首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
Reconstituted dikaryons of Pisolithus sp. (Pers.) Coker & Couch from South Africa influenced growth parameters (shoot length, shoot/root ratio and leaf area), nutrition and physiological indicators (transpiration rate, stomatal conductance and xylem water potential) of maritime pine (Pinus pinaster Ait.) seedlings during drought and recovery from drought. Seedlings colonized with certain dikaryons were more sensitive to water stress and showed less mycorrhiza formation under water stress than seedlings colonized with other dikaryons. Control (uninoculated) seedlings were significantly smaller than those inoculated with dikaryons. Transpiration rate, stomatal conductance and xylem water potential varied among mycorrhizal treatments during the water stress and recovery periods. After rewatering, the controls and seedlings inoculated with dikaryon 34 x 20 had a weaker recovery in transpiration rate, stomatal conductance and xylem water potential than the other treatments and appeared to have experienced damage due to the water stress. Concentrations of various elements differed in the shoots of Pinus pinaster colonized by the various dikaryons. It is suggested that breeding of ectomycorrhizal fungi could constitute a new tool for improving reforestation success in arid and semi-arid zones.  相似文献   

2.
Stomatal conductance, transpiration and xylem pressure potential of African locust bean (Parkia biglobosa (Jacq.) Benth.) seedlings subjected from the sixth week after emergence to four weeks of continuous soil drought did not differ from those of well-watered, control plants until two-thirds of the available soil water had been used. In both well-watered and drought-treated plants, stomatal conductance was highest early in the day when vapor pressure deficits were low, but decreased sharply by midday when evaporative demand reached its highest value. There was no increase in stomatal conductance later in the day as vapor pressure deficit declined. The relationship between transpiration rate and xylem pressure potential showed non-linearity and hysteresis in both control and drought-treated plants, which seems to indicate that the plants had a substantial capacity to store water. The rate of leaf extension in African locust bean seedlings subjected to six consecutive 2-week cycles of soil drought declined relative to that of well-watered, control plants, whereas relative root extension increased. It appears that African locust bean seedlings minimized the impact of drought by: (1) restricting transpiration to the early part of the day when a high ratio of carbon gain to water loss can be achieved; (2) utilizing internally stored water during periods of rapid transpiration; (3) reducing the rate of leaf expansion and final leaf size in response to soil drought without reducing the rate of root extension, thereby reducing the ratio of transpiring leaf surface area to absorbing root surface area.  相似文献   

3.
Sun SJ  Meng P  Zhang JS  Wan X 《Tree physiology》2011,31(12):1378-1389
Temporal and spatial variations in the water status of walnut trees (Juglans regia L.) and the soil in which they were growing were traced by analyzing the differences in hydrogen isotopes during spring and summer in a 7-year-old walnut stand. Walnut root dynamics were measured in both dry and wet seasons. Walnut roots were mainly distributed in the upper soil (0-30 cm depth), with around 60% of the total root mass in upper soil layers and 40% in deep soil layers (30-80 cm depth). The upper soil layers contributed 68% of the total tree water requirement in the wet season, but only 47% in the dry season. In the wet season, total roots, living roots and new roots were all significantly more abundant than in the dry season. There were significant differences in pre-dawn branch percentage loss of hydraulic conductance (PLC), pre-dawn leaf water potential and transpiration between the dry and wet seasons. Water content in the upper soil layers remarkably influenced xylem water stable-hydrogen isotope (δD) values. Furthermore, there were linear relationships between the xylem water δD value and pre-dawn branch PLC, pre-dawn leaf water potential, transpiration rate and photosynthetic rate. In summary, J. regia was compelled to take a larger amount of water from the deep soil layers in the dry season, but this shift could not prevent water stress in the plant. The xylem water δD values could be used as an indicator to investigate the water stress of plants, besides probing profiles of soil water use.  相似文献   

