landscape. Reclamation since 1965 included: (1) partial removal of spoil, flattening the rest and capping it with topsoil, (2) culverting watercourses and creation of two flood-relief lakes and (3) revegetation of the aerially polluted landscape. This paper assesses downstream changes along the Nant-y-Fendrod stream–lake system in metal levels of (a) fine bed-sediment and (b) streamwater and seepages. In the upper, ‘aerial-pollution zone’ total Zn, Cu, Pb and Cd in surface bed-sediment increase marginally within the first lake to 892, 207, 212 and 7.2 mg/kg, respectively. Farther downstream, Cu and Pb rise sharply, and Zn and Cd progressively, to 12,853, 595, 871 and 155 mg/kg, respectively, as the stream traverses the ‘capped metal-rich waste zone.’ Zn and Cd reach 22,671 and 229 mg/kg, respectively, in the second lake, before falling 35–56% below its outlet. Streamwater metal levels rise (but seepage metal concentrations remain stable) in most storm events, though patterns (including whether levels are reduced downstream of the lake) vary with antecedent conditions. Possible interactions between seepages, bed sediment and streamwater metal dynamics are explored.  相似文献   

20.
Soil samples were collected from Norfolk, Virginia in order to examine the extent of particulate coal, and associated arsenic (As) deposition to local soils. The particulate coal originates from the adjacent coal shipping terminal at the Lambert’s Point Docks, which is the largest marine coal shipping terminal in the Northern Hemisphere. Particulate coal was separated from soil samples using heavy liquid (i.e., sodium polytungstate) extraction. Sand-sized coal separates isolated from the soil samples were subsequently digested using concentrated nitric and sulfuric acid, and analyzed for As by high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). Selected total soil digests were also analyzed for As by HR-ICP-MS. Results indicate particulate coal ranges from less than 1% up to ~20%, by weight, of the soil samples analyzed. Arsenic concentrations in sand-sized particulate coal extracted from these sediments range from undetectable levels (i.e., <3 ng/kg) up to 17.4 mg/kg, whereas total As concentrations in the soils range from 3 to 30.5 mg/kg. The data indicate that particulate coal originating at the Lambert’s Point Docks is an additional source of As to local soils, especially sites proximal to the shipping terminal. Although the particulate coal itself likely poses only minor health hazards (if any), the environmental consequences of As transported with the particulate coal is not known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号