4.
We used a Scholander pressure chamber to assess the effects of various extraction methods under different environmental conditions on element concentrations in xylem sap of 3-year-old Picea abies (L.) Karst. seedlings. Sap from excised shoots contained higher element concentrations when extracted at low than at high over-pressures. When comparing plants differing in water status, we found that a high extraction over-pressure introduced a systematic error into the data. For example, in well-watered non-transpiring plants relative to unwatered transpiring plants, potassium concentrations were 70% higher in sap extracted at 0.1 MPa over-pressure, but only 10% higher in sap extracted at 1.0 MPa over-pressure. Moreover, treatment effects depended on the time of day when the sap was extracted. Increased water flux in transpiring plants relative to non-transpiring plants resulted in reduced xylem sap element concentrations when samples were collected after 9 h of transpiration, but not after 4 to 6 h of transpiration. Drought had little effect on xylem sap element concentrations, indicating that rates of element release into xylem conduits, element depletion by growing tissues, and water flow maintained a balance that may prevent nutrient stress during short-term drought.  相似文献   

5.
The relationship between xylem embolism and eco-physiology indices (i.e. photosynthetic available radiation, temperature, relative humidity, photosynthetic rate, transpiration rate, stomatal conductance and water use efficiency) in eight tree species was investigated in situ. The species studied, Robinia pseudoacacia L., Acer truncatum Bge., Hippophae rhamnoides L., Ulmus pumila L., Pinus tabulaeformis Carr., Pinus bungeana Zucc.ex Endl., Ligustrum lucidum Ait., and Salix matsudana Koidz. f. pendula Schneid, grow well on the Xilin campus of Northwest A&F University. Results indicated that photosynthetic available radiation, air temperature and relative humidity can affect xylem embolism by daily adjustment of stomatal conductance, transpiration rate and water relations of a tree. Embolism was a common case in the daily growth of the plants, and there was some correlation between xylem embolism and photosynthetic rate, transpiration rate, stomatal conductance, and water use efficiency. Embolism may thus be an adaptive mechanism by some tree species to water stress. __________ Translated from Journal of Northwest Forestry University, 2006, 21(1): 37–42 [译自: 西北林学院学报]  相似文献   

6.
Xylem dysfunction progresses rapidly in Pinus thunbergii infected with pine wilt disease. The present report deals with the timing and process of the extensive dehydration of tracheids by embolism and the subsequent desiccation of the xylem with disease development. An ultrasonic acoustic emission (AE) technique was used to detect embolisms in the xylem of pine trunks. In most of the P. thunbergii saplings inoculated with the pathogen Bursaphelenchus xylophilus, the AE frequency suddenly increased in the second week after inoculation. The high-frequency AE continued for about 3 days and into the nights. Harvesting of specimens at this time revealed that white air-filled patches, representing the dehydrated and dysfunctional areas, had just emerged in the sapwood. The AE events in the night must be due to something other than embolisms in healthy trees. Frequent embolism of tracheids, which was suggested by the elevation of the AE frequency, might occur due to the decrease in the tensile strength of xylem sap. This hypothesis is supported by previously reported data. Host cells that had reacted to infection with B. xylophilus produce and release chemicals which can lower the surface tension of xylem sap. During the second increase of AEs, most of which occurred in the third week, xylem desiccation and needle yellowing progressed. Needle fading then became distinct, and the tree was close to death when the AE frequency dropped during the fourth week. By monitoring the AE, the first physiological abnormality that took place very early after infection was detected.  相似文献   

7.
This study reports experimental evidence on the effect of short-term potassium fertilization on potassium uptake, tissue concentration and hydraulic conductance of pot-grown laurel plants. Potassium uptake and loading into the xylem of laurel seedlings increased within 24 h after fertilization. Potassium was not accumulated in roots and leaves, but the [K(+)] of xylem sap was 80% higher in fertilized plants (+K) than in potassium-starved plants (-K), as a likely result of recirculation between xylem and phloem. Increased xylem sap [K(+)] resulted in a 45% increase in transpiration rate, a 30% increase in plant hydraulic conductance (K(plant)) and a 120% increase in leaf-specific conductivity of the shoot (k(shoot)). We suggest that this increase was due to ion-mediated up-regulation of xylem hydraulics, possibly caused by the interaction of potassium ions with the pectic matrix of intervessel pits. The enhancement of hydraulic conductance following short-term potassium fertilization is a phenomenon that can be of advantage to plants for maintaining cell turgor, stomatal aperture and gas exchange rates under moderate drought stress. Our data provide additional support for the important role of potassium nutrition in agriculture and forestry.  相似文献   

8.
We investigated the extent of osmotic adjustment and changes in transpiration rate that occur in response to repeated cycles of water deficit stress in 6-year-old Thuja occidentalis L. (eastern white cedar) trees. Groups of trees were water-stress conditioned by repeated exposure to predetermined thresholds of nonlethal water stress by withholding water until the predawn water potential fell to -0.9 (mild conditioning) or -1.4 MPa (moderate conditioning). Both the mild and moderate conditioning treatments resulted in a decrease in osmotic potential of 0.08 to 0.20 MPa and 0.11 to 0.28 MPa, respectively, relative to the well-watered controls. Mildly and moderately conditioned trees exhibited an approximately 35 and 50% reduction in cumulative transpiration, respectively, following at least two stress cycles. Transpiration rates of conditioned trees remained below those of the well-watered controls even when water potential integrals were similar. We conclude that the decrease in transpiration rate was more important than osmotic adjustment as a mechanism of response to repeated water stress.  相似文献   

9.
We examined the extent of osmotic adjustment and the changes in relative water content (RWC) and transpiration rate (i.e., relative stomatal function) that occur in water-deficit-conditioned 6-year-old Thuja occidentalis L. (eastern white cedar) trees in response to a severe drought. Trees conditioned by successive cycles of mild or moderate nonlethal water stress (conditioning) and nonconditioned trees were exposed to drought (i.e., -2.0 MPa predawn water potential) to determine if water deficit conditioning enhanced tolerance to further drought stress. Following drought, all trees were well watered for 11 days to evaluate how quickly osmotic potential, RWC and transpiration rate returned to preconditioning values. Both nonconditioned trees and mildly conditioned trees exhibited similar responses to drought, whereas moderately conditioned trees maintained higher water potentials and transpiration rates were 38% lower. Both conditioned and nonconditioned trees exhibited a similar degree of osmotic adjustment (-0.39 MPa) in response to drought relative to the well-watered control trees. The well-watered control trees, nonconditioned trees and mildly conditioned trees had similar leaf RWCs that were about 3% lower than those of the moderately conditioned trees. Following the 11-day stress relief, there were no significant differences in osmotic potential between the well-watered control trees and any of the drought-treated trees. Daily transpiration rates and water potential integrals (WPI) of all drought-treated trees approached those of the well-watered control trees during the stress relief period. However, the relationship between cumulative transpiration and WPI showed that previous exposure to drought stress reduced transpiration rates. Leaf RWC of the moderately conditioned trees remained slightly higher than that of the nonconditioned and mildly conditioned trees.  相似文献   

10.
Daily transpiration rates of woody species on drying soil   总被引:2,自引:0,他引:2  
Among annual plants, daily transpiration rates, expressed as a fraction of volumetric soil water content available for transpiration, show a common pattern in response to soil drying. Initially, as soil dries, there is little decrease in transpiration rate until water availability has fallen to about one third that at field capacity. With further soil drying, relative transpiration rate decreases in a more-or-less linear fashion until all available water has been used. Data previously obtained for perennial woody species have often been confounded by different methods for determining available soil water. In this study, we investigated the daily transpiration response to soil drying in five woody perennial species: Thuja plicata Donn ex D. Don, Acer rubrum L., Robinia pseudoacacia L., Hibiscus sp. and Ibex aquifolium L. Transpiration was unaffected by soil drying until the initial estimated transpirable soil water fraction had decreased to between 0.23 and 0.32 of that at field capacity. Beyond this point, transpiration rate declined linearly with available soil water fraction until reaching one fifth the rate observed in well-watered plants. With further soil drying, the relative transpiration rates remained between 10 and 20% of that observed in well-watered plants. Maintenance of transpiration at these rates with further soil drying was hypothesized to result from contributions to transpiration of water stored in plant tissues. After taking tissue water storage into account, it was estimated that transpiration was curtailed as the available soil water fraction fell to between 0.26 and 0.37 of that at field capacity, which is comparable to values reported for annual crop plants.  相似文献   

11.
Seedlings of Betula pendula Roth were grown with their root systems separated between two soil compartments. Four treatments were imposed: (i) adequate irrigation in both compartments (WW, controls); (ii) adequate irrigation in one compartment and drought in the other compartment (WD); (iii) drought in both compartments (DD); and (iv) half of the root system severed and the remainder kept well-watered (root excision, RE). Predawn leaf water potential, stomatal conductance, soil-to-leaf specific hydraulic conductance, and root and leaf growth decreased in DD-treated seedlings, which also displayed severe leaf shedding (30% loss in leaf area). The DD treatment also resulted in increased concentrations of abscisic acid (ABA) and its glucose ester in the xylem sap of roots and shoots compared to concentrations in control seedlings (about 200 versus 20 nM). Despite the difference in xylem sap concentrations, total ABA flux to the shoots was similar in the two treatments (1-2 pmol ABA m(-2) leaf area s(-1)) as a result of reduced transpiration in the DD-treated seedlings. Compared with root growth in control plants, root growth increased in the RE-treated plants and decreased in the drying compartment of the WD treatment; however, the RE and WD treatments only slightly reduced leaf expansion, and had no detectable effects on shoot water relations or ABA concentrations of the root and shoot xylem sap. We conclude that short-term soil water depletion affecting only 50% of the root system does not cause a measurable stress response in birch shoots, despite root growth cessation in the fraction of drying soil.  相似文献   

12.
A dynamic model for simulating water flow in a Scots pine (Pinus sylvestris L.) tree was developed. The model is based on the cohesion theory and the assumption that fluctuating water tension driven by transpiration, together with the elasticity of wood tissue, causes variations in the diameter of a tree stem and branches. The change in xylem diameter can be linked to water tension in accordance with Hookea s law. The model was tested against field measurements of the diurnal xylem diameter change at different heights in a 37-year-old Scots pine at Hyyti?l?, southern Finland (61 degrees 51' N, 24 degrees 17' E, 181 m a.s.l.). Shoot transpiration and soil water potential were input data for the model. The biomechanical and hydraulic properties of wood and fine root hydraulic conductance were estimated from simulated and measured stem diameter changes during the course of 1 day. The estimated parameters attained values similar to literature values. The ratios of estimated parameters to literature values ranged from 0.5 to 0.9. The model predictions (stem diameters at several heights) were in close agreement with the measurements for a period of 6 days. The time lag between changes in transpiration rate and in sap flow rate at the base of the tree was about half an hour. The analysis showed that 40% of the resistance between the soil and the top of the tree was located in the rhizosphere. Modeling the water tension gradient and consequent woody diameter changes offer a convenient means of studying the link between wood hydraulic conductivity and control of transpiration.  相似文献   

13.
全球[CO2]变化与植物水分关系   总被引:8,自引:0,他引:8  
业已发现增加环境[CO2]可以改善大多数植物的水分胁迫。许多研究结果表明,较低的蒸腾速率(Tr)与[CO2]增加导致气孔关闭有关。由于[CO2]增加引起蒸腾速率的下降和净光合速率(Pn)的提高,因此,生长在高于环境[CO2]下的植物常常能够保持较高的水分利用效率(WUE).也发现生长在高于环境[CO2]下的植物能够保持较高的总水势(Ψ),增加叶面积和生物量,有较大的根/茎比率(R/S),因而通常比生长在正常环境[CO2]下的植物更耐干旱。[CO2]增加诱导产生的植物结构的变化(比如导管或管胞的解剖结构、叶比导度等),可能与木质部空穴脆弱性的变化有关,也可能与栓塞逃逸的环境条件相联系。这些重要的问题需要进一步的研究。  相似文献   

14.
Forest restoration programs using Holm oak (Quercus ilex ssp. ballota [Desf.] Samp.) have had limited success. The effect of plant provenance on plantation success is uncertain, although some previous studies suggest that some provenances may be better able to tolerate stress. We studied the tolerance to drought in seedlings from two Spanish provenances of Holm oak before and after outplanting. One provenance was from a continental climate with cold winters (GR) and the other was from a xeric climate (HU). Seedlings were subjected to a water stress test in the nursery during the summer and survival was visually assessed after 2?weeks. In addition, 35 healthy seedlings of each provenance that were not subjected to the water stress tests were used for outplanting experiment. In these plants the seasonal changes in water potential at dawn (Ψ), specific leaf area (SLA), cuticular transpiration (Ec), and loss of xylem hydraulic conductance of twigs (PLC) were measured over 18?months. After the water stress test in summer, mortality was 44.3?% for GR seedlings and 12.6?% for HU seedlings. In addition there were differences between the two provenances in plant water status after planting. The HU provenance had a better water status and was more water conservative in the summer (higher Ψ, lower Ec, lower PLC), but not in the winter. The different drought tolerance and water relations parameters of these two provenances indicate that provenance should be considered in forest restoration and conservation programs involving Holm oak.  相似文献   

15.
We examined the effects of increased transpiration demand on xylem hydraulic conductivity and vulnerability to cavitation of mature ponderosa pine (Pinus ponderosa Laws.) by comparing trees growing in contrasting climates. Previous studies determined that trees growing in warm and dry sites (desert) had half the leaf/sapwood area ratio (A(L)/A(S)) and more than twice the transpiration rate of trees growing in cool and moist sites (montane). We predicted that high transpiration rates would be associated with increased specific hydraulic conductivity (K(S)) and increased resistance to xylem cavitation. Desert trees had 19% higher K(S) than montane trees, primarily because of larger tracheid lumen diameters. Predawn water potential and water potential differences between the soil and the shoot were similar for desert and montane trees, suggesting that differences in tracheid anatomy, and therefore K(S), were caused primarily by temperature and evaporative demand, rather than soil drought. Vulnerability to xylem cavitation did not differ between desert and montane populations. A 50% loss in hydraulic conductivity occurred at water potentials between -2.61 and -2.65 MPa, and vulnerability to xylem cavitation did not vary with stem size. Minimum xylem tensions of desert and montane trees did not drop below -2.05 MPa. Foliage turgor loss point did not differ between climate groups and corresponded to mean minimum xylem tensions in the field. In addition to low A(L)/A(S), high K(S) in desert trees may provide a way to increase tree hydraulic conductivity in response to high evaporative demand and prevent xylem tensions from reaching values that cause catastrophic cavitation. In ponderosa pine, the flexible responses of A(L)/A(S) and K(S) to climate may preclude the existence of significant intraspecific variation in the vulnerability of xylem to cavitation.  相似文献   

16.
We investigated the impact of drought on the physiology of 41-year-old Scots pine (Pinus sylvestris L.) in central Scotland. Measurements were made of the seasonal course of transpiration, canopy stomatal conductance, needle water potential, xylem water content, soil-to-needle hydraulic resistance, and growth. Comparison was made between drought-treated plots and those receiving average precipitation. In response to drought, transpiration rate declined once volumetric water content (VWC) over the top 20 cm of soil reached a threshold value of 12%. Thereafter, transpiration was a near linear function of soil water content. As the soil water deficit developed, the hydraulic resistance between soil and needles increased by a factor of three as predawn needle water potential declined from -0.54 to -0.71 MPa. A small but significant increase in xylem embolism was detected in 1-year-old shoots. Stomatal control of transpiration prevented needle water potential from declining below -1.5 MPa. Basal area, and shoot and needle growth were significantly reduced in the drought treatment. In the year following the drought, canopy stomatal conductance and soil-to-needle hydraulic resistance recovered. Current-year needle extension recovered, but a significant reduction in basal area increment was evident one year after the drought. The results suggest that, in response to soil water deficit, mature Scots pine closes its stomata sufficiently to prevent the development of substantial xylem embolism. Reduced growth in the year after a severe soil water deficit is most likely to be the result of reduced assimilation in the year of the drought, rather than to any residual embolism carried over from one year to the next.  相似文献   

17.
The compensation heat pulse (CHP) method is widely used to estimate sap flow and transpiration in conducting organs of woody plants. Previous studies have reported a natural azimuthal variability in sap flow, which could have practical implications in locating the CHP probes and integrating their output. Sap flow of several olive trees (Olea europaea L. cv. 'Arbequina') previously grown under different irrigation treatments were monitored by the CHP method, and their xylem anatomical characteristics were analyzed from wood samples taken at the same location in which the probes were installed. A significant azimuthal variability in the sap flow was found in a well-irrigated olive tree monitored by eight CHP probes. The azimuthal variability was well related to crown architecture, but poorly to azimuthal differences in the xylem anatomical characteristics. Well-irrigated and deficit-irrigated olive trees showed similar xylem anatomical characteristics, but they differed in xylem growth and in the ratio of nocturnal-to-diurnal sap flow (N/D index). The results of this work indicate that transpiration cannot be accurately estimated by the CHP method in olive trees if a small number of sensors are employed and that the N/D index could be used as a sensitive water status indicator.  相似文献   

18.
We used 20-mm-long, Granier-type sensors to quantify the effects of tree size, azimuth and radial position in the xylem on the spatial variability in xylem sap flux in 64-year-old trees of Taxodium distichum L. Rich. growing in a flooded forest. This information was used to scale flux to the stand level to investigate variations in half-hourly and daily (24-hour) sums of sap flow, transpiration per unit of leaf area, and stand transpiration in relation to vapor pressure deficit (D) and photosynthetically active radiation (Q(o)). Measurements of xylem sap flux density (J(s)) indicated that: (1) J(s) in small diameter trees was 0.70 of that in medium and large diameter trees, but the relationship between stem diameter as a continuous variable and J(s) was not significant; (2) J(s) at 20-40 mm depth in the xylem was 0.40 of that at 0-20 mm depth; and (3) J(s) on the north side of trees was 0.64 of that in directions 120 degrees from the north. Daily transpiration was linearly related to daily daytime mean D, and reached a modest value of 1.3 mm day(-1), reflecting the low leaf area index (LAI = 2.2) of the stand. Because there was no soil water limitation, half-hourly water uptake was nearly linearly related to D at D < 0.6 kPa during both night and day, increasing to saturation during daytime at higher values of D. The positive effect of Q(o) on J(s) was significant, but relatively minor. Thus, a second-order polynomial with D explained 94% of the variation in J(s) and transpiration. An approximately 40% reduction in LAI by a hurricane resulted in decreases of about 18% in J(s) and stand transpiration, indicating partial stomatal compensation.  相似文献   

19.
以13个3年生麻栎无性系为研究对象,采用盆栽试验方法,研究了在持续干旱胁迫条件下的麻栎无性系土壤水势、叶片水势光合速率和蒸腾速率变化规律及其关系。结果表明,随着干旱胁迫的加剧,13个麻栎无性系土壤水势呈现出不断下降的变化趋势,叶片水势的变化无一致规律,光合速率则先下降而后上升,蒸腾速率的变化规律不尽相同。在13个麻栎无性系中,2、4、5、7、9和16号无性系的蒸腾速率、叶片水势和光合速率具有相同规律,随着干旱胁迫的加剧先下降而后上升,具有较强的适应干旱逆境的能力。对不同干旱条件下无性系的蒸腾速率、土壤水势、叶片水势和光合速率的相关性分析发现,干旱胁迫7天时,蒸腾速率和光合速率达极显著正相关;干旱胁迫12天时,蒸腾速率和土壤水势间呈极显著负相关,光合速率与土壤水势呈显著负相关;干旱胁迫17天时,蒸腾速率与光合速率呈显著正相关。  相似文献   

20.
土壤干湿交替对青檀幼苗生理及生长的影响   总被引:3,自引:0,他引:3  
采用盆栽试验人工模拟喀斯特地区常见的干湿交替环境,研究青檀幼苗生理和生长指标的变化以及旱后复水的恢复能力.结果表明,干湿交替环境下幼苗各项生理指标的变化因干湿交替处理次数而异.经过1次干湿交替处理的幼苗叶片水分饱和亏缺,根和茎木质部水势,叶片光合速率、蒸腾速率,叶片质膜透性等指标变化剧烈,2次处理变化相对缓和,而3次处理变化幅度又加大,这反映了幼苗从反应、适应到不适应的过程.干旱复水后,各项指标的恢复度与干湿交替处理次数呈负相关.恢复过程中补偿效应普遍存在,尤其以生长上的补偿效应最明显,这是幼苗对反复干旱-复水环境的一种适应策略.干湿交替处理对生长初期青檀幼苗生理指标的影响大于速生期,对生长指标的影响则相反.因此,速生期幼苗遭遇反复的干旱-复水处理会严重制约其生长潜力的发挥.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